Skip to content
2000
Volume 26, Issue 17
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Cancer is the leading cause of death worldwide. The effectiveness of chemotherapy in cancer patients is still significantly hampered by multidrug resistance (MDR). Tumors exploit the MDR pathways to invade the host and limit the efficacy of chemotherapeutic drugs that are delivered as single drugs or combinations. Further, overexpression of ATP-binding Cassette transporter (ABC transporter) proteins augments the efflux of chemotherapeutic drugs and lowers their intracellular accumulation. Recent progress in the development of nanotechnology and nanocarrier-based drug delivery systems has shown a better perspective with respect to the improvement of cancer chemotherapy. Nanoparticles/nanomaterials are designed to target the immune system and tumor microenvironment of cancer cells for a variety of cancer treatments in order to improve bioavailability and reduce toxicity. This review elucidates the successful use of nanomaterials for cancer therapy and addressing the MDR and throws some light on the present obstacles impeding their translation to clinical use.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010336491241022094511
2024-10-31
2026-02-11
Loading full text...

Full text loading...

References

  1. SiegelR.L. MillerK.D. FuchsH.E. JemalA. Cancer statistics, 2022.CA Cancer J. Clin.202272173310.3322/caac.2170835020204
    [Google Scholar]
  2. SiegelR.L. GiaquintoA.N. JemalA. Cancer statistics, 2024.CA Cancer J. Clin.2024741124910.3322/caac.2182038230766
    [Google Scholar]
  3. ShenT. LiuY. ShangJ. XieQ. LiJ. YanM. XuJ. NiuJ. LiuJ. WatkinsP.B. AithalG.P. AndradeR.J. DouX. YaoL. LvF. WangQ. LiY. ZhouX. ZhangY. ZongP. WanB. ZouZ. YangD. NieY. LiD. WangY. HanX. ZhuangH. MaoY. ChenC. Incidence and etiology of drug-induced liver injury in mainland China.Gastroenterology2019156822302241.e1110.1053/j.gastro.2019.02.00230742832
    [Google Scholar]
  4. IzzedineH. PerazellaM.A. Onco-nephrology: An appraisal of the cancer and chronic kidney disease links.Nephrol. Dial. Transplant.201530121979198810.1093/ndt/gfu38725648910
    [Google Scholar]
  5. SantosN.E. CarreiraA.R.F. SilvaV.L.M. BragaS.S. Natural and biomimetic antitumor pyrazoles, a perspective.Molecules2020256136410.3390/molecules2506136432192149
    [Google Scholar]
  6. AbigergesD. ArmandJ.P. ChabotG.G. CostaL.D. FadelE. CoteC. HéraitP. GandiaD. Irinotecan (CPT-11) high-dose escalation using intensive high-dose loperamide to control diarrhea.J. Natl. Cancer Inst.199486644644910.1093/jnci/86.6.4468120919
    [Google Scholar]
  7. UchiyamaK. IwabuchiH. YamadaM. SugiyamaK. NakayamaS. Digestive symptoms as side effects of combination chemotherapy of docetaxel, nedaplatin and 5-fluorouracil for head and neck cancer.Gan To Kagaku Ryoho201239111659166423152015
    [Google Scholar]
  8. IshikawaT. MoritaJ. KawachiK. TagashiraH. [Incidence of dysgeusia associated with chemotherapy for cancer]Gan To Kagaku Ryoho20134081049105423986049
    [Google Scholar]
  9. AkazawaH. Cardiotoxicity of cancer chemotherapy: Mechanism and therapeutic approach.Ann. Oncol.20172813ix1010.1093/annonc/mdx575.00329361617
    [Google Scholar]
  10. NakaneM. [Neurotoxicity and dermatologic toxicity of cancer chemotherapy].Gan To Kagaku Ryoho20063312933[Neurotoxicity and dermatologic toxicity of cancer chemotherapy]16410694
    [Google Scholar]
  11. HaiderT. PandeyV. BanjareN. GuptaP.N. SoniV. Drug resistance in cancer: Mechanisms and tackling strategies.Pharmacol. Rep.20207251125115110.1007/s43440‑020‑00138‑732700248
    [Google Scholar]
