Skip to content
2000
Volume 26, Issue 17
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Poor water solubility of several drugs, especially BCS class II and IV drugs, restricts their dissolution and negatively affects oral absorption. Amorphization of drugs is a year-old approach to enhance solubility and dissolution of poorly water-soluble drugs. Polymeric amorphous systems have been proven effective but have disadvantages, such as low drug loading, high carrier content, etc. In a coamorphous system, a small molecule can be used as a coformer that keeps the amorphous form of a drug stable. In a drug-drug coamorphous system (CAS), one therapeutically active moiety can act as a coformer for the other drug. Although effective, the rationale of selecting the drugs and optimising the ratio without compromising therapeutic effect and safety is challenging. The preparation method is also a challenge because the stress during the processing method may result in the loss of crystallinity. Hence, the processing stability of the amorphous drug is a significant concern. A stable CAS is formed when two drugs generate some molecular-level interaction. In silico prediction of miscibility, molecular dynamic simulation, functional group analysis by Fourier Transform infrared spectroscopy, Raman spectroscopy, NMR, etc. contribute to the analysis of molecular-level interaction. Additionally, the article discusses the preparation method and the selection of excipient to form an effective CAS.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010318350241024113827
2024-10-30
2026-02-09
Loading full text...

Full text loading...

References

  1. KalepuS. NekkantiV. Insoluble drug delivery strategies: review of recent advances and business prospects.Acta Pharm. Sin. B20155544245310.1016/j.apsb.2015.07.003
    [Google Scholar]
  2. KanaujiaP. PoovizhiP. NgW.K. TanR.B.H. Amorphous formulations for dissolution and bioavailability enhancement of poorly soluble APIs.Powder Technology.201528521510.1016/j.powtec.2015.05.012
    [Google Scholar]
  3. GiryK. PéanJ.M. GiraudL. MarsasS. RollandH. WüthrichP. Drug/lactose co-micronization by jet milling to improve aerosolization properties of a powder for inhalation.Int. J. Pharm.20063211-216216610.1016/j.ijpharm.2006.05.009 16797150
    [Google Scholar]
  4. ChatterjeeB. GorainB. MohananaiduK. SenguptaP. MandalU.K. ChoudhuryH. Targeted drug delivery to the brain via intranasal nanoemulsion: Available proof of concept and existing challenges.Int. J. Pharm.201956525826810.1016/j.ijpharm.2019.05.032 31095983
    [Google Scholar]
  5. MahmoodS. Pharmacokinetic evaluation of the synergistic effect of Raloxifene loaded transfersomes for transdermal delivery.J. Drug Deliv. Sci. Technol.202163102545
    [Google Scholar]
  6. SzumałaP. MacierzankaA. Topical delivery of pharmaceutical and cosmetic macromolecules using microemulsion systems.Int. J. Pharm.202261512148810.1016/j.ijpharm.2022.121488 35063593
    [Google Scholar]
  7. PandyaM. ChatterjeeB. GantiS. Self-emulsifying Drug Delivery System for Oral Anticancer Therapy: Constraints and Recent Development.Curr. Pharm. Des.202228312538255310.2174/03666220606143443 35670356
    [Google Scholar]
