Skip to content
2000
image of Considerations and Challenges to Develop Drug-drug Coamorphous System: A Recent Update

Abstract

Poor water solubility of several drugs, especially BCS class II and IV drugs, restricts their dissolution and negatively affects oral absorption. Amorphization of drugs is a year-old approach to enhance solubility and dissolution of poorly water-soluble drugs. Polymeric amorphous systems have been proven effective but have disadvantages, such as low drug loading, high carrier content, etc. In a coamorphous system, a small molecule can be used as a coformer that keeps the amorphous form of a drug stable. In a drug-drug coamorphous system (CAS), one therapeutically active moiety can act as a coformer for the other drug. Although effective, the rationale of selecting the drugs and optimising the ratio without compromising therapeutic effect and safety is challenging. The preparation method is also a challenge because the stress during the processing method may result in the loss of crystallinity. Hence, the processing stability of the amorphous drug is a significant concern. A stable CAS is formed when two drugs generate some molecular-level interaction. In silico prediction of miscibility, molecular dynamic simulation, functional group analysis by Fourier Transform infrared spectroscopy, Raman spectroscopy, NMR, etc. contribute to the analysis of molecular-level interaction. Additionally, the article discusses the preparation method and the fact that the excipient must be selected carefully to form an effective CAS.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010318350241024113827
2024-10-30
2025-01-10
Loading full text...

Full text loading...

References

  1. Kalepu S. Nekkanti V. Insoluble drug delivery strategies: review of recent advances and business prospects. Acta Pharm Sin B. 2015 5 5 442 453 10.1016/j.apsb.2015.07.003
    [Google Scholar]
  2. Kanaujia P. Poovizhi P. Ng W.K. Tan R.B.H. Amorphous formulations for dissolution and bioavailability enhancement of poorly soluble APIs. Powder Technology. 2015 285 2 15 10.1016/j.powtec.2015.05.012
    [Google Scholar]
  3. Giry K. Péan J.M. Giraud L. Marsas S. Rolland H. Wüthrich P. Drug/lactose co-micronization by jet milling to improve aerosolization properties of a powder for inhalation. Int. J. Pharm. 2006 321 1-2 162 166 10.1016/j.ijpharm.2006.05.009 16797150
    [Google Scholar]
  4. Chatterjee B. Gorain B. Mohananaidu K. Sengupta P. Mandal U.K. Choudhury H. Targeted drug delivery to the brain via intranasal nanoemulsion: Available proof of concept and existing challenges. Int. J. Pharm. 2019 565 258 268 10.1016/j.ijpharm.2019.05.032 31095983
    [Google Scholar]
  5. Mahmood S. Pharmacokinetic evaluation of the synergistic effect of Raloxifene loaded transfersomes for transdermal delivery. J. Drug Deliv. Sci. Technol. 2021 63 102545
    [Google Scholar]
  6. Szumała P. Macierzanka A. Topical delivery of pharmaceutical and cosmetic macromolecules using microemulsion systems. Int. J. Pharm. 2022 615 121488 10.1016/j.ijpharm.2022.121488 35063593
    [Google Scholar]
  7. Pandya M. Chatterjee B. Ganti S. Self-emulsifying Drug Delivery System for Oral Anticancer Therapy: Constraints and Recent Development. Curr. Pharm. Des. 2022 28 31 2538 2553 10.2174/03666220606143443 35670356
    [Google Scholar]
  8. Liu T. Wan X. Luo Z. Liu C. Quan P. Cun D. Fang L. A donepezil/cyclodextrin complexation orodispersible film: Effect of cyclodextrin on taste-masking based on dynamic process and in vivo drug absorption. Asian J. Pharm. Sci. 2019 14 2 183 192 10.1016/j.ajps.2018.05.001 32104450
