Skip to content
2000
image of Influence of Nanomedicine as a Smart Weapon on Multidrug Resistance in Cancer Therapy

Abstract

Cancer is the leading cause of death worldwide. The effectiveness of chemotherapy in cancer patients is still significantly hampered by Multidrug Resistance (MDR). Tumors exploit the MDR pathways to invade the host and limit the efficacy of chemotherapeutic drugs that are delivered as single drugs or combinations. Further, overexpression of ATP-binding Cassette transporter (ABC transporter) proteins augments the efflux of chemotherapeutic drugs and lowers their intracellular accumulation. Recent progress in the development of nanotechnology and nanocarrier-based drug delivery systems has shown a better perspective with respect to the improvement of cancer chemotherapy. Nanoparticles/nanomaterials are designed to target the immune system and tumor microenvironment of cancer cells for a variety of cancer treatments in order to improve bioavailability and reduce toxicity. This review elucidates the successful use of nanomaterials for cancer therapy and addressing the MDR and throws some light on the present obstacles impeding their translation to clinical use.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010336491241022094511
2024-10-31
2025-01-10
Loading full text...

Full text loading...

References

  1. Siegel R.L. Miller K.D. Fuchs H.E. Jemal A. Cancer statistics, 2022. CA Cancer J. Clin. 2022 72 1 7 33 10.3322/caac.21708 35020204
    [Google Scholar]
  2. Siegel R.L. Giaquinto A.N. Jemal A. Cancer statistics, 2024. CA Cancer J. Clin. 2024 74 1 12 49 10.3322/caac.21820 38230766
    [Google Scholar]
  3. Shen T. Liu Y. Shang J. Xie Q. Li J. Yan M. Xu J. Niu J. Liu J. Watkins P.B. Aithal G.P. Andrade R.J. Dou X. Yao L. Lv F. Wang Q. Li Y. Zhou X. Zhang Y. Zong P. Wan B. Zou Z. Yang D. Nie Y. Li D. Wang Y. Han X. Zhuang H. Mao Y. Chen C. Incidence and etiology of drug-induced liver injury in mainland China. Gastroenterology 2019 156 8 2230 2241.e11 10.1053/j.gastro.2019.02.002 30742832
    [Google Scholar]
  4. Izzedine H. Perazella M.A. Onco-nephrology: An appraisal of the cancer and chronic kidney disease links. Nephrol. Dial. Transplant. 2015 30 12 1979 1988 10.1093/ndt/gfu387 25648910
    [Google Scholar]
  5. Santos N.E. Carreira A.R.F. Silva V.L.M. Braga S.S. Natural and biomimetic antitumor pyrazoles, a perspective. Molecules 2020 25 6 1364 10.3390/molecules25061364 32192149
    [Google Scholar]
  6. Abigerges D. Armand J.P. Chabot G.G. Costa L.D. Fadel E. Cote C. Hérait P. Gandia D. Irinotecan (CPT-11) high-dose escalation using intensive high-dose loperamide to control diarrhea. J. Natl. Cancer Inst. 1994 86 6 446 449 10.1093/jnci/86.6.446 8120919
    [Google Scholar]
  7. Uchiyama K. Iwabuchi H. Yamada M. Sugiyama K. Nakayama S. Digestive symptoms as side effects of combination chemotherapy of docetaxel, nedaplatin and 5-fluorouracil for head and neck cancer. Gan To Kagaku Ryoho 2012 39 11 1659 1664 23152015
    [Google Scholar]
  8. Ishikawa T. Morita J. Kawachi K. Tagashira H. [Incidence of dysgeusia associated with chemotherapy for cancer]. Gan To Kagaku Ryoho 2013 40 8 1049 1054 23986049
    [Google Scholar]
  9. Akazawa H. Cardiotoxicity of cancer chemotherapy: Mechanism and therapeutic approach. Ann. Oncol. 2017 28 13 ix10 10.1093/annonc/mdx575.003 29361617
    [Google Scholar]
  10. Nakane M. [Neurotoxicity and dermatologic toxicity of cancer chemotherapy]. Gan To Kagaku Ryoho 2006 33 1 29 33 [Neurotoxicity and dermatologic toxicity of cancer chemotherapy]. 16410694
    [Google Scholar]
  11. Haider T. Pandey V. Banjare N. Gupta P.N. Soni V. Drug resistance in cancer: Mechanisms and tackling strategies. Pharmacol. Rep. 2020 72 5 1125 1151 10.1007/s43440‑020‑00138‑7 32700248
    [Google Scholar]
  12. Li T. Li J. Chen Z. Zhang S. Li S. Wageh S. Al-Hartomy O.A. Al-Sehemi A.G. Xie Z. Kankala R.K. Zhang H. Glioma diagnosis and therapy: Current challenges and nanomaterial-based solutions. J. Control. Release 2022 352 338 370 10.1016/j.jconrel.2022.09.065 36206948
    [Google Scholar]
  13. Neal R.D. Tharmanathan P. France B. Din N.U. Cotton S. Fallon-Ferguson J. Hamilton W. Hendry A. Hendry M. Lewis R. Macleod U. Mitchell E.D. Pickett M. Rai T. Shaw K. Stuart N. Tørring M.L. Wilkinson C. Williams B. Williams N. Emery J. Is increased time to diagnosis and treatment in symptomatic cancer associated with poorer outcomes? Systematic review. Br. J. Cancer 2015 112 S1 Suppl. 1 S92 S107 10.1038/bjc.2015.48 25734382
    [Google Scholar]
  14. Loira-Pastoriza C. Todoroff J. Vanbever R. Delivery strategies for sustained drug release in the lungs. Adv. Drug Deliv. Rev. 2014 75 81 91 10.1016/j.addr.2014.05.017 24915637
    [Google Scholar]
  15. Kunjachan S. Rychlik B. Storm G. Kiessling F. Lammers T. Multidrug resistance: Physiological principles and nanomedical solutions. Adv. Drug Deliv. Rev. 2013 65 13-14 1852 1865 10.1016/j.addr.2013.09.018 24120954
    [Google Scholar]
  16. Davis L.N. Sherbenou D.W. Emerging therapeutic strategies to overcome drug resistance in multiple myeloma. Cancers 2021 13 7 1686 10.3390/cancers13071686 33918370