  8. LiuT. WanX. LuoZ. LiuC. QuanP. CunD. FangL. A donepezil/cyclodextrin complexation orodispersible film: Effect of cyclodextrin on taste-masking based on dynamic process and in vivo drug absorption.Asian J. Pharm. Sci.201914218319210.1016/j.ajps.2018.05.001 32104450
    [Google Scholar]
  9. Al-JapairaiK.A.S. AlkhalidiH.M. MahmoodS. AlmurisiS.H. DoolaaneaA.A. Al-SindiT.A. ChatterjeeB. Lyophilized amorphous dispersion of telmisartan in a combined carrier−alkalizer system: Formulation development and in vivo study.ACS Omega2020550324663248010.1021/acsomega.0c04588 33376884
    [Google Scholar]
  10. MiyakoY. KhalefN. MatsuzakiK. PinalR. Solubility enhancement of hydrophobic compounds by cosolvents: Role of solute hydrophobicity on the solubilization effect.Int. J. Pharm.20103931-2485410.1016/j.ijpharm.2010.03.059 20363302
    [Google Scholar]
  11. Khater AL-Japaira, Samah Hamed Almurisi, Syed Mahmood, Thiagarajan Madheswaran, Bappaditya Chatterjee. Strategies to improve the stability of amorphous solid dispersions in view of the hot melt extrusion (HME) method.Int. J. Pharm.2023647
    [Google Scholar]
  12. SongS. WangC. WangS. SiegelR.A. SunC.C. Efficient development of sorafenib tablets with improved oral bioavailability enabled by coprecipitated amorphous solid dispersion.Int. J. Pharm.202161012121610.1016/j.ijpharm.2021.121216 34688849
    [Google Scholar]
  13. SchittnyA. Philipp-BauerS. DetampelP. HuwylerJ. PuchkovM. Mechanistic insights into effect of surfactants on oral bioavailability of amorphous solid dispersions.J. Control. Release202032021422510.1016/j.jconrel.2020.01.031 31978445
    [Google Scholar]
  14. WlodarskiK. SawickiW. PaluchK.J. TajberL. GrembeckaM. HawelekL. WojnarowskaZ. GrzybowskaK. TalikE. PaluchM. The influence of amorphization methods on the apparent solubility and dissolution rate of tadalafil.Eur. J. Pharm. Sci.20146213214010.1016/j.ejps.2014.05.026 24907679
    [Google Scholar]
  15. EduengK. MahlinD. LarssonP. BergströmC.A.S. Mechanism-based selection of stabilization strategy for amorphous formulations: Insights into crystallization pathways.J. Control. Release201725619320210.1016/j.jconrel.2017.04.015 28412224
    [Google Scholar]
  16. KimD.H. KimY.W. TinY.Y. SoeM.T.P. KoB.H. ParkS.J. Recent technologies for amorphization of poorly water-soluble drugs.2021138131810.1016/j.jconrel.2017.04.015
    [Google Scholar]
  17. WangZ. SunM. LiuT. GaoZ. YeQ. TanX. HouY. SunJ. WangD. HeZ. Co-amorphous solid dispersion systems of lacidipine-spironolactone with improved dissolution rate and enhanced physical stability.Asian J. Pharm. Sci.20191419510310.1016/j.ajps.2018.11.001 32104442
    [Google Scholar]
  18. OoM.K. MahmoodS. WuiW.T. MandalU.K. ChatterjeeB. Effects of Different Formulation Methods on Drug Crystallinity, Drug-Carrier Interaction, and Ex Vivo Permeation of a Ternary Solid Dispersion Containing Nisoldipine.J. Pharm. Innov.2021161263710.1007/s12247‑019‑09415‑2
    [Google Scholar]
  19. SihorkarV. DürigT. The role of polymers and excipients in developing amorphous solid dispersions: an industrial perspective.Drug Delivery Aspects.Elsevier20207911310.1016/B978‑0‑12‑821222‑6.00005‑1
    [Google Scholar]
  20. SihorkarV. DürigT. The role of polymers and excipients in developing amorphous solid dispersions: An industrial perspective.Drug Delivery Aspect.202047911310.1016/B978‑0‑12‑821222‑6.00005‑1
    [Google Scholar]