    [Google Scholar]
  9. Al-Japairai K.A.S. Alkhalidi H.M. Mahmood S. Almurisi S.H. Doolaanea A.A. Al-Sindi T.A. Chatterjee B. Lyophilized amorphous dispersion of telmisartan in a combined carrier−alkalizer system: Formulation development and in vivo study. ACS Omega 2020 5 50 32466 32480 10.1021/acsomega.0c04588 33376884
    [Google Scholar]
  10. Miyako Y. Khalef N. Matsuzaki K. Pinal R. Solubility enhancement of hydrophobic compounds by cosolvents: Role of solute hydrophobicity on the solubilization effect. Int. J. Pharm. 2010 393 1-2 48 54 10.1016/j.ijpharm.2010.03.059 20363302
    [Google Scholar]
  11. Khater AL-Japaira, Samah Hamed Almurisi, Syed Mahmood, Thiagarajan Madheswaran, Bappaditya Chatterjee. Strategies to improve the stability of amorphous solid dispersions in view of the hot melt extrusion (HME) method. Int. J. Pharm. 2023 647 •••
    [Google Scholar]
  12. Song S. Wang C. Wang S. Siegel R.A. Sun C.C. Efficient development of sorafenib tablets with improved oral bioavailability enabled by coprecipitated amorphous solid dispersion. Int. J. Pharm. 2021 610 121216 10.1016/j.ijpharm.2021.121216 34688849
    [Google Scholar]
  13. Schittny A. Philipp-Bauer S. Detampel P. Huwyler J. Puchkov M. Mechanistic insights into effect of surfactants on oral bioavailability of amorphous solid dispersions. J. Control. Release 2020 320 214 225 10.1016/j.jconrel.2020.01.031 31978445
    [Google Scholar]
  14. Wlodarski K. Sawicki W. Paluch K.J. Tajber L. Grembecka M. Hawelek L. Wojnarowska Z. Grzybowska K. Talik E. Paluch M. The influence of amorphization methods on the apparent solubility and dissolution rate of tadalafil. Eur. J. Pharm. Sci. 2014 62 132 140 10.1016/j.ejps.2014.05.026 24907679
    [Google Scholar]
  15. Edueng K. Mahlin D. Larsson P. Bergström C.A.S. Mechanism-based selection of stabilization strategy for amorphous formulations: Insights into crystallization pathways. J. Control. Release 2017 256 193 202 10.1016/j.jconrel.2017.04.015 28412224
    [Google Scholar]
  16. Kim D.H. Kim Y.W. Tin Y.Y. Soe M.T.P. Ko B.H. Park S.J. Recent technologies for amorphization of poorly water-soluble drugs. Pharmaceutics. 2021 13 8 1318 10.1016/j.jconrel.2017.04.015
    [Google Scholar]
  17. Wang Z. Sun M. Liu T. Gao Z. Ye Q. Tan X. Hou Y. Sun J. Wang D. He Z. Co-amorphous solid dispersion systems of lacidipine-spironolactone with improved dissolution rate and enhanced physical stability. Asian J. Pharm. Sci. 2019 14 1 95 103 10.1016/j.ajps.2018.11.001 32104442
    [Google Scholar]
  18. Oo M.K. Mahmood S. Wui W.T. Mandal U.K. Chatterjee B. Effects of Different Formulation Methods on Drug Crystallinity, Drug-Carrier Interaction, and Ex Vivo Permeation of a Ternary Solid Dispersion Containing Nisoldipine. J. Pharm. Innov. 2021 16 1 26 37 10.1007/s12247‑019‑09415‑2
    [Google Scholar]
  19. Sihorkar V. Dürig T. The role of polymers and excipients in developing amorphous solid dispersions: an industrial perspective. Drug Delivery Aspects. Elsevier 2020 79 113 10.1016/B978‑0‑12‑821222‑6.00005‑1
    [Google Scholar]
  20. Sihorkar V. Dürig T. The role of polymers and excipients in developing amorphous solid dispersions: An industrial perspective. Drug Delivery Aspect. 2020 4 79 113 10.1016/B978‑0‑12‑821222‑6.00005‑1
    [Google Scholar]