    [Google Scholar]
  17. Dilnawaz F. Acharya S. Sahoo S.K. Recent trends of nanomedicinal approaches in clinics. Int. J. Pharm. 2018 538 1-2 263 278 10.1016/j.ijpharm.2018.01.016 29339248
    [Google Scholar]
  18. Hegde Y.M. A recent advancement in nanotechnology approaches for the treatment of cervical cancer. Anticancer Agents Med Chem. 2023 23 1 37 59
    [Google Scholar]
  19. Subhan M.A. Yalamarty S.S.K. Filipczak N. Parveen F. Torchilin V.P. Recent advances in tumor targeting via epr effect for cancer treatment. J. Pers. Med. 2021 11 6 571 10.3390/jpm11060571 34207137
    [Google Scholar]
  20. Acharya S. Dilnawaz F. Sahoo S.K. Targeted epidermal growth factor receptor nanoparticle bioconjugates for breast cancer therapy. Biomaterials 2009 30 29 5737 5750 10.1016/j.biomaterials.2009.07.008 19631377
    [Google Scholar]
  21. Shi Y. van der Meel R. Chen X. Lammers T. The EPR effect and beyond: Strategies to improve tumor targeting and cancer nanomedicine treatment efficacy. Theranostics 2020 10 17 7921 7924 10.7150/thno.49577 32685029
    [Google Scholar]
  22. Anselmo A.C. Mitragotri S. Nanoparticles in the clinic: An update. Bioeng. Transl. Med. 2019 4 3 e10143 10.1002/btm2.10143 31572799
    [Google Scholar]
  23. Zahreddine H. Borden K.L.B. Mechanisms and insights into drug resistance in cancer. Front. Pharmacol. 2013 4 28 10.3389/fphar.2013.00028 23504227
    [Google Scholar]
  24. Zhao J. Shi L. Ji M. Wu J. Wu C. The combination of systemic chemotherapy and local treatment may improve the survival of patients with unresectable metastatic colorectal cancer. Mol. Clin. Oncol. 2017 6 6 856 860 10.3892/mco.2017.1247 28588777
    [Google Scholar]
  25. Wang X. Zhang H. Chen X. Drug resistance and combating drug resistance in cancer. Cancer drug resistance 2019 2 2 141 10.20517/cdr.2019.10
    [Google Scholar]
  26. Aleksakhina S.N. Kashyap A. Imyanitov E.N. Mechanisms of acquired tumor drug resistance. Biochimica et Biophysica Acta (BBA)-. Rev. Can. 2019 1872 2 188310
    [Google Scholar]
  27. Erin N. Grahovac J. Brozovic A. Efferth T. Tumor microenvironment and epithelial mesenchymal transition as targets to overcome tumor multidrug resistance. Drug Resist. Updat. 2020 53 100715 10.1016/j.drup.2020.100715 32679188
    [Google Scholar]
  28. Allain E.P. Rouleau M. Lévesque E. Guillemette C. Emerging roles for UDP-glucuronosyltransferases in drug resistance and cancer progression. Br. J. Cancer 2020 122 9 1277 1287 10.1038/s41416‑019‑0722‑0 32047295
    [Google Scholar]
  29. Pathania S. Bhatia R. Baldi A. Singh R. Rawal R.K. Drug metabolizing enzymes and their inhibitors’ role in cancer resistance. Biomed. Pharmacother. 2018 105 53 65 10.1016/j.biopha.2018.05.117 29843045
    [Google Scholar]
  30. Wang J.Q. Yang Y. Cai C.Y. Teng Q.X. Cui Q. Lin J. Assaraf Y.G. Chen Z.S. Multidrug resistance proteins (MRPs): Structure, function and the overcoming of cancer multidrug resistance. Drug Resist. Updat. 2021 54 100743 10.1016/j.drup.2021.100743 33513557
    [Google Scholar]
  31. Marusyk A. Polyak K. Tumor heterogeneity: Causes and consequences. Biochimica et Biophysica Acta (BBA)-. Rev. Can. 2010 1805 1 105 117
    [Google Scholar]
  32. Robey R.W. Pluchino K.M. Hall M.D. Fojo A.T. Bates S.E. Gottesman M.M. Revisiting the role of ABC transporters in multidrug-resistant cancer. Nat. Rev. Cancer 2018 18 7 452 464 10.1038/s41568‑018‑0005‑8 29643473
    [Google Scholar]
  33. Sun Y.L. Patel A. Kumar P. Chen Z.S. Role of ABC transporters in cancer chemotherapy. Chin. J. Cancer 2012 31 2 51 57 10.5732/cjc.011.10466 22257384
    [Google Scholar]
  34. Coleman J.A. Quazi F. Molday R.S. Mammalian P4-ATPases and ABC transporters and their role in phospholipid transport. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2013 1831 3 555 574 10.1016/j.bbalip.2012.10.006 23103747
    [Google Scholar]
  35. Xiao H. Zheng Y. Ma L. Tian L. Sun Q. Clinically-relevant ABC transporter for anti-cancer drug resistance. Front. Pharmacol. 2021 12 12 648407 10.3389/fphar.2021.648407 33953682
    [Google Scholar]
  36. Housman G. Byler S. Heerboth S. Lapinska K. Longacre M. Snyder N. Sarkar S. Drug resistance in cancer: An overview. Cancers 2014 6 3 1769 1792 10.3390/cancers6031769 25198391
    [Google Scholar]
  37. Bailly C. Contemporary challenges in the design of topoisomerase II inhibitors for cancer chemotherapy. Chem. Rev. 2012 112 7 3611 3640 10.1021/cr200325f 22397403
    [Google Scholar]
  38. Stavrovskaya A.A. Cellular mechanisms of multidrug resistance of tumor cells Biochemistry c/c of Biokhimiia 2000 65 1 95 106
    [Google Scholar]
  39. Huang Y. Chang Y. Epidermal growth factor receptor (EGFR) phosphorylation, signaling and trafficking in prostate cancer Prostate cancer-from bench to bedside, 2011 143 72
    [Google Scholar]
  40. Uribe M.L. Marrocco I. Yarden Y. EGFR in cancer: Signaling mechanisms, drugs, and acquired resistance. Cancers 2021 13 11 2748 10.3390/cancers13112748 34206026
    [Google Scholar]
  41. Morgillo F. Mechanisms of resistance to EGFR-targeted drugs: Lung cancer. . ESMO Open. 2016 1 3 e000060 10.1136/esmoopen‑2016‑000060