  21. DukhanA.A.M. AmalinaN. Kyaw OoM. SenguptaP. DoolaaneaA.A.M. AljapairaiK.A.S. ChatterjeeB. Formulation of Dispersed Gliclazide Powder in Polyethylene Glycol-Polyvinyl Caprolactam- Polyvinyl Acetate Grafted Copolymer Carrier for Capsulation and Improved Dissolution.Indian Journal of Pharmaceutical Education and Research2018524sS210S21910.5530/ijper.52.4s.100
    [Google Scholar]
  22. LiY.W. ZhangH.M. CuiB.J. HaoC.Y. ZhuH.Y. GuanJ. WangD. JinY. FengB. CaiJ.H. QiX.R. ShiN.Q. “Felodipine-indomethacin” co-amorphous supersaturating drug delivery systems: “Spring-parachute” process, stability, in vivo bioavailability, and underlying molecular mechanisms.Eur. J. Pharm. Biopharm.202116611112510.1016/j.ejpb.2021.05.030 34119671
    [Google Scholar]
  23. KaragianniA. KachrimanisK. NikolakakisI. Co-amorphous solid dispersions for solubility and absorption improvement of drugs: Composition, preparation, characterization and formulations for oral delivery.Pharmaceutics20181039810.3390/pharmaceutics10030098
    [Google Scholar]
  24. LiuX. FengX. WilliamsR.O. ZhangF. Characterization of amorphous solid dispersions.J. Pharmaceut Investig.20185011312410.1007/s40005‑017‑0361‑5
    [Google Scholar]
  25. JensenK.T. BlaabjergL.I. LenzE. BohrA. GrohganzH. KleinebuddeP. RadesT. LöbmannK. Preparation and characterization of spray-dried co-amorphous drug-amino acid salts.J. Pharm. Pharmacol.201668561562410.1111/jphp.12458 26245703
    [Google Scholar]
  26. MaherE.M. AliA.M.A. SalemH.F. AbdelrahmanA.A. In vitro/in vivo evaluation of an optimized fast dissolving oral film containing olanzapine co-amorphous dispersion with selected carboxylic acids.Drug Deliv.20162383088310010.3109/10717544.2016.1153746 26960680
    [Google Scholar]
  27. XuX. RadesT. GrohganzH. Thermal investigation on hydrated co-amorphous systems of nicotinamide and prilocaine.Eur. J. Pharm. Biopharm.20231861610.1016/j.ejpb.2023.02.015 36878408
    [Google Scholar]
  28. WangJ. ChangR. ZhaoY. ZhangJ. ZhangT. FuQ. ChangC. ZengA. Coamorphous Loratadine-Citric Acid System with Enhanced Physical Stability and Bioavailability.AAPS PharmSciTech20171872541255010.1208/s12249‑017‑0734‑0 28224393
    [Google Scholar]
  29. ChatterjeeB. ReddyA. SantraM. KhamangaS. Amorphization of drugs for transdermal delivery-a recent update.202214598310.3390/pharmaceutics14050983
    [Google Scholar]
  30. ChavanR.B. ThipparaboinaR. KumarD. ShastriN.R. Co amorphous systems: A product development perspective.Int. J. Pharmaceut.2016515403415
    [Google Scholar]
  31. YamamuraS. Solid-state interaction between cimetidine and naproxen.Drug Stability199813173178
    [Google Scholar]
  32. YamamuraS. GotohH. SakamotoY. MomoseY. Physicochemical properties of amorphous precipitates of cimetidine-indomethacin binary system.Euro. J. Pharmaceut Biopharmaceut2000143259265
    [Google Scholar]
  33. YamamuraS. GotohH. SakamotoY. MomoseY. Physicochemical properties of amorphous salt of cimetidine and diflunisal system.Int. J. Pharm.20022412213221
    [Google Scholar]
  34. DengaleS.J. RanjanO.P. HussenS.S. KrishnaB.S.M. MusmadeP.B. Gautham ShenoyG. BhatK. Preparation and characterization of co-amorphous Ritonavir-Indomethacin systems by solvent evaporation technique: Improved dissolution behavior and physical stability without evidence of intermolecular interactions.Eur. J. Pharm. Sci.201462576410.1016/j.ejps.2014.05.015 24878386