  21. Dukhan A.A.M. Amalina N. Kyaw Oo M. Sengupta P. Doolaanea A.A.M. Aljapairai K.A.S. Chatterjee B. Formulation of Dispersed Gliclazide Powder in Polyethylene Glycol–Polyvinyl Caprolactam– Polyvinyl Acetate Grafted Copolymer Carrier for Capsulation and Improved Dissolution. Indian Journal of Pharmaceutical Education and Research 2018 52 4s S210 S219 10.5530/ijper.52.4s.100
    [Google Scholar]
  22. Li Y.W. Zhang H.M. Cui B.J. Hao C.Y. Zhu H.Y. Guan J. Wang D. Jin Y. Feng B. Cai J.H. Qi X.R. Shi N.Q. “Felodipine-indomethacin” co-amorphous supersaturating drug delivery systems: “Spring-parachute” process, stability, in vivo bioavailability, and underlying molecular mechanisms. Eur. J. Pharm. Biopharm. 2021 166 111 125 10.1016/j.ejpb.2021.05.030 34119671
    [Google Scholar]
  23. Karagianni A. Kachrimanis K. Nikolakakis I. Co-amorphous solid dispersions for solubility and absorption improvement of drugs: Composition, preparation, characterization and formulations for oral delivery. Pharmaceutics. 2018 10 3 98 10.3390/pharmaceutics10030098
    [Google Scholar]
  24. Liu X. Feng X. Williams R.O. Zhang F. Characterization of amorphous solid dispersions. J. Pharmaceut. Investig. 2018 50 113 124 10.1007/s40005‑017‑0361‑5
    [Google Scholar]
  25. Jensen K.T. Blaabjerg L.I. Lenz E. Bohr A. Grohganz H. Kleinebudde P. Rades T. Löbmann K. Preparation and characterization of spray-dried co-amorphous drug–amino acid salts. J. Pharm. Pharmacol. 2016 68 5 615 624 10.1111/jphp.12458 26245703
    [Google Scholar]
  26. Maher E.M. Ali A.M.A. Salem H.F. Abdelrahman A.A. In vitro / in vivo evaluation of an optimized fast dissolving oral film containing olanzapine co-amorphous dispersion with selected carboxylic acids. Drug Deliv. 2016 23 8 3088 3100 10.3109/10717544.2016.1153746 26960680
    [Google Scholar]
  27. Xu X. Rades T. Grohganz H. Thermal investigation on hydrated co-amorphous systems of nicotinamide and prilocaine. Eur. J. Pharm. Biopharm. 2023 186 1 6 10.1016/j.ejpb.2023.02.015 36878408
    [Google Scholar]
  28. Wang J. Chang R. Zhao Y. Zhang J. Zhang T. Fu Q. Chang C. Zeng A. Coamorphous Loratadine-Citric Acid System with Enhanced Physical Stability and Bioavailability. AAPS PharmSciTech 2017 18 7 2541 2550 10.1208/s12249‑017‑0734‑0 28224393
    [Google Scholar]
  29. Chatterjee B. Reddy A. Santra M. Khamanga S. Amorphization of drugs for transdermal delivery-a recent update. Pharmaceutics 2022 14 5 983 10.3390/pharmaceutics14050983
    [Google Scholar]
  30. Chavan R.B. Thipparaboina R. Kumar D. Shastri N.R. Co amorphous systems: A product development perspective. Int. J. Pharmaceut. 2016 515 403 415
    [Google Scholar]
  31. Yamamura S. Solid-state interaction between cimetidine and naproxen. Drug Stability 1998 1 3 173 178
    [Google Scholar]
  32. Yamamura S. Gotoh H. Sakamoto Y. Momose Y. Physicochemical properties of amorphous precipitates of cimetidine–indomethacin binary system. Euro. J. Pharmaceut. Biopharmaceut. 2000 14 3 259 265
    [Google Scholar]
  33. Yamamura S. Gotoh H. Sakamoto Y. Momose Y. Physicochemical properties of amorphous salt of cimetidine and diflunisal system. Int. J. Pharm. 2002 241 2 213 221
    [Google Scholar]
  34. Dengale S.J. Ranjan O.P. Hussen S.S. Krishna B.S.M. Musmade P.B. Gautham Shenoy G. Bhat K. Preparation and characterization of co-amorphous Ritonavir–Indomethacin systems by solvent evaporation technique: Improved dissolution behavior and physical stability without evidence of intermolecular interactions. Eur. J. Pharm. Sci. 2014 62 57 64 10.1016/j.ejps.2014.05.015 24878386