    [Google Scholar]
  42. Mehta D.K. Siddik Z.H. Drug resistance in cancer cells. Springer 2009
    [Google Scholar]
  43. Rueff J. Rodrigues A.S. Cancer drug resistance: A brief overview from a genetic viewpoint. Methods Mol Biol. 2016 1395 1 18 10.1007/978‑1‑4939‑3347‑1_1
    [Google Scholar]
  44. Zhang Y. Xia M. Jin K. Wang S. Wei H. Fan C. Wu Y. Li X. Li X. Li G. Zeng Z. Xiong W. Function of the c-Met receptor tyrosine kinase in carcinogenesis and associated therapeutic opportunities. Mol. Cancer 2018 17 1 45 10.1186/s12943‑018‑0796‑y 29455668
    [Google Scholar]
  45. Liu Q. Yu S. Zhao W. Qin S. Chu Q. Wu K. EGFR-TKIs resistance via EGFR-independent signaling pathways. Mol. Cancer 2018 17 1 53 10.1186/s12943‑018‑0793‑1 29455669
    [Google Scholar]
  46. Bahcall M. Paweletz C.P. Kuang Y. Taus L.J. Sim T. Kim N.D. Dholakia K.H. Lau C.J. Gokhale P.C. Chopade P.R. Hong F. Wei Z. Köhler J. Kirschmeier P.T. Guo J. Guo S. Wang S. Jänne P.A. Combination of type i and type ii met tyrosine kinase inhibitors as therapeutic approach to prevent resistance. Mol. Cancer Ther. 2022 21 2 322 335 10.1158/1535‑7163.MCT‑21‑0344 34789563
    [Google Scholar]
  47. McCubrey J.A. Steelman L.S. Chappell W.H. Abrams S.L. Montalto G. Cervello M. Nicoletti F. Fagone P. Malaponte G. Mazzarino M.C. Candido S. Libra M. Bäsecke J. Mijatovic S. Maksimovic-Ivanic D. Milella M. Tafuri A. Cocco L. Evangelisti C. Chiarini F. Martelli A.M. Mutations and deregulation of Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR cascades which alter therapy response. Oncotarget 2012 3 9 954 987 10.18632/oncotarget.652 23006971
    [Google Scholar]
  48. Mantovani F. Collavin L. Del Sal G. Mutant p53 as a guardian of the cancer cell. Cell Death Differ. 2019 26 2 199 212 10.1038/s41418‑018‑0246‑9 30538286
    [Google Scholar]
  49. Ross T.S. Mgbemena V.E. Re-evaluating the role of BCR/ABL in chronic myelogenous leukemia. Mol. Cell. Oncol. 2014 1 3 e963450 10.4161/23723548.2014.963450 27308345
    [Google Scholar]
  50. Soverini S. Mancini M. Bavaro L. Cavo M. Martinelli G. Chronic myeloid leukemia: The paradigm of targeting oncogenic tyrosine kinase signaling and counteracting resistance for successful cancer therapy. Mol. Cancer 2018 17 1 49 10.1186/s12943‑018‑0780‑6 29455643
    [Google Scholar]
  51. Chandrasekhar C. Kumar P.S. Sarma P.V.G.K. Novel mutations in the kinase domain of BCR-ABL gene causing imatinib resistance in chronic myeloid leukemia patients. Sci. Rep. 2019 9 1 2412 10.1038/s41598‑019‑38672‑x 30787317
    [Google Scholar]
  52. Greenfield G. McMullan R. Robson N. McGimpsey J. Catherwood M. McMullin M.F. Response to Imatinib therapy is inferior for e13a2 BCR-ABL1 transcript type in comparison to e14a2 transcript type in chronic myeloid leukaemia. BMC Hematol. 2019 19 1 7 10.1186/s12878‑019‑0139‑2 31073408
    [Google Scholar]
  53. Pearl L.H. Schierz A.C. Ward S.E. Al-Lazikani B. Pearl F.M.G. Therapeutic opportunities within the DNA damage response. Nat. Rev. Cancer 2015 15 3 166 180 10.1038/nrc3891 25709118
    [Google Scholar]
  54. Cerrato A. Morra F. Celetti A. Use of poly ADP-ribose polymerase [PARP] inhibitors in cancer cells bearing DDR defects: The rationale for their inclusion in the clinic. J. Exp. Clin. Cancer Res. 2016 35 1 179 10.1186/s13046‑016‑0456‑2 27884198
    [Google Scholar]
  55. Sethy C. Kundu C.N. 5-Fluorouracil (5-FU) resistance and the new strategy to enhance the sensitivity against cancer: Implication of DNA repair inhibition. Biomed. Pharmacother. 2021 137 111285 10.1016/j.biopha.2021.111285 33485118
    [Google Scholar]
  56. Li L. Guan Y. Chen X. Yang J. Cheng Y. DNA repair pathways in cancer therapy and resistance. Front. Pharmacol. 2021 11 629266 10.3389/fphar.2020.629266 33628188
    [Google Scholar]
  57. Lage H. An overview of cancer multidrug resistance: A still unsolved problem. Cell. Mol. Life Sci. 2008 65 20 3145 3167 10.1007/s00018‑008‑8111‑5 18581055
    [Google Scholar]
  58. Middleton M.R. Margison G.P. Improvement of chemotherapy efficacy by inactivation of a DNA-repair pathway. Lancet Oncol. 2003 4 1 37 44 10.1016/S1470‑2045(03)00959‑8 12517538
    [Google Scholar]
  59. Happold C. Stojcheva N. Silginer M. Weiss T. Roth P. Reifenberger G. Weller M. Transcriptional control of O 6 ‐methylguanine DNA methyltransferase expression and temozolomide resistance in glioblastoma. J. Neurochem. 2018 144 6 780 790 10.1111/jnc.14326 29480969
    [Google Scholar]
  60. Hsu S.H. Chen S.H. Kuo C.C. Chang J.Y. Ubiquitin-conjugating enzyme E2 B regulates the ubiquitination of O-methylguanine-DNA methyltransferase and BCNU sensitivity in human nasopharyngeal carcinoma cells. Biochem. Pharmacol. 2018 158 327 338 10.1016/j.bcp.2018.10.029 30449727
    [Google Scholar]
  61. Weller M. Stupp R. Reifenberger G. Brandes A.A. van den Bent M.J. Wick W. Hegi M.E. MGMT promoter methylation in malignant gliomas: Ready for personalized medicine? Nat. Rev. Neurol. 2010 6 1 39 51 10.1038/nrneurol.2009.197 19997073
    [Google Scholar]