    [Google Scholar]
  35. WairkarS. GaudR. Co-Amorphous Combination of Nateglinide-Metformin Hydrochloride for Dissolution Enhancement.AAPS PharmSciTech201617367368110.1208/s12249‑015‑0371‑4 26314243
    [Google Scholar]
  36. DengaleS.J. GrohganzH. RadesT. LöbmannK. Recent advances in co-amorphous drug formulations.Adv. Drug Deliv. Rev.2016100116125
    [Google Scholar]
  37. KorhonenO. PajulaK. LaitinenR. Rational excipient selection for co-amorphous formulations.Expert Opin. Drug Deliv.201714455156910.1080/17425247.2016.1198770
    [Google Scholar]
  38. NewmanA. Reutzel-EdensS.M. ZografiG. Coamorphous Active Pharmaceutical Ingredient-Small Molecule Mixtures: Considerations in the Choice of Coformers for Enhancing Dissolution and Oral Bioavailability.J. Pharm. Sci.2018107151710.1016/j.xphs.2017.09.024 28989014
    [Google Scholar]
  39. LiB. HuY. GuoY. XuR. FangX. XiaoX. JiangC. LuS. Coamorphous System of Florfenicol-Oxymatrine for Improving the Solubility and Dissolution Rate of Florfenicol: Preparation, Characterization and Molecular Dynamics Simulation.J. Pharm. Sci.202111062544255410.1016/j.xphs.2021.02.005 33577826
    [Google Scholar]
  40. WangS. HengW. WangX. HeX. ZhangZ. WeiY. ZhangJ. GaoY. QianS. Coamorphization combined with complexation enhances dissolution of lurasidone hydrochloride and puerarin with synchronized release.Int. J. Pharm.202058811979310.1016/j.ijpharm.2020.119793 32827676
    [Google Scholar]
  41. LöbmannK. LaitinenR. GrohganzH. GordonK.C. StrachanC. RadesT. Coamorphous drug systems: enhanced physical stability and dissolution rate of indomethacin and naproxen.Mol. Pharm.2011851919192810.1021/mp2002973 21815614
    [Google Scholar]
  42. DengaleS.J. HussenS.S. KrishnaB.S.M. MusmadeP.B. Gautham ShenoyG. BhatK. Fabrication, solid state characterization and bioavailability assessment of stable binary amorphous phases of Ritonavir with Quercetin.Eur. J. Pharm. Biopharm.20158932933810.1016/j.ejpb.2014.12.025 25542681
    [Google Scholar]
  43. TantishaiyakulV. SuknunthaK. Vao-SoongnernV. Characterization of cimetidine-piroxicam coprecipitate interaction using experimental studies and molecular dynamic simulations.AAPS PharmSciTech201011295295810.1208/s12249‑010‑9461‑5 20512435
    [Google Scholar]
  44. ShiQ. MoinuddinS.M. CaiT. Advances in coamorphous drug delivery systems.Acta Pharm. Sin. B201991193510.1016/j.apsb.2018.08.002 30766775
    [Google Scholar]
  45. ArcaH.Ç. Mosquera-GiraldoL.I. DahalD. TaylorL.S. EdgarK.J. Multidrug, Anti-HIV Amorphous Solid Dispersions: Nature and Mechanisms of Impacts of Drugs on Each Other’s Solution Concentrations.Mol. Pharm.201714113617362710.1021/acs.molpharmaceut.7b00203 28872867
    [Google Scholar]
  46. ShiX. ZhouX. ShenS. ChenQ. SongS. GuC. WangC. Improved in vitro and in vivo properties of telmisartan in the co-amorphous system with hydrochlorothiazide: A potential drug-drug interaction mechanism prediction.Eur. J. Pharm. Sci.202116110577310.1016/j.ejps.2021.105773 33640500
    [Google Scholar]
  47. LodagekarA. ChavanR.B. MannavaM.K.C. YadavB. ChellaN. NangiaA.K. ShastriN.R. Co amorphous valsartan nifedipine system: Preparation, characterization, in vitro and in vivo evaluation.Eur. J. Pharm. Sci.201913910504810.1016/j.ejps.2019.105048 31446077
    [Google Scholar]