    [Google Scholar]
  35. Wairkar S. Gaud R. Co-Amorphous Combination of Nateglinide-Metformin Hydrochloride for Dissolution Enhancement. AAPS PharmSciTech 2016 17 3 673 681 10.1208/s12249‑015‑0371‑4 26314243
    [Google Scholar]
  36. Dengale S.J. Grohganz H. Rades T. Löbmann K. Recent advances in co-amorphous drug formulations. Adv. Drug Deliv. Rev. 2016 100 116 125
    [Google Scholar]
  37. Korhonen O. Pajula K. Laitinen R. Rational excipient selection for co-amorphous formulations. Expert Opin. Drug Deliv. 2017 14 4 551 569 10.1080/17425247.2016.1198770
    [Google Scholar]
  38. Newman A. Reutzel-Edens S.M. Zografi G. Coamorphous Active Pharmaceutical Ingredient–Small Molecule Mixtures: Considerations in the Choice of Coformers for Enhancing Dissolution and Oral Bioavailability. J. Pharm. Sci. 2018 107 1 5 17 10.1016/j.xphs.2017.09.024 28989014
    [Google Scholar]
  39. Li B. Hu Y. Guo Y. Xu R. Fang X. Xiao X. Jiang C. Lu S. Coamorphous System of Florfenicol-Oxymatrine for Improving the Solubility and Dissolution Rate of Florfenicol: Preparation, Characterization and Molecular Dynamics Simulation. J. Pharm. Sci. 2021 110 6 2544 2554 10.1016/j.xphs.2021.02.005 33577826
    [Google Scholar]
  40. Wang S. Heng W. Wang X. He X. Zhang Z. Wei Y. Zhang J. Gao Y. Qian S. Coamorphization combined with complexation enhances dissolution of lurasidone hydrochloride and puerarin with synchronized release. Int. J. Pharm. 2020 588 119793 10.1016/j.ijpharm.2020.119793 32827676
    [Google Scholar]
  41. Löbmann K. Laitinen R. Grohganz H. Gordon K.C. Strachan C. Rades T. Coamorphous drug systems: enhanced physical stability and dissolution rate of indomethacin and naproxen. Mol. Pharm. 2011 8 5 1919 1928 10.1021/mp2002973 21815614
    [Google Scholar]
  42. Dengale S.J. Hussen S.S. Krishna B.S.M. Musmade P.B. Gautham Shenoy G. Bhat K. Fabrication, solid state characterization and bioavailability assessment of stable binary amorphous phases of Ritonavir with Quercetin. Eur. J. Pharm. Biopharm. 2015 89 329 338 10.1016/j.ejpb.2014.12.025 25542681
    [Google Scholar]
  43. Tantishaiyakul V. Suknuntha K. Vao-Soongnern V. Characterization of cimetidine-piroxicam coprecipitate interaction using experimental studies and molecular dynamic simulations. AAPS PharmSciTech 2010 11 2 952 958 10.1208/s12249‑010‑9461‑5 20512435
    [Google Scholar]
  44. Shi Q. Moinuddin S.M. Cai T. Advances in coamorphous drug delivery systems. Acta Pharm. Sin. B 2019 9 1 19 35 10.1016/j.apsb.2018.08.002 30766775
    [Google Scholar]
  45. Arca H.Ç. Mosquera-Giraldo L.I. Dahal D. Taylor L.S. Edgar K.J. Multidrug, Anti-HIV Amorphous Solid Dispersions: Nature and Mechanisms of Impacts of Drugs on Each Other’s Solution Concentrations. Mol. Pharm. 2017 14 11 3617 3627 10.1021/acs.molpharmaceut.7b00203 28872867
    [Google Scholar]
  46. Shi X. Zhou X. Shen S. Chen Q. Song S. Gu C. Wang C. Improved in vitro and in vivo properties of telmisartan in the co-amorphous system with hydrochlorothiazide: A potential drug-drug interaction mechanism prediction. Eur. J. Pharm. Sci. 2021 161 105773 10.1016/j.ejps.2021.105773 33640500
    [Google Scholar]
  47. Lodagekar A. Chavan R.B. Mannava M.K.C. Yadav B. Chella N. Nangia A.K. Shastri N.R. Co amorphous valsartan nifedipine system: Preparation, characterization, in vitro and in vivo evaluation. Eur. J. Pharm. Sci. 2019 139 105048 10.1016/j.ejps.2019.105048 31446077
    [Google Scholar]