  62. Shi Y. Du L. Lin L. Wang Y. Tumour-associated mesenchymal stem/stromal cells: Emerging therapeutic targets. Nat. Rev. Drug Discov. 2017 16 1 35 52 10.1038/nrd.2016.193 27811929
    [Google Scholar]
  63. Jin M.Z. Jin W.L. The updated landscape of tumor microenvironment and drug repurposing. Signal Transduct. Target. Ther. 2020 5 1 166 10.1038/s41392‑020‑00280‑x 32843638
    [Google Scholar]
  64. Alfarouk K.O. Verduzco D. Rauch C. Muddathir A.K. Bashir A.H.H. Elhassan G.O. Ibrahim M.E. Orozco J.D.P. Cardone R.A. Reshkin S.J. Harguindey S. Glycolysis, tumor metabolism, cancer growth and dissemination. A new pH-based etiopathogenic perspective and therapeutic approach to an old cancer question. Oncoscience 2014 1 12 777 802 10.18632/oncoscience.109 25621294
    [Google Scholar]
  65. Mahoney B.P. Raghunand N. Baggett B. Gillies R.J. Tumor acidity, ion trapping and chemotherapeutics. Biochem. Pharmacol. 2003 66 7 1207 1218 10.1016/S0006‑2952(03)00467‑2 14505800
    [Google Scholar]
  66. Cao L. Zhu Y. Wang W. Wang G. Zhang S. Cheng H. Emerging nano-based strategies against drug resistance in tumor chemotherapy. Front. Bioeng. Biotechnol. 2021 9 798882 10.3389/fbioe.2021.798882 34950650
    [Google Scholar]
  67. Jing X. Yang F. Shao C. Wei K. Xie M. Shen H. Shu Y. Role of hypoxia in cancer therapy by regulating the tumor microenvironment. Mol. Cancer 2019 18 1 157 10.1186/s12943‑019‑1089‑9 31711497
    [Google Scholar]
  68. Yang Y. Karakhanova S. Werner J. Bazhin A. Reactive oxygen species in cancer biology and anticancer therapy. Curr. Med. Chem. 2013 20 30 3677 3692 10.2174/0929867311320999165 23862622
    [Google Scholar]
  69. Chang Y.T. Wang C.C.N. Wang J.Y. Lee T.E. Cheng Y.Y. Morris-Natschke S.L. Lee K.H. Hung C.C. Tenulin and isotenulin inhibit P-glycoprotein function and overcome multidrug resistance in cancer cells. Phytomedicine 2019 53 252 262 10.1016/j.phymed.2018.09.008 30668405
    [Google Scholar]
  70. Senapati S. Mahanta A.K. Kumar S. Maiti P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct. Target. Ther. 2018 3 1 7 10.1038/s41392‑017‑0004‑3 29560283
    [Google Scholar]
  71. Su Z. Dong S. Zhao S.C. Liu K. Tan Y. Jiang X. Assaraf Y.G. Qin B. Chen Z.S. Zou C. Novel nanomedicines to overcome cancer multidrug resistance. Drug Resist. Updat. 2021 58 100777 10.1016/j.drup.2021.100777 34481195
    [Google Scholar]
  72. Jamal-Hanjani M. Quezada S.A. Larkin J. Swanton C. Translational implications of tumor heterogeneity. Clin. Cancer Res. 2015 21 6 1258 1266 10.1158/1078‑0432.CCR‑14‑1429 25770293
    [Google Scholar]
  73. Bukhari S.N.A. Emerging nanotherapeutic approaches to overcome drug resistance in cancers with update on clinical trials. Pharmaceutics 2022 14 4 866 10.3390/pharmaceutics14040866 35456698
    [Google Scholar]
  74. Sahoo L. Tripathy N.S. Dilnawaz F. Naringenin nanoformulations for neurodegenerative diseases. Curr. Pharm. Biotechnol. 2024 25 16 2108 2124 10.2174/0113892010281459240118091137 38347794
    [Google Scholar]
  75. Chen S. Li Q. McClements D.J. Han Y. Dai L. Mao L. Gao Y. Co-delivery of curcumin and piperine in zein-carrageenan core-shell nanoparticles: Formation, structure, stability and in vitro gastrointestinal digestion. Food Hydrocoll. 2020 99 105334 10.1016/j.foodhyd.2019.105334
    [Google Scholar]
  76. Xiong K. Zhang Y. Wen Q. Luo J. Lu Y. Wu Z. Wang B. Chen Y. Zhao L. Fu S. Co-delivery of paclitaxel and curcumin by biodegradable polymeric nanoparticles for breast cancer chemotherapy. Int. J. Pharm. 2020 589 119875 10.1016/j.ijpharm.2020.119875 32919003
    [Google Scholar]
  77. Ali E.S. Targeting cancer cells with nanotherapeutics and nanodiagnostics: Current status and future perspectives. Semin Cancer Biol 2021 69 52 68 10.1016/j.semcancer.2020.01.011
    [Google Scholar]
  78. Chowdhury P. Ghosh U. Samanta K. Jaggi M. Chauhan S.C. Yallapu M.M. Bioactive nanotherapeutic trends to combat triple negative breast cancer. Bioact. Mater. 2021 6 10 3269 3287 10.1016/j.bioactmat.2021.02.037 33778204
    [Google Scholar]
  79. O’Brien M.E.R. Wigler N. Inbar M. Rosso R. Grischke E. Santoro A. Catane R. Kieback D.G. Tomczak P. Ackland S.P. Orlandi F. Mellars L. Alland L. Tendler C. CAELYX Breast Cancer Study Group Reduced cardiotoxicity and comparable efficacy in a phase IIItrial of pegylated liposomal doxorubicin HCl(CAELYX™/Doxil®) versus conventional doxorubicin forfirst-line treatment of metastatic breast cancer. Ann. Oncol. 2004 15 3 440 449 10.1093/annonc/mdh097 14998846
    [Google Scholar]
  80. Hoy S.M. Albumin-bound paclitaxel: A review of its use for the first-line combination treatment of metastatic pancreatic cancer. Drugs 2014 74 15 1757 1768 10.1007/s40265‑014‑0291‑8 25260887
    [Google Scholar]
  81. Farran B. Pavitra E. Kasa P. Peela S. Rama Raju G.S. Nagaraju G.P. Folate-targeted immunotherapies: Passive and active strategies for cancer. Cytokine Growth Factor Rev. 2019 45 45 52 10.1016/j.cytogfr.2019.02.001 30770191
    [Google Scholar]
  82. Kuo Y.C. Wang L.J. Rajesh R. Targeting human brain cancer stem cells by curcumin-loaded nanoparticles grafted with anti-aldehyde dehydrogenase and sialic acid: Colocalization of ALDH and CD44. Mater. Sci. Eng. C 2019 102 362 372 10.1016/j.msec.2019.04.065 31147008