  48. GordonM. TaylorJ.S. Ideal copolymers and the second-order transitions of synthetic rubbers. i. non-crystalline copolymers.J. Appl. Chem.195229493500
    [Google Scholar]
  49. HanY. PanY. LvJ. GuoW. WangJ. Powder grinding preparation of co-amorphous β-azelnidipine and maleic acid combination: Molecular interactions and physicochemical properties.Powder Technol.201629111012010.1016/j.powtec.2015.11.068
    [Google Scholar]
  50. ShayanfarA. JouybanA. Drug-drug coamorphous systems: Characterization and physicochemical properties of coamorphous atorvastatin with carvedilol and glibenclamide.J. Pharm. Innov.20138421822810.1007/s12247‑013‑9162‑1
    [Google Scholar]
  51. ThakralS. ThakralN.K. Prediction of drug-polymer miscibility through the use of solubility parameter based Flory-Huggins interaction parameter and the experimental validation: PEG as model polymer.J. Pharm. Sci.201310272254226310.1002/jps.23583 23649486
    [Google Scholar]
  52. PajulaK. WittoekL. LehtoV.P. KetolainenJ. KorhonenO. Phase separation in coamorphous systems: in silico prediction and the experimental challenge of detection.Mol. Pharm.20141172271227910.1021/mp400712m 24824610
    [Google Scholar]
  53. AlhalawehA. AlzghoulA. KaialyW. Data mining of solubility parameters for computational prediction of drug-excipient miscibility.Drug Dev. Ind. Pharm.201440790490910.3109/03639045.2013.789906 23627441
    [Google Scholar]
  54. MarsacP.J. ShamblinS.L. TaylorL.S. Theoretical and practical approaches for prediction of drug-polymer miscibility and solubility.Pharm. Res.200623102417242610.1007/s11095‑006‑9063‑9 16933098
    [Google Scholar]
  55. WangZ. XueY. ZhuZ. HuY. ZengQ. WuY. WangY. ShenC. JiangC. LiuL. ZhuH. LiuQ. Quantitative Structure-Activity Relationship of Enhancers of Licochalcone A and Glabridin Release and Permeation Enhancement from Carbomer Hydrogel.Pharmaceutics202214226210.3390/pharmaceutics14020262 35213995
    [Google Scholar]
  56. FangX. HuY. YangG. ShiW. LuS. CaoY. Improving physicochemical properties and pharmacological activities of ternary co-amorphous systems.Eur. J. Pharm. Biopharm.2022181223510.1016/j.ejpb.2022.10.008 36283631
    [Google Scholar]
  57. LöbmannK. StrachanC. GrohganzH. RadesT. KorhonenO. LaitinenR. Co-amorphous simvastatin and glipizide combinations show improved physical stability without evidence of intermolecular interactions.Eur. J. Pharm. Biopharm.201281115916910.1016/j.ejpb.2012.02.004 22353489
    [Google Scholar]
  58. UppalaS. VullendulaS.K.A. YarlagaddaD.L. DengaleS.J. Exploring the utility of co-amorphous materials to concurrently improve the solubility and permeability of Fexofenadine.J. Drug Deliv. Sci. Technol.20227210343110.1016/j.jddst.2022.103431
    [Google Scholar]
  59. LimA.W. LöbmannK. GrohganzH. RadesT. ChiengN. Investigation of physical properties and stability of indomethacin-cimetidine and naproxen-cimetidine co-amorphous systems prepared by quench cooling, coprecipitation and ball milling.J. Pharm. Pharmacol.2016681364510.1111/jphp.12494 26663364
    [Google Scholar]
  60. PirasC.C. Fernández-PrietoS. De BorggraeveW.M. Ball milling: A green technology for the preparation and functionalisation of nanocellulose derivatives.Nanoscale Adv.20191937947
    [Google Scholar]
  61. PatilC. JunghareH. HamjadeM. PatilC.K. GiraseS.B. LeleM.M. A Review on Cryogenic Grinding.Int. J. Curr. Engin. Technol.20202020Special issue4