  48. Gordon M. Taylor J.S. Ideal copolymers and the second-order transitions of synthetic rubbers. i. non-crystalline copolymers. J. Appl. Chem. 1952 2 9 493 500
    [Google Scholar]
  49. Han Y. Pan Y. Lv J. Guo W. Wang J. Powder grinding preparation of co-amorphous β-azelnidipine and maleic acid combination: Molecular interactions and physicochemical properties. Powder Technol. 2016 291 110 120 10.1016/j.powtec.2015.11.068
    [Google Scholar]
  50. Shayanfar A. Jouyban A. Drug-drug coamorphous systems: Characterization and physicochemical properties of coamorphous atorvastatin with carvedilol and glibenclamide. J. Pharm. Innov. 2013 8 4 218 228 10.1007/s12247‑013‑9162‑1
    [Google Scholar]
  51. Thakral S. Thakral N.K. Prediction of drug-polymer miscibility through the use of solubility parameter based Flory-Huggins interaction parameter and the experimental validation: PEG as model polymer. J. Pharm. Sci. 2013 102 7 2254 2263 10.1002/jps.23583 23649486
    [Google Scholar]
  52. Pajula K. Wittoek L. Lehto V.P. Ketolainen J. Korhonen O. Phase separation in coamorphous systems: in silico prediction and the experimental challenge of detection. Mol. Pharm. 2014 11 7 2271 2279 10.1021/mp400712m 24824610
    [Google Scholar]
  53. Alhalaweh A. Alzghoul A. Kaialy W. Data mining of solubility parameters for computational prediction of drug–excipient miscibility. Drug Dev. Ind. Pharm. 2014 40 7 904 909 10.3109/03639045.2013.789906 23627441
    [Google Scholar]
  54. Marsac P.J. Shamblin S.L. Taylor L.S. Theoretical and practical approaches for prediction of drug-polymer miscibility and solubility. Pharm. Res. 2006 23 10 2417 2426 10.1007/s11095‑006‑9063‑9 16933098
    [Google Scholar]
  55. Wang Z. Xue Y. Zhu Z. Hu Y. Zeng Q. Wu Y. Wang Y. Shen C. Jiang C. Liu L. Zhu H. Liu Q. Quantitative Structure-Activity Relationship of Enhancers of Licochalcone A and Glabridin Release and Permeation Enhancement from Carbomer Hydrogel. Pharmaceutics 2022 14 2 262 10.3390/pharmaceutics14020262 35213995
    [Google Scholar]
  56. Fang X. Hu Y. Yang G. Shi W. Lu S. Cao Y. Improving physicochemical properties and pharmacological activities of ternary co-amorphous systems. Eur. J. Pharm. Biopharm. 2022 181 22 35 10.1016/j.ejpb.2022.10.008 36283631
    [Google Scholar]
  57. Löbmann K. Strachan C. Grohganz H. Rades T. Korhonen O. Laitinen R. Co-amorphous simvastatin and glipizide combinations show improved physical stability without evidence of intermolecular interactions. Eur. J. Pharm. Biopharm. 2012 81 1 159 169 10.1016/j.ejpb.2012.02.004 22353489
    [Google Scholar]
  58. Uppala S. Vullendula S.K.A. Yarlagadda D.L. Dengale S.J. Exploring the utility of co-amorphous materials to concurrently improve the solubility and permeability of Fexofenadine. J. Drug Deliv. Sci. Technol. 2022 72 103431 10.1016/j.jddst.2022.103431
    [Google Scholar]
  59. Lim A.W. Löbmann K. Grohganz H. Rades T. Chieng N. Investigation of physical properties and stability of indomethacin–cimetidine and naproxen–cimetidine co-amorphous systems prepared by quench cooling, coprecipitation and ball milling. J. Pharm. Pharmacol. 2016 68 1 36 45 10.1111/jphp.12494 26663364
    [Google Scholar]
  60. Piras C.C. Fernández-Prieto S. De Borggraeve W.M. Ball milling: A green technology for the preparation and functionalisation of nanocellulose derivatives. Nanoscale Adv. 2019 1 937 947
    [Google Scholar]
  61. Patil C. Junghare H. Hamjade M. Patil C.K. Girase S.B. Lele M.M. A Review on Cryogenic Grinding. Int. J. Curr. Engin. Technol. 2020 2020 Special issue 4