    [Google Scholar]
  83. Martínez-Torres A.C. Lorenzo-Anota H.Y. García-Juárez M.G. Zárate-Triviño D.G. Rodríguez-Padilla C. Chitosan gold nanoparticles induce different ROS-dependent cell death modalities in leukemic cells. Int. J. Nanomedicine 2019 14 7173 7190 10.2147/IJN.S221021 31564872
    [Google Scholar]
  84. Overchuk M. Weersink R.A. Wilson B.C. Zheng G. Photodynamic and photothermal therapies: Synergy opportunities for nanomedicine. ACS Nano 2023 17 9 7979 8003 10.1021/acsnano.3c00891 37129253
    [Google Scholar]
  85. Nunes T. Hamdan D. Leboeuf C. El Bouchtaoui M. Gapihan G. Nguyen T.T. Meles S. Angeli E. Ratajczak P. Lu H. Di Benedetto M. Bousquet G. Janin A. Targeting cancer stem cells to overcome chemoresistance. Int. J. Mol. Sci. 2018 19 12 4036 10.3390/ijms19124036 30551640
    [Google Scholar]
  86. Wang Y. Xie Y. Li J. Peng Z.H. Sheinin Y. Zhou J. Oupický D. Tumor-penetrating nanoparticles for enhanced anticancer activity of combined photodynamic and hypoxia-activated therapy. ACS Nano 2017 11 2 2227 2238 10.1021/acsnano.6b08731 28165223
    [Google Scholar]
  87. Dai L. Li X. Yao M. Niu P. Yuan X. Li K. Chen M. Fu Z. Duan X. Liu H. Cai K. Yang H. Programmable prodrug micelle with size-shrinkage and charge-reversal for chemotherapy-improved IDO immunotherapy. Biomaterials 2020 241 119901 10.1016/j.biomaterials.2020.119901 32109706
    [Google Scholar]
  88. Schütz C.A. Juillerat-Jeanneret L. Mueller H. Lynch I. Riediker M. NanoImpactNet Consortium Therapeutic nanoparticles in clinics and under clinical evaluation. Nanomedicine (Lond.) 2013 8 3 449 467 10.2217/nnm.13.8 23477336
    [Google Scholar]
  89. van der Meel R. Vehmeijer L.J.C. Kok R.J. Storm G. van Gaal E.V.B. Ligand-targeted particulate nanomedicines undergoing clinical evaluation: Current status. Adv. Drug Deliv. Rev. 2013 65 10 1284 1298 10.1016/j.addr.2013.08.012 24018362
    [Google Scholar]
  90. Bobo D. Robinson K.J. Islam J. Thurecht K.J. Corrie S.R. Nanoparticle-based medicines: A review of FDA-approved materials and clinical trials to date. Pharm. Res. 2016 33 10 2373 2387 10.1007/s11095‑016‑1958‑5 27299311
    [Google Scholar]
  91. Niazi M. Zakeri-Milani P. Najafi Hajivar S. Soleymani Goloujeh M. Ghobakhlou N. Shahbazi Mojarrad J. Valizadeh H. Nano-based strategies to overcome p-glycoprotein-mediated drug resistance. Expert Opin. Drug Metab. Toxicol. 2016 12 9 1021 1033 10.1080/17425255.2016.1196186 27267126
    [Google Scholar]
  92. Sábio R.M. Meneguin A.B. Ribeiro T.C. Silva R.R. Chorilli M. New insights towards mesoporous silica nanoparticles as a technological platform for chemotherapeutic drugs delivery. Int. J. Pharm. 2019 564 379 409 10.1016/j.ijpharm.2019.04.067 31028801
    [Google Scholar]
  93. Jiang Y. Wang Z. Duan W. Liu L. Si M. Chen X. Fang C.J. The critical size of gold nanoparticles for overcoming P-gp mediated multidrug resistance. Nanoscale 2020 12 31 16451 16461 10.1039/D0NR03226C 32790812
    [Google Scholar]
  94. Huang I.P. Sun S.P. Cheng S.H. Lee C.H. Wu C.Y. Yang C.S. Lo L.W. Lai Y.K. Enhanced chemotherapy of cancer using pH-sensitive mesoporous silica nanoparticles to antagonize P-glycoprotein-mediated drug resistance. Mol. Cancer Ther. 2011 10 5 761 769 10.1158/1535‑7163.MCT‑10‑0884 21411714
    [Google Scholar]
  95. Luo C. Li Y. Guo L. Zhang F. Liu H. Zhang J. Zheng J. Zhang J. Guo S. Graphene quantum dots downregulate multiple multidrug‐resistant genes via interacting with their C‐rich promoters. Adv. Healthc. Mater. 2017 6 21 1700328 10.1002/adhm.201700328 28748603
    [Google Scholar]
  96. Li J. Wang F. Haraldson K. Protopopov A. Duh F.M. Geil L. Kuzmin I. Minna J.D. Stanbridge E. Braga E. Kashuba V.I. Klein G. Lerman M.I. Zabarovsky E.R. Functional characterization of the candidate tumor suppressor gene NPRL2/G21 located in 3p21.3C. Cancer Res. 2004 64 18 6438 6443 10.1158/0008‑5472.CAN‑03‑3869 15374952
    [Google Scholar]
  97. Ueda K. Kawashima H. Ohtani S. Deng W.G. Ravoori M. Bankson J. Gao B. Girard L. Minna J.D. Roth J.A. Kundra V. Ji L. The 3p21.3 tumor suppressor NPRL2 plays an important role in cisplatin-induced resistance in human non-small-cell lung cancer cells. Cancer Res. 2006 66 19 9682 9690 10.1158/0008‑5472.CAN‑06‑1483 17018626
    [Google Scholar]
  98. Shuhendler A.J. Cheung R.Y. Manias J. Connor A. Rauth A.M. Wu X.Y. A novel doxorubicin-mitomycin C co-encapsulated nanoparticle formulation exhibits anti-cancer synergy in multidrug resistant human breast cancer cells. Breast Cancer Res. Treat. 2010 119 2 255 269 10.1007/s10549‑008‑0271‑3 19221875
    [Google Scholar]
  99. Meng H. Mai W.X. Zhang H. Xue M. Xia T. Lin S. Wang X. Zhao Y. Ji Z. Zink J.I. Nel A.E. Codelivery of an optimal drug/siRNA combination using mesoporous silica nanoparticles to overcome drug resistance in breast cancer in vitro and in vivo ACS Nano 2013 7 2 994 1005 10.1021/nn3044066 23289892
    [Google Scholar]
  100. Suo A. Qian J. Zhang Y. Liu R. Xu W. Wang H. Comb-like amphiphilic polypeptide-based copolymer nanomicelles for co-delivery of doxorubicin and P-gp siRNA into MCF-7 cells. Mater. Sci. Eng. C 2016 62 564 573 10.1016/j.msec.2016.02.007 26952460