    [Google Scholar]
  62. JensenK. LöbmannK. RadesT. GrohganzH. Improving co-amorphous drug formulations by the addition of the highly water soluble amino Acid, proline.Pharmaceutics20146341643510.3390/pharmaceutics6030416 25025400
    [Google Scholar]
  63. SoyataA. KentiK. SutoroM. SagitaN. Impact of Preparation Method in Co-Amorphous System.Sci. Pharm.2022114149
    [Google Scholar]
  64. PaudelA. WorkuZ.A. MeeusJ. GunsS. Van Den MooterG. Manufacturing of solid dispersions of poorly water soluble drugs by spray drying: Formulation and process considerations.Int. J. Pharmaceut2013453253284
    [Google Scholar]
  65. NairA. VarmaR. GourishettiK. BhatK. DengaleS. Influence of Preparation Methods on Physicochemical and Pharmacokinetic Properties of Co-amorphous Formulations: The Case of Co-amorphous Atorvastatin: Naringin.J. Pharm. Innov.202015336537910.1007/s12247‑019‑09381‑9
    [Google Scholar]
  66. PattersonJ.E. JamesM.B. ForsterA.H. LancasterR.W. ButlerJ.M. RadesT. The influence of thermal and mechanical preparative techniques on the amorphous state of four poorly soluble compounds.J. Pharm. Sci.20059491998201210.1002/jps.20424 16052554
    [Google Scholar]
  67. QiS. McauleyW.J. YangZ. TipduangtaP. Physical stabilization of low-molecular-weight amorphous drugs in the solid state: A material science approach.Therap Deliv.20145817841
    [Google Scholar]
  68. SaßA. LeeG. Evaluation of some water-miscible organic solvents for spray-drying enzymes and carbohydrates.Drug Dev. Ind. Pharm.201440674975710.3109/03639045.2013.782554 23596974
    [Google Scholar]
  69. KunzC. Schuldt-LiebS. GieselerH. Freeze-Drying From Organic Cosolvent Systems, Part 1: Thermal Analysis of Cosolvent-Based Placebo Formulations in the Frozen State.J. Pharm. Sci.2018107388789610.1016/j.xphs.2017.11.003 29133233
    [Google Scholar]
  70. DaoussiR. BogdaniE. VessotS. AndrieuJ. MonnierO. Freeze-drying of an active principle ingredient using organic co-solvent formulations: Influence of freezing conditions and formulation on solvent crystals morphology, thermodynamics data, and sublimation kinetics.Dry. Technol.201129161858186710.1080/07373937.2011.569624
    [Google Scholar]
  71. TeagardenD.L. BakerD.S. Practical aspects of lyophilization using non-aqueous co-solvent systems.Eur. J. Pharm. Sci.2002152115133
    [Google Scholar]
  72. WostryM. PlappertH. GrohganzH. Preparation of Co-amorphous systems by freeze-drying.Pharmaceutics2020121094110.3390/pharmaceutics12100941 33008124
    [Google Scholar]
  73. MaX. WilliamsR.O. Characterization of amorphous solid dispersions: An update.J. Drug Deliv. Sci. Technol.201950113124
    [Google Scholar]
  74. HatanakaY. UchiyamaH. KanekoS. UedaK. HigashiK. MoribeK. FurukawaS. TakaseM. YamanakaS. KadotaK. TozukaY. Designing a Novel Coamorphous Salt Formulation of Telmisartan with Amlodipine to Enhance Permeability and Oral Absorption.Mol. Pharm.20232084071408510.1021/acs.molpharmaceut.3c00226 37498232
    [Google Scholar]
  75. FrankK.J. WestedtU. RosenblattK.M. HöligP. RosenbergJ. MägerleinM. FrickerG. BrandlM. The amorphous solid dispersion of the poorly soluble ABT-102 forms nano/microparticulate structures in aqueous medium: impact on solubility.Int. J. Nanomedicine2012757575768 23166440