    [Google Scholar]
  62. Jensen K. Löbmann K. Rades T. Grohganz H. Improving co-amorphous drug formulations by the addition of the highly water soluble amino Acid, proline. Pharmaceutics 2014 6 3 416 435 10.3390/pharmaceutics6030416 25025400
    [Google Scholar]
  63. Soyata A. Kenti K. Sutoro M. Sagita N. Impact of Preparation Method in Co-Amorphous System. Sci. Pharm. 2022 1 1 41 49
    [Google Scholar]
  64. Paudel A. Worku Z.A. Meeus J. Guns S. Van Den Mooter G. Manufacturing of solid dispersions of poorly water soluble drugs by spray drying: Formulation and process considerations. Int. J. Pharmaceut. 2013 453 253 284
    [Google Scholar]
  65. Nair A. Varma R. Gourishetti K. Bhat K. Dengale S. Influence of Preparation Methods on Physicochemical and Pharmacokinetic Properties of Co-amorphous Formulations: The Case of Co-amorphous Atorvastatin: Naringin. J. Pharm. Innov. 2020 15 3 365 379 10.1007/s12247‑019‑09381‑9
    [Google Scholar]
  66. Patterson J.E. James M.B. Forster A.H. Lancaster R.W. Butler J.M. Rades T. The influence of thermal and mechanical preparative techniques on the amorphous state of four poorly soluble compounds. J. Pharm. Sci. 2005 94 9 1998 2012 10.1002/jps.20424 16052554
    [Google Scholar]
  67. Qi S. Mcauley W.J. Yang Z. Tipduangta P. Physical stabilization of low-molecular-weight amorphous drugs in the solid state: A material science approach. Therap. Deliv. 2014 5 817 841
    [Google Scholar]
  68. Saß A. Lee G. Evaluation of some water-miscible organic solvents for spray-drying enzymes and carbohydrates. Drug Dev. Ind. Pharm. 2014 40 6 749 757 10.3109/03639045.2013.782554 23596974
    [Google Scholar]
  69. Kunz C. Schuldt-Lieb S. Gieseler H. Freeze-Drying From Organic Cosolvent Systems, Part 1: Thermal Analysis of Cosolvent-Based Placebo Formulations in the Frozen State. J. Pharm. Sci. 2018 107 3 887 896 10.1016/j.xphs.2017.11.003 29133233
    [Google Scholar]
  70. Daoussi R. Bogdani E. Vessot S. Andrieu J. Monnier O. Freeze-drying of an active principle ingredient using organic co-solvent formulations: Influence of freezing conditions and formulation on solvent crystals morphology, thermodynamics data, and sublimation kinetics. Dry. Technol. 2011 29 16 1858 1867 10.1080/07373937.2011.569624
    [Google Scholar]
  71. Teagarden D.L. Baker D.S. Practical aspects of lyophilization using non-aqueous co-solvent systems. Eur. J. Pharm. Sci. 2002 15 2 115 133
    [Google Scholar]
  72. Wostry M. Plappert H. Grohganz H. Preparation of Co-amorphous systems by freeze-drying. Pharmaceutics 2020 12 10 941 10.3390/pharmaceutics12100941 33008124
    [Google Scholar]
  73. Ma X. Williams R.O. Characterization of amorphous solid dispersions: An update. J. Drug Deliv. Sci. Technol. 2019 50 113 124
    [Google Scholar]
  74. Hatanaka Y. Uchiyama H. Kaneko S. Ueda K. Higashi K. Moribe K. Furukawa S. Takase M. Yamanaka S. Kadota K. Tozuka Y. Designing a Novel Coamorphous Salt Formulation of Telmisartan with Amlodipine to Enhance Permeability and Oral Absorption. Mol. Pharm. 2023 20 8 4071 4085 10.1021/acs.molpharmaceut.3c00226 37498232
    [Google Scholar]
  75. Frank K.J. Westedt U. Rosenblatt K.M. Hölig P. Rosenberg J. Mägerlein M. Fricker G. Brandl M. The amorphous solid dispersion of the poorly soluble ABT-102 forms nano/microparticulate structures in aqueous medium: impact on solubility. Int. J. Nanomedicine 2012 7 5757 5768 23166440
    [Google Scholar]