    [Google Scholar]
  101. Kievit F.M. Wang F.Y. Fang C. Mok H. Wang K. Silber J.R. Ellenbogen R.G. Zhang M. Doxorubicin loaded iron oxide nanoparticles overcome multidrug resistance in cancer in vitro. J. Control. Release 2011 152 1 76 83 10.1016/j.jconrel.2011.01.024 21277920
    [Google Scholar]
  102. Ling D. Park W. Park S. Lu Y. Kim K.S. Hackett M.J. Kim B.H. Yim H. Jeon Y.S. Na K. Hyeon T. Multifunctional tumor pH-sensitive self-assembled nanoparticles for bimodal imaging and treatment of resistant heterogeneous tumors. J. Am. Chem. Soc. 2014 136 15 5647 5655 10.1021/ja4108287 24689550
    [Google Scholar]
  103. Rajan A. Sahu N.K. Review on magnetic nanoparticle-mediated hyperthermia for cancer therapy. J. Nanopart. Res. 2020 22 11 319 10.1007/s11051‑020‑05045‑9
    [Google Scholar]
  104. Kossatz S. Grandke J. Couleaud P. Latorre A. Aires A. Crosbie-Staunton K. Ludwig R. Dähring H. Ettelt V. Lazaro-Carrillo A. Calero M. Sader M. Courty J. Volkov Y. Prina-Mello A. Villanueva A. Somoza Á. Cortajarena A.L. Miranda R. Hilger I. Efficient treatment of breast cancer xenografts with multifunctionalized iron oxide nanoparticles combining magnetic hyperthermia and anti-cancer drug delivery. Breast Cancer Res. 2015 17 1 66 10.1186/s13058‑015‑0576‑1 25968050
    [Google Scholar]
  105. Lee S.M. Kim H.J. Kim S.Y. Kwon M.K. Kim S. Cho A. Yun M. Shin J.S. Yoo K.H. Drug-loaded gold plasmonic nanoparticles for treatment of multidrug resistance in cancer. Biomaterials 2014 35 7 2272 2282 10.1016/j.biomaterials.2013.11.068 24342728
    [Google Scholar]
  106. Li J.M. Wang Y.Y. Zhao M.X. Tan C.P. Li Y.Q. Le X.Y. Ji L.N. Mao Z.W. Multifunctional QD-based co-delivery of siRNA and doxorubicin to HeLa cells for reversal of multidrug resistance and real-time tracking. Biomaterials 2012 33 9 2780 2790 10.1016/j.biomaterials.2011.12.035 22243797
    [Google Scholar]
  107. Anderson N.M. Simon M.C. The tumor microenvironment. Curr. Biol. 2020 30 16 R921 R925 10.1016/j.cub.2020.06.081 32810447
    [Google Scholar]
  108. Huo Q. Zhu J. Niu Y. Shi H. Gong Y. Li Y. Song H. Liu Y. pH-triggered surface charge-switchable polymer micelles for the co-delivery of paclitaxel/disulfiram and overcoming multidrug resistance in cancer. Int. J. Nanomedicine 2017 12 8631 8647 10.2147/IJN.S144452 29270012
    [Google Scholar]
  109. Hu T. Gong H. Xu J. Huang Y. Wu F. He Z. Nanomedicines for overcoming cancer drug resistance. Pharmaceutics 2022 14 8 1606 10.3390/pharmaceutics14081606 36015232
    [Google Scholar]
  110. Ware K.E. Hinz T.K. Kleczko E. Singleton K.R. Marek L.A. Helfrich B.A. Cummings C.T. Graham D.K. Astling D. Tan A-C. Heasley L.E. A mechanism of resistance to gefitinib mediated by cellular reprogramming and the acquisition of an FGF2-FGFR1 autocrine growth loop. Oncogenesis 2013 2 3 e39 e39 10.1038/oncsis.2013.4 23552882
    [Google Scholar]
  111. Alsaab H.O. Sau S. Alzhrani R.M. Cheriyan V.T. Polin L.A. Vaishampayan U. Rishi A.K. Iyer A.K. Tumor hypoxia directed multimodal nanotherapy for overcoming drug resistance in renal cell carcinoma and reprogramming macrophages. Biomaterials 2018 183 280 294 10.1016/j.biomaterials.2018.08.053 30179778
    [Google Scholar]
  112. Feng L. Betzer O. Tao D. Sadan T. Popovtzer R. Liu Z. Oxygen nanoshuttles for tumor oxygenation and enhanced cancer treatment. CCS Chem. 2019 1 3 239 250 10.31635/ccschem.019.20190010
    [Google Scholar]
  113. Jiang C. Shen C. Ni M. Huang L. Hu H. Dai Q. Zhao H. Zhu Z. Molecular mechanisms of cisplatin resistance in ovarian cancer. Genes Dis. 2024 11 6 101063 10.1016/j.gendis.2023.06.032 39224110
    [Google Scholar]
  114. Chen J. Wang X. Yuan Y. Chen H. Zhang L. Xiao H. Chen J. Zhao Y. Chang J. Guo W. Liang X.J. Exploiting the acquired vulnerability of cisplatin-resistant tumors with a hypoxia-amplifying DNA repair–inhibiting (HYDRI) nanomedicine. Sci. Adv. 2021 7 13 eabc5267 10.1126/sciadv.abc5267 33771859
    [Google Scholar]
  115. Peng J. Yang Q. Shi K. Xiao Y. Wei X. Qian Z. Intratumoral fate of functional nanoparticles in response to microenvironment factor: Implications on cancer diagnosis and therapy. Adv. Drug Deliv. Rev. 2019 143 37 67 10.1016/j.addr.2019.06.007 31276708
    [Google Scholar]
  116. Lee N. Yoo D. Ling D. Cho M.H. Hyeon T. Cheon J. Iron oxide based nanoparticles for multimodal imaging and magnetoresponsive therapy. Chem. Rev. 2015 115 19 10637 10689 10.1021/acs.chemrev.5b00112 26250431
    [Google Scholar]
  117. Chen L.L. Zhao L. Wang Z.G. Liu S.L. Pang D.W. Near‐infrared‐II quantum dots for in vivo imaging and cancer therapy. Small 2022 18 8 2104567 10.1002/smll.202104567 34837314
    [Google Scholar]
  118. Tripathi S.K. Quantum dots and their potential role in cancer theranostics. . Crit Rev Ther Drug Carrier Syst. 2015 32 6 461 502 10.1615/CritRevTherDrugCarrierSyst.2015012360
    [Google Scholar]
  119. Zhang Y. Yang H. An X. Wang Z. Yang X. Yu M. Zhang R. Sun Z. Wang Q. Controlled synthesis of Ag2Te@ Ag2S Core–Shell quantum dots with enhanced and tunable fluorescence in the second near‐infrared window. Small 2020 16 14 2001003 10.1002/smll.202001003 32162848