    [Google Scholar]
  76. Renuka; Singh, S.K.; Gulati, M.; Narang, R. Stable amorphous binary systems of glipizide and atorvastatin powders with enhanced dissolution profiles: formulation and characterization.Pharm. Dev. Technol.2017221132510.3109/10837450.2015.1125921 26708555
    [Google Scholar]
  77. TranT.T.D. TranP.H.L. Molecular interactions in solid dispersions of poorly water-soluble drugs.Pharmaceutics202012112
    [Google Scholar]
  78. LöbmannK. GrohganzH. LaitinenR. StrachanC. RadesT. Amino acids as co-amorphous stabilizers for poorly water soluble drugs - Part 1: Preparation, stability and dissolution enhancement.Eur. J. Pharm. Biopharm.20138533 PART B87388110.1016/j.ejpb.2013.03.014 23537574
    [Google Scholar]
  79. LöbmannK. LaitinenR. StrachanC. RadesT. GrohganzH. Amino acids as co-amorphous stabilizers for poorly water-soluble drugs - Part 2: Molecular interactions.Eur. J. Pharm. Biopharm.20138533 PART B88288810.1016/j.ejpb.2013.03.026 23567485
    [Google Scholar]
  80. LaitinenR. LöbmannK. GrohganzH. StrachanC. RadesT. Amino acids as co-amorphous excipients for simvastatin and glibenclamide: physical properties and stability.Mol. Pharm.20141172381238910.1021/mp500107s 24852326
    [Google Scholar]
  81. UedaH. KadotaK. ImonoM. ItoT. KunitaA. TozukaY. Co-amorphous Formation Induced by Combination of Tranilast and Diphenhydramine Hydrochloride.J. Pharm. Sci.2017106112312810.1016/j.xphs.2016.07.009 27539557
    [Google Scholar]
  82. AndrewsG.P. AbuDiakO.A. JonesD.S. Physicochemical characterization of hot melt extruded bicalutamide-polyvinylpyrrolidone solid dispersions.J. Pharm. Sci.20109931322133510.1002/jps.21914 19798757
    [Google Scholar]
  83. BaghelS. CathcartH. O’ReillyN.J. Understanding the generation and maintenance of supersaturation during the dissolution of amorphous solid dispersions using modulated DSC and 1H NMR.Int. J. Pharm.2018536141442510.1016/j.ijpharm.2017.11.056 29183857
    [Google Scholar]
  84. KumarV. MintooM.J. MondheD.M. BharateS.B. VishwakarmaR.A. BharateS.S. Binary and ternary solid dispersions of an anticancer preclinical lead, IIIM-290: In vitro and in vivo studies.Int. J. Pharm.201957011868310.1016/j.ijpharm.2019.118683 31513869
    [Google Scholar]
  85. Van Den MooterG. WuytsM. BlatonN. BussonR. GrobetP. AugustijnsP. Physical stabilisation of amorphous ketoconazole in solid dispersions with polyvinylpyrrolidone K25.Eur. J. Pharmaceut Sci.200112
    [Google Scholar]
  86. IwaharaJ. ZandarashviliL. KemmeC.A. EsadzeA. NMR-based investigations into target DNA search processes of proteins.Methods20181485766
    [Google Scholar]
  87. HuD. ChenX. LiD. ZhangH. DuanY. HuangY. Tranilast-matrine co-amorphous system: Strong intermolecular interactions, improved solubility, and physiochemical stability.Int. J. Pharm.202363512270710.1016/j.ijpharm.2023.122707 36764418
    [Google Scholar]
  88. Zakeri-MilaniP. Barzegar-JalaliM. AzimiM. ValizadehH. Biopharmaceutical classification of drugs using intrinsic dissolution rate (IDR) and rat intestinal permeability.Eur. J. Pharm. Biopharm.200973110210610.1016/j.ejpb.2009.04.015 19442726
    [Google Scholar]
  89. EthersonK. DunnC. MatthewsW. PamelundH. BarragatC. SandersonN. IzumiT. MathewsC.C. HalbertG. WilsonC. McAllisterM. MannJ. ØstergaardJ. ButlerJ. KhadraI. An interlaboratory investigation of intrinsic dissolution rate determination using surface dissolution.Eur. J. Pharm. Biopharm.2020150243210.1016/j.ejpb.2020.02.005 32061919