  12. LiT. LiJ. ChenZ. ZhangS. LiS. WagehS. Al-HartomyO.A. Al-SehemiA.G. XieZ. KankalaR.K. ZhangH. Glioma diagnosis and therapy: Current challenges and nanomaterial-based solutions.J. Control. Release202235233837010.1016/j.jconrel.2022.09.06536206948
    [Google Scholar]
  13. NealR.D. TharmanathanP. FranceB. DinN.U. CottonS. Fallon-FergusonJ. HamiltonW. HendryA. HendryM. LewisR. MacleodU. MitchellE.D. PickettM. RaiT. ShawK. StuartN. TørringM.L. WilkinsonC. WilliamsB. WilliamsN. EmeryJ. Is increased time to diagnosis and treatment in symptomatic cancer associated with poorer outcomes? Systematic review.Br. J. Cancer2015112S1Suppl. 1S92S10710.1038/bjc.2015.4825734382
    [Google Scholar]
  14. Loira-PastorizaC. TodoroffJ. VanbeverR. Delivery strategies for sustained drug release in the lungs.Adv. Drug Deliv. Rev.201475819110.1016/j.addr.2014.05.01724915637
    [Google Scholar]
  15. KunjachanS. RychlikB. StormG. KiesslingF. LammersT. Multidrug resistance: Physiological principles and nanomedical solutions.Adv. Drug Deliv. Rev.20136513-141852186510.1016/j.addr.2013.09.01824120954
    [Google Scholar]
  16. DavisL.N. SherbenouD.W. Emerging therapeutic strategies to overcome drug resistance in multiple myeloma.Cancers2021137168610.3390/cancers1307168633918370
    [Google Scholar]
  17. DilnawazF. AcharyaS. SahooS.K. Recent trends of nanomedicinal approaches in clinics.Int. J. Pharm.20185381-226327810.1016/j.ijpharm.2018.01.01629339248
    [Google Scholar]
  18. HegdeY.M. A recent advancement in nanotechnology approaches for the treatment of cervical cancer.Anticancer. Agents Med. Chem.20232313759
    [Google Scholar]
  19. SubhanM.A. YalamartyS.S.K. FilipczakN. ParveenF. TorchilinV.P. Recent advances in tumor targeting via epr effect for cancer treatment.J. Pers. Med.202111657110.3390/jpm1106057134207137
    [Google Scholar]
  20. AcharyaS. DilnawazF. SahooS.K. Targeted epidermal growth factor receptor nanoparticle bioconjugates for breast cancer therapy.Biomaterials200930295737575010.1016/j.biomaterials.2009.07.00819631377
    [Google Scholar]
  21. ShiY. van der MeelR. ChenX. LammersT. The EPR effect and beyond: Strategies to improve tumor targeting and cancer nanomedicine treatment efficacy.Theranostics202010177921792410.7150/thno.4957732685029
    [Google Scholar]
  22. AnselmoA.C. MitragotriS. Nanoparticles in the clinic: An update.Bioeng. Transl. Med.201943e1014310.1002/btm2.1014331572799
    [Google Scholar]
  23. ZahreddineH. BordenK.L.B. Mechanisms and insights into drug resistance in cancer.Front. Pharmacol.201342810.3389/fphar.2013.0002823504227
    [Google Scholar]
  24. ZhaoJ. ShiL. JiM. WuJ. WuC. The combination of systemic chemotherapy and local treatment may improve the survival of patients with unresectable metastatic colorectal cancer.Mol. Clin. Oncol.20176685686010.3892/mco.2017.124728588777
    [Google Scholar]
  25. WangX. ZhangH. ChenX. Drug resistance and combating drug resistance in cancer.Cancer drug resistance20192214110.20517/cdr.2019.10
    [Google Scholar]
  26. AleksakhinaS.N. KashyapA. ImyanitovE.N. Mechanisms of acquired tumor drug resistance. Biochimica et Biophysica Acta (BBA)-.Rev. Can.201918722188310
    [Google Scholar]
  27. ErinN. GrahovacJ. BrozovicA. EfferthT. Tumor microenvironment and epithelial mesenchymal transition as targets to overcome tumor multidrug resistance.Drug Resist. Updat.20205310071510.1016/j.drup.2020.10071532679188
    [Google Scholar]
  28. AllainE.P. RouleauM. LévesqueE. GuillemetteC. Emerging roles for UDP-glucuronosyltransferases in drug resistance and cancer progression.Br. J. Cancer202012291277128710.1038/s41416‑019‑0722‑032047295