    [Google Scholar]
  120. Jin C. Wang K. Oppong-Gyebi A. Hu J. Application of nanotechnology in cancer diagnosis and therapy-a mini-review. Int. J. Med. Sci. 2020 17 18 2964 2973 10.7150/ijms.49801 33173417
    [Google Scholar]
  121. Adityan S. Tran M. Bhavsar C. Wu S.Y. Nano-therapeutics for modulating the tumour microenvironment: Design, development, and clinical translation. J. Control. Release 2020 327 512 532 10.1016/j.jconrel.2020.08.016 32800879
    [Google Scholar]
  122. Rosenblum D. Joshi N. Tao W. Karp J.M. Peer D. Progress and challenges towards targeted delivery of cancer therapeutics. Nat. Commun. 2018 9 1 1410 10.1038/s41467‑018‑03705‑y 29650952
    [Google Scholar]
  123. Mainini F. Eccles M.R. Lipid and polymer-based nanoparticle siRNA delivery systems for cancer therapy. Molecules 2020 25 11 2692 10.3390/molecules25112692 32532030
    [Google Scholar]
  124. Hua S. de Matos M.B.C. Metselaar J.M. Storm G. Current trends and challenges in the clinical translation of nanoparticulate nanomedicines: Pathways for translational development and commercialization. Front. Pharmacol. 2018 9 790 10.3389/fphar.2018.00790 30065653
    [Google Scholar]
  125. Krauss A.C. Gao X. Li L. Manning M.L. Patel P. Fu W. Janoria K.G. Gieser G. Bateman D.A. Przepiorka D. Shen Y.L. Shord S.S. Sheth C.M. Banerjee A. Liu J. Goldberg K.B. Farrell A.T. Blumenthal G.M. Pazdur R. FDA approval summary:(daunorubicin and cytarabine) liposome for injection for the treatment of adults with high-risk acute myeloid leukemia. Clin. Cancer Res. 2019 25 9 2685 2690 10.1158/1078‑0432.CCR‑18‑2990 30541745
    [Google Scholar]
  126. Gajera K. Patel A. An overview of FDA approved liposome formulations for cancer therapy. J. Adv. Med. Pharm. Sci. 2022 24 3 1 7 10.9734/jamps/2022/v24i330288
    [Google Scholar]
  127. Abulateefeh S.R. Long-acting injectable PLGA/PLA depots for leuprolide acetate: Successful translation from bench to clinic. Drug Deliv. Transl. Res. 2023 13 2 520 530 10.1007/s13346‑022‑01228‑0 35976565
    [Google Scholar]
  128. Harshita Barkat M.A. Beg S. Pottoo F.H. Ahmad F.J. Nanopaclitaxel therapy: An evidence based review on the battle for next-generation formulation challenges. Nanomedicine (Lond.) 2019 14 10 1323 1341 10.2217/nnm‑2018‑0313 31124758
    [Google Scholar]
  129. Karabasz A. Bzowska M. Szczepanowicz K. Biomedical applications of multifunctional polymeric nanocarriers: A review of current literature. Int. J. Nanomedicine 2020 15 8673 8696 10.2147/IJN.S231477 33192061
    [Google Scholar]
  130. Castaneda R.T. Labeling stem cells with ferumoxytol, an FDA-approved iron oxide nanoparticle J Vis Exp. 2011 4 57 e3482
    [Google Scholar]
  131. Rodríguez F. Caruana P. De la Fuente N. Español P. Gámez M. Balart J. Llurba E. Rovira R. Ruiz R. Martín-Lorente C. Corchero J.L. Céspedes M.V. Nano-based approved pharmaceuticals for cancer treatment: present and future challenges. Biomolecules 2022 12 6 784 10.3390/biom12060784 35740909
    [Google Scholar]
  132. Al Bostami R.D. Abuwatfa W.H. Husseini G.A. Recent advances in nanoparticle-based co-delivery systems for cancer therapy. Nanomaterials 2022 12 15 2672 10.3390/nano12152672 35957103
    [Google Scholar]
  133. Ashique S. Garg A. Hussain A. Farid A. Kumar P. Taghizadeh-Hesary F. Nanodelivery systems: An efficient and target‐specific approach for drug‐resistant cancers. Cancer Med. 2023 12 18 18797 18825 10.1002/cam4.6502 37668041
    [Google Scholar]
  134. MacDiarmid J.A. Amaro-Mugridge N.B. Madrid-Weiss J. Sedliarou I. Wetzel S. Kochar K. Brahmbhatt V.N. Phillips L. Pattison S.T. Petti C. Stillman B. Graham R.M. Brahmbhatt H. Sequential treatment of drug-resistant tumors with targeted minicells containing siRNA or a cytotoxic drug. Nat. Biotechnol. 2009 27 7 643 651 10.1038/nbt.1547 19561595
    [Google Scholar]
  135. Yuan Y. Cai T. Xia X. Zhang R. Chiba P. Cai Y. Nanoparticle delivery of anticancer drugs overcomes multidrug resistance in breast cancer. Drug Deliv. 2016 23 9 3350 3357 10.1080/10717544.2016.1178825 27098896
    [Google Scholar]
  136. Werle M. Hoffer M. Glutathione and thiolated chitosan inhibit multidrug resistance P-glycoprotein activity in excised small intestine. J. Control. Release 2006 111 1-2 41 46 10.1016/j.jconrel.2005.11.011 16377016
    [Google Scholar]
  137. Mehta S. Suresh A. Nayak Y. Narayan R. Nayak U.Y. Hybrid nanostructures: Versatile systems for biomedical applications. Coord. Chem. Rev. 2022 460 214482 10.1016/j.ccr.2022.214482
    [Google Scholar]
  138. Yu M. Zhang Y. Fang M. Jehan S. Zhou W. Current advances of nanomedicines delivering arsenic trioxide for enhanced tumor therapy. Pharmaceutics 2022 14 4 743 10.3390/pharmaceutics14040743 35456577
    [Google Scholar]
  139. Liu M.N. Liu A.Y. Du Y.J. Pei F.H. Wang X.H. Chen J. Liu D. Liu B.R. Nitrogen permease regulator-like 2 enhances sensitivity to oxaliplatin in colon cancer cells. Mol. Med. Rep. 2015 12 1 1189 1196 10.3892/mmr.2015.3495 25777765
    [Google Scholar]