    [Google Scholar]
  90. PappaH. Pharmacopeial forum.Available from: http://www.pharmacopeia.cn/v29240/usp29nf24s0_c1087.html (accessed on 8-10-2024)
  91. ICH Q1A (R2) Stability testing of new drug substances and drug products - Scientific guideline.2003Available from: https://database.ich.org/sites/default/files/Q1A%28R2%29%20Guideline.pdf(accessed on 8-10-2024)
  92. ChiengN. AaltonenJ. SavilleD. RadesT. Physical characterization and stability of amorphous indomethacin and ranitidine hydrochloride binary systems prepared by mechanical activation.Eur. J. Pharm. Biopharm.2009711475410.1016/j.ejpb.2008.06.022 18644443
    [Google Scholar]
  93. SureshK. A novel curcumin-artemisinin coamorphous solid: physical properties and pharmacokinetic profile.RSC Adv201445835758361
    [Google Scholar]
  94. TejaA. MusmadeP.B. KhadeA.B. DengaleS.J. Simultaneous improvement of solubility and permeability by fabricating binary glassy materials of Talinolol with Naringin: Solid state characterization, in-vivo in-situ evaluation.Eur. J. Pharm. Sci.20157823424410.1016/j.ejps.2015.08.002 26253355
    [Google Scholar]
  95. BeyerA. GrohganzH. LöbmannK. RadesT. LeopoldC.S. Improvement of the physicochemical properties of Co-amorphous naproxen-indomethacin by naproxen-sodium.Int. J. Pharm.20175261-2889410.1016/j.ijpharm.2017.04.011 28392278
    [Google Scholar]
  96. RussoM.G. SanchoM.I. SilvaL.M.A. BaldoniH.A. VenancioT. EllenaJ. NardaG.E. Looking for the interactions between omeprazole and amoxicillin in a disordered phase. An experimental and theoretical study.Spectrochim. Acta A Mol. Biomol. Spectrosc.2016156707710.1016/j.saa.2015.11.021 26654963
    [Google Scholar]
  97. ZhangJ. ShiQ. QuT. ZhouD. CaiT. Crystallization kinetics and molecular dynamics of binary coamorphous systems of nimesulide and profen analogs.Int. J. Pharm.202161012123510.1016/j.ijpharm.2021.121235 34743960
    [Google Scholar]
  98. LiB. WangY. FengY. YuanD. XuR. JiangC. XiaoX. LuS. Design and molecular insights of drug-active metabolite based co-amorphous formulation: A case study of toltrazuril-ponazuril co-amorphous.Int. J. Pharm.202261512147510.1016/j.ijpharm.2022.121475 35041914
    [Google Scholar]
  99. AlhajjN. O’ReillyN.J. CathcartH. Development and characterization of a spray-dried inhalable ciprofloxacin-quercetin co-amorphous system.Int. J. Pharm.202261812165710.1016/j.ijpharm.2022.121657 35288220
    [Google Scholar]
  100. HuihuiM.N. A simvastatin-gliclazide co-amorphous compound.Patent CN103360357A2013
  101. TengfeiZ.Y. Irbesartan and repaglinide co-amorphous substance.Patent CN103497178A2014
  102. NianqiuS. Co-amorphous system and preparation method thereof.patent CN104415042A2015
  103. YuanG. Baicalein-caffeine amorphous compound.Patent CN103923049A2014
  104. JianjunZ. Celecoxib and irbesartan coamorphous substance.Patent CN105646353A2016
  105. QiangF. Co-amorphous substance containing nimodipine and irbesartan, preparation method and application thereofpatent CN113069453A2021
/content/journals/cpb/10.2174/0113892010318350241024113827
Loading
/content/journals/cpb/10.2174/0113892010318350241024113827
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test