    [Google Scholar]
  29. PathaniaS. BhatiaR. BaldiA. SinghR. RawalR.K. Drug metabolizing enzymes and their inhibitors’ role in cancer resistance.Biomed. Pharmacother.2018105536510.1016/j.biopha.2018.05.11729843045
    [Google Scholar]
  30. WangJ.Q. YangY. CaiC.Y. TengQ.X. CuiQ. LinJ. AssarafY.G. ChenZ.S. Multidrug resistance proteins (MRPs): Structure, function and the overcoming of cancer multidrug resistance.Drug Resist. Updat.20215410074310.1016/j.drup.2021.10074333513557
    [Google Scholar]
  31. MarusykA. PolyakK. Tumor heterogeneity: Causes and consequences. Biochimica et Biophysica Acta (BBA)-.Rev. Can.201018051105117
    [Google Scholar]
  32. RobeyR.W. PluchinoK.M. HallM.D. FojoA.T. BatesS.E. GottesmanM.M. Revisiting the role of ABC transporters in multidrug-resistant cancer.Nat. Rev. Cancer201818745246410.1038/s41568‑018‑0005‑829643473
    [Google Scholar]
  33. SunY.L. PatelA. KumarP. ChenZ.S. Role of ABC transporters in cancer chemotherapy.Chin. J. Cancer2012312515710.5732/cjc.011.1046622257384
    [Google Scholar]
  34. ColemanJ.A. QuaziF. MoldayR.S. Mammalian P4-ATPases and ABC transporters and their role in phospholipid transport.Biochim. Biophys. Acta Mol. Cell Biol. Lipids20131831355557410.1016/j.bbalip.2012.10.00623103747
    [Google Scholar]
  35. XiaoH. ZhengY. MaL. TianL. SunQ. Clinically-relevant ABC transporter for anti-cancer drug resistance.Front. Pharmacol.2021121264840710.3389/fphar.2021.64840733953682
    [Google Scholar]
  36. HousmanG. BylerS. HeerbothS. LapinskaK. LongacreM. SnyderN. SarkarS. Drug resistance in cancer: An overview.Cancers2014631769179210.3390/cancers603176925198391
    [Google Scholar]
  37. BaillyC. Contemporary challenges in the design of topoisomerase II inhibitors for cancer chemotherapy.Chem. Rev.201211273611364010.1021/cr200325f22397403
    [Google Scholar]
  38. StavrovskayaA.A. Cellular mechanisms of multidrug resistance of tumor cellsBiochemistry c/c of Biokhimiia200065195106
    [Google Scholar]
  39. HuangY. ChangY. Epidermal growth factor receptor (EGFR) phosphorylation, signaling and trafficking in prostate cancerProstate cancer-from bench to bedside201114372
    [Google Scholar]
  40. UribeM.L. MarroccoI. YardenY. EGFR in cancer: Signaling mechanisms, drugs, and acquired resistance.Cancers20211311274810.3390/cancers1311274834206026
    [Google Scholar]
  41. MorgilloF. Mechanisms of resistance to EGFR-targeted drugs: Lung cancer.ESMO Open201613e00006010.1136/esmoopen‑2016‑000060
    [Google Scholar]
  42. MehtaD.K. SiddikZ.H. Drug resistance in cancer cells.Springer2009
    [Google Scholar]
  43. RueffJ. RodriguesA.S. Cancer drug resistance: A brief overview from a genetic viewpoint.Methods Mol. Biol.2016139511810.1007/978‑1‑4939‑3347‑1_1
    [Google Scholar]
  44. ZhangY. XiaM. JinK. WangS. WeiH. FanC. WuY. LiX. LiX. LiG. ZengZ. XiongW. Function of the c-Met receptor tyrosine kinase in carcinogenesis and associated therapeutic opportunities.Mol. Cancer20181714510.1186/s12943‑018‑0796‑y29455668
    [Google Scholar]
  45. LiuQ. YuS. ZhaoW. QinS. ChuQ. WuK. EGFR-TKIs resistance via EGFR-independent signaling pathways.Mol. Cancer20181715310.1186/s12943‑018‑0793‑129455669
    [Google Scholar]
  46. BahcallM. PaweletzC.P. KuangY. TausL.J. SimT. KimN.D. DholakiaK.H. LauC.J. GokhaleP.C. ChopadeP.R. HongF. WeiZ. KöhlerJ. KirschmeierP.T. GuoJ. GuoS. WangS. JänneP.A. Combination of type i and type ii met tyrosine kinase inhibitors as therapeutic approach to prevent resistance.Mol. Cancer Ther.202221232233510.1158/1535‑7163.MCT‑21‑034434789563