  140. Zhang R.X. Polymer and lipid-based nanomedicine of synergistic drug combinations for improving chemotherapy of multidrug resistant breast cancer. Canada University of Toronto 2016
    [Google Scholar]
  141. Wang Z. Xu Z. Zhu G. A platinum (IV) anticancer prodrug targeting nucleotide excision repair to overcome cisplatin resistance. Angew. Chem. Int. Ed. 2016 55 50 15564 15568 10.1002/anie.201608936 27736029
    [Google Scholar]
  142. Libutti S.K. Paciotti G.F. Byrnes A.A. Alexander H.R. Jr Gannon W.E. Walker M. Seidel G.D. Yuldasheva N. Tamarkin L. Phase I and pharmacokinetic studies of CYT-6091, a novel PEGylated colloidal gold-rhTNF nanomedicine. Clin. Cancer Res. 2010 16 24 6139 6149 10.1158/1078‑0432.CCR‑10‑0978 20876255
    [Google Scholar]
  143. Mamot C. Ritschard R. Wicki A. Stehle G. Dieterle T. Bubendorf L. Hilker C. Deuster S. Herrmann R. Rochlitz C. Tolerability, safety, pharmacokinetics, and efficacy of doxorubicin-loaded anti-EGFR immunoliposomes in advanced solid tumours: A phase 1 dose-escalation study. Lancet Oncol. 2012 13 12 1234 1241 10.1016/S1470‑2045(12)70476‑X 23153506
    [Google Scholar]
  144. Subbiah V. Grilley-Olson J.E. Combest A.J. Sharma N. Tran R.H. Bobe I. Osada A. Takahashi K. Balkissoon J. Camp A. Masada A. Reitsma D.J. Bazhenova L.A. Phase Ib/II trial of NC-6004 (nanoparticle cisplatin) plus gemcitabine in patients with advanced solid tumors. Clin. Cancer Res. 2018 24 1 43 51 10.1158/1078‑0432.CCR‑17‑1114 29030354
    [Google Scholar]
  145. Senzer N. Nemunaitis J. Nemunaitis D. Bedell C. Edelman G. Barve M. Nunan R. Pirollo K.F. Rait A. Chang E.H. Phase I study of a systemically delivered p53 nanoparticle in advanced solid tumors. Mol. Ther. 2013 21 5 1096 1103 10.1038/mt.2013.32 23609015
    [Google Scholar]
  146. Parashar D. Rajendran V. Shukla R. Sistla R. Lipid-based nanocarriers for delivery of small interfering RNA for therapeutic use. Eur. J. Pharm. Sci. 2020 142 105159 10.1016/j.ejps.2019.105159 31747618
    [Google Scholar]
  147. Liu X. Targeting polo-like kinases: A promising therapeutic approach for cancer treatment. Transl. Oncol. 2015 8 3 185 195 10.1016/j.tranon.2015.03.010 26055176
    [Google Scholar]
  148. Arranja A.G. Pathak V. Lammers T. Shi Y. Tumor-targeted nanomedicines for cancer theranostics. Pharmacol. Res. 2017 115 87 95 10.1016/j.phrs.2016.11.014 27865762
    [Google Scholar]
  149. Tabernero J. Shapiro G.I. LoRusso P.M. Cervantes A. Schwartz G.K. Weiss G.J. Paz-Ares L. Cho D.C. Infante J.R. Alsina M. Gounder M.M. Falzone R. Harrop J. White A.C.S. Toudjarska I. Bumcrot D. Meyers R.E. Hinkle G. Svrzikapa N. Hutabarat R.M. Clausen V.A. Cehelsky J. Nochur S.V. Gamba-Vitalo C. Vaishnaw A.K. Sah D.W.Y. Gollob J.A. Burris H.A. III First-in-humans trial of an RNA interference therapeutic targeting VEGF and KSP in cancer patients with liver involvement. Cancer Discov. 2013 3 4 406 417 10.1158/2159‑8290.CD‑12‑0429 23358650
    [Google Scholar]
  150. Teles R.H.G. Moralles H.F. Cominetti M.R. Global trends in nanomedicine research on triple negative breast cancer: A bibliometric analysis. Int. J. Nanomedicine 2018 13 2321 2336 10.2147/IJN.S164355 29713164
    [Google Scholar]
  151. Hwang H.J. Lee Y.R. Kang D. Lee H.C. Seo H.R. Ryu J.K. Kim Y.N. Ko Y.G. Park H.J. Lee J.S. Endothelial cells under therapy-induced senescence secrete CXCL11, which increases aggressiveness of breast cancer cells. Cancer Lett. 2020 490 100 110 10.1016/j.canlet.2020.06.019 32659248
    [Google Scholar]
  152. Weiss G.J. Chao J. Neidhart J.D. Ramanathan R.K. Bassett D. Neidhart J.A. Choi C.H.J. Chow W. Chung V. Forman S.J. Garmey E. Hwang J. Kalinoski D.L. Koczywas M. Longmate J. Melton R.J. Morgan R. Oliver J. Peterkin J.J. Ryan J.L. Schluep T. Synold T.W. Twardowski P. Davis M.E. Yen Y. First-in-human phase 1/2a trial of CRLX101, a cyclodextrin-containing polymer-camptothecin nanopharmaceutical in patients with advanced solid tumor malignancies. Invest. New Drugs 2013 31 4 986 1000 10.1007/s10637‑012‑9921‑8 23397498
    [Google Scholar]
  153. Graziani S.R. Vital C.G. Morikawa A.T. Van Eyll B.M. Fernandes Junior H.J. Kalil Filho R. Maranhão R.C. Phase II study of paclitaxel associated with lipid core nanoparticles (LDE) as third-line treatment of patients with epithelial ovarian carcinoma. Med. Oncol. 2017 34 9 151 10.1007/s12032‑017‑1009‑z 28756613
    [Google Scholar]
  154. Hamaguchi T. Doi T. Eguchi-Nakajima T. Kato K. Yamada Y. Shimada Y. Fuse N. Ohtsu A. Matsumoto S. Takanashi M. Matsumura Y. Phase I study of NK012, a novel SN-38-incorporating micellar nanoparticle, in adult patients with solid tumors. Clin. Cancer Res. 2010 16 20 5058 5066 10.1158/1078‑0432.CCR‑10‑0387 20943763
    [Google Scholar]
  155. Nirmala M.J. Kizhuveetil U. Johnson A. G B. Nagarajan R. Muthuvijayan V. Cancer nanomedicine: A review of nano-therapeutics and challenges ahead. RSC Advances 2023 13 13 8606 8629 10.1039/D2RA07863E 36926304
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010336491241022094511
Loading
/content/journals/cpb/10.2174/0113892010336491241022094511
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test