  76. Renuka Singh S.K. Gulati M. Narang R. Stable amorphous binary systems of glipizide and atorvastatin powders with enhanced dissolution profiles: formulation and characterization. Pharm. Dev. Technol. 2017 22 1 13 25 10.3109/10837450.2015.1125921 26708555
    [Google Scholar]
  77. Tran T.T.D. Tran P.H.L. Molecular interactions in solid dispersions of poorly water-soluble drugs. Pharmaceutics. 2020 12 1 12
    [Google Scholar]
  78. Löbmann K. Grohganz H. Laitinen R. Strachan C. Rades T. Amino acids as co-amorphous stabilizers for poorly water soluble drugs – Part 1: Preparation, stability and dissolution enhancement. Eur. J. Pharm. Biopharm. 2013 85 3 3 PART B 873 881 10.1016/j.ejpb.2013.03.014 23537574
    [Google Scholar]
  79. Löbmann K. Laitinen R. Strachan C. Rades T. Grohganz H. Amino acids as co-amorphous stabilizers for poorly water-soluble drugs – Part 2: Molecular interactions. Eur. J. Pharm. Biopharm. 2013 85 3 3 PART B 882 888 10.1016/j.ejpb.2013.03.026 23567485
    [Google Scholar]
  80. Laitinen R. Löbmann K. Grohganz H. Strachan C. Rades T. Amino acids as co-amorphous excipients for simvastatin and glibenclamide: physical properties and stability. Mol. Pharm. 2014 11 7 2381 2389 10.1021/mp500107s 24852326
    [Google Scholar]
  81. Ueda H. Kadota K. Imono M. Ito T. Kunita A. Tozuka Y. Co-amorphous Formation Induced by Combination of Tranilast and Diphenhydramine Hydrochloride. J. Pharm. Sci. 2017 106 1 123 128 10.1016/j.xphs.2016.07.009 27539557
    [Google Scholar]
  82. Andrews G.P. AbuDiak O.A. Jones D.S. Physicochemical characterization of hot melt extruded bicalutamide-polyvinylpyrrolidone solid dispersions. J. Pharm. Sci. 2010 99 3 1322 1335 10.1002/jps.21914 19798757
    [Google Scholar]
  83. Baghel S. Cathcart H. O’Reilly N.J. Understanding the generation and maintenance of supersaturation during the dissolution of amorphous solid dispersions using modulated DSC and 1H NMR. Int. J. Pharm. 2018 536 1 414 425 10.1016/j.ijpharm.2017.11.056 29183857
    [Google Scholar]
  84. Kumar V. Mintoo M.J. Mondhe D.M. Bharate S.B. Vishwakarma R.A. Bharate S.S. Binary and ternary solid dispersions of an anticancer preclinical lead, IIIM-290: In vitro and in vivo studies. Int. J. Pharm. 2019 570 118683 10.1016/j.ijpharm.2019.118683 31513869
    [Google Scholar]
  85. Van Den Mooter G. Wuyts M. Blaton N. Busson R. Grobet P. Augustijns P. Physical stabilisation of amorphous ketoconazole in solid dispersions with polyvinylpyrrolidone K25. Euro. J. Pharmaceut. Sci. 2001 12
    [Google Scholar]
  86. Iwahara J. Zandarashvili L. Kemme C.A. Esadze A. NMR-based investigations into target DNA search processes of proteins. Methods. 2018 148 57 66
    [Google Scholar]
  87. Hu D. Chen X. Li D. Zhang H. Duan Y. Huang Y. Tranilast-matrine co-amorphous system: Strong intermolecular interactions, improved solubility, and physiochemical stability. Int. J. Pharm. 2023 635 122707 10.1016/j.ijpharm.2023.122707 36764418
    [Google Scholar]
  88. Zakeri-Milani P. Barzegar-Jalali M. Azimi M. Valizadeh H. Biopharmaceutical classification of drugs using intrinsic dissolution rate (IDR) and rat intestinal permeability. Eur. J. Pharm. Biopharm. 2009 73 1 102 106 10.1016/j.ejpb.2009.04.015 19442726
    [Google Scholar]
  89. Etherson K. Dunn C. Matthews W. Pamelund H. Barragat C. Sanderson N. Izumi T. Mathews C.C. Halbert G. Wilson C. McAllister M. Mann J. Østergaard J. Butler J. Khadra I. An interlaboratory investigation of intrinsic dissolution rate determination using surface dissolution. Eur. J. Pharm. Biopharm. 2020 150 24 32 10.1016/j.ejpb.2020.02.005 32061919