    [Google Scholar]
  47. McCubreyJ.A. SteelmanL.S. ChappellW.H. AbramsS.L. MontaltoG. CervelloM. NicolettiF. FagoneP. MalaponteG. MazzarinoM.C. CandidoS. LibraM. BäseckeJ. MijatovicS. Maksimovic-IvanicD. MilellaM. TafuriA. CoccoL. EvangelistiC. ChiariniF. MartelliA.M. Mutations and deregulation of Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR cascades which alter therapy response.Oncotarget20123995498710.18632/oncotarget.65223006971
    [Google Scholar]
  48. MantovaniF. CollavinL. Del SalG. Mutant p53 as a guardian of the cancer cell.Cell Death Differ.201926219921210.1038/s41418‑018‑0246‑930538286
    [Google Scholar]
  49. RossT.S. MgbemenaV.E. Re-evaluating the role of BCR/ABL in chronic myelogenous leukemia.Mol. Cell. Oncol.201413e96345010.4161/23723548.2014.96345027308345
    [Google Scholar]
  50. SoveriniS. ManciniM. BavaroL. CavoM. MartinelliG. Chronic myeloid leukemia: The paradigm of targeting oncogenic tyrosine kinase signaling and counteracting resistance for successful cancer therapy.Mol. Cancer20181714910.1186/s12943‑018‑0780‑629455643
    [Google Scholar]
  51. ChandrasekharC. KumarP.S. SarmaP.V.G.K. Novel mutations in the kinase domain of BCR-ABL gene causing imatinib resistance in chronic myeloid leukemia patients.Sci. Rep.201991241210.1038/s41598‑019‑38672‑x30787317
    [Google Scholar]
  52. GreenfieldG. McMullanR. RobsonN. McGimpseyJ. CatherwoodM. McMullinM.F. Response to Imatinib therapy is inferior for e13a2 BCR-ABL1 transcript type in comparison to e14a2 transcript type in chronic myeloid leukaemia.BMC Hematol.2019191710.1186/s12878‑019‑0139‑231073408
    [Google Scholar]
  53. PearlL.H. SchierzA.C. WardS.E. Al-LazikaniB. PearlF.M.G. Therapeutic opportunities within the DNA damage response.Nat. Rev. Cancer201515316618010.1038/nrc389125709118
    [Google Scholar]
  54. CerratoA. MorraF. CelettiA. Use of poly ADP-ribose polymerase [PARP] inhibitors in cancer cells bearing DDR defects: The rationale for their inclusion in the clinic.J. Exp. Clin. Cancer Res.201635117910.1186/s13046‑016‑0456‑227884198
    [Google Scholar]
  55. SethyC. KunduC.N. 5-Fluorouracil (5-FU) resistance and the new strategy to enhance the sensitivity against cancer: Implication of DNA repair inhibition.Biomed. Pharmacother.202113711128510.1016/j.biopha.2021.11128533485118
    [Google Scholar]
  56. LiL. GuanY. ChenX. YangJ. ChengY. DNA repair pathways in cancer therapy and resistance.Front. Pharmacol.20211162926610.3389/fphar.2020.62926633628188
    [Google Scholar]
  57. LageH. An overview of cancer multidrug resistance: A still unsolved problem.Cell. Mol. Life Sci.200865203145316710.1007/s00018‑008‑8111‑518581055
    [Google Scholar]
  58. MiddletonM.R. MargisonG.P. Improvement of chemotherapy efficacy by inactivation of a DNA-repair pathway.Lancet Oncol.200341374410.1016/S1470‑2045(03)00959‑812517538
    [Google Scholar]
  59. HappoldC. StojchevaN. SilginerM. WeissT. RothP. ReifenbergerG. WellerM. Transcriptional control of O6-methyl-guanine DNA methyltransferase expression and temozolomide resistance in glioblastoma.J. Neurochem.2018144678079010.1111/jnc.1432629480969
    [Google Scholar]
  60. HsuS.H. ChenS.H. KuoC.C. ChangJ.Y. Ubiquitin-conjugating enzyme E2 B regulates the ubiquitination of O-methylguanine-DNA methyltransferase and BCNU sensitivity in human nasopharyngeal carcinoma cells.Biochem. Pharmacol.201815832733810.1016/j.bcp.2018.10.02930449727
    [Google Scholar]
  61. WellerM. StuppR. ReifenbergerG. BrandesA.A. van den BentM.J. WickW. HegiM.E. MGMT promoter methylation in malignant gliomas: Ready for personalized medicine?Nat. Rev. Neurol.