    [Google Scholar]
  90. Pappa H. Pharmacopeial forum. Available from: http://www.pharmacopeia.cn/v29240/usp29nf24s0_c1087.html(accessed on 8-10-2024)
  91. ICH Q1A (R2) Stability testing of new drug substances and drug products - Scientific guideline. 2003 Available from:https://database.ich.org/sites/default/files/Q1A%28R2%29%20Guideline.pdf(accessed on 8-10-2024)
  92. Chieng N. Aaltonen J. Saville D. Rades T. Physical characterization and stability of amorphous indomethacin and ranitidine hydrochloride binary systems prepared by mechanical activation. Eur. J. Pharm. Biopharm. 2009 71 1 47 54 10.1016/j.ejpb.2008.06.022 18644443
    [Google Scholar]
  93. Suresh K. A novel curcumin–artemisinin coamorphous solid: physical properties and pharmacokinetic profile. RSC Adv. 2014 4 58357 58361
    [Google Scholar]
  94. Teja A. Musmade P.B. Khade A.B. Dengale S.J. Simultaneous improvement of solubility and permeability by fabricating binary glassy materials of Talinolol with Naringin: Solid state characterization, in-vivo in-situ evaluation. Eur. J. Pharm. Sci. 2015 78 234 244 10.1016/j.ejps.2015.08.002 26253355
    [Google Scholar]
  95. Beyer A. Grohganz H. Löbmann K. Rades T. Leopold C.S. Improvement of the physicochemical properties of Co-amorphous naproxen-indomethacin by naproxen-sodium. Int. J. Pharm. 2017 526 1-2 88 94 10.1016/j.ijpharm.2017.04.011 28392278
    [Google Scholar]
  96. Russo M.G. Sancho M.I. Silva L.M.A. Baldoni H.A. Venancio T. Ellena J. Narda G.E. Looking for the interactions between omeprazole and amoxicillin in a disordered phase. An experimental and theoretical study. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2016 156 70 77 10.1016/j.saa.2015.11.021 26654963
    [Google Scholar]
  97. Zhang J. Shi Q. Qu T. Zhou D. Cai T. Crystallization kinetics and molecular dynamics of binary coamorphous systems of nimesulide and profen analogs. Int. J. Pharm. 2021 610 121235 10.1016/j.ijpharm.2021.121235 34743960
    [Google Scholar]
  98. Li B. Wang Y. Feng Y. Yuan D. Xu R. Jiang C. Xiao X. Lu S. Design and molecular insights of drug-active metabolite based co-amorphous formulation: A case study of toltrazuril-ponazuril co-amorphous. Int. J. Pharm. 2022 615 121475 10.1016/j.ijpharm.2022.121475 35041914
    [Google Scholar]
  99. Alhajj N. O’Reilly N.J. Cathcart H. Development and characterization of a spray-dried inhalable ciprofloxacin-quercetin co-amorphous system. Int. J. Pharm. 2022 618 121657 10.1016/j.ijpharm.2022.121657 35288220
    [Google Scholar]
  100. Huihui M.N. A simvastatin-gliclazide co-amorphous compound. Patent CN103360357A, 2013.
  101. Tengfei Z.Y. Irbesartan and repaglinide co-amorphous substance. Patent CN103497178A, 2014.
  102. Nianqiu S. Co-amorphous system and preparation method thereof. patent CN104415042A, 2015.
  103. Yuan G. Baicalein-caffeine amorphous compound. Patent CN103923049A, 2014.
  104. Jianjun Z. Celecoxib and irbesartan coamorphous substance. Patent CN105646353A, 2016.
  105. Qiang F. Co-amorphous substance containing nimodipine and irbesartan, preparation method and application thereof. patent CN113069453A, 2021.
/content/journals/cpb/10.2174/0113892010318350241024113827
Loading
/content/journals/cpb/10.2174/0113892010318350241024113827
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: amorphisation ; molecular interaction ; conformer ; Coamorphous ; solubility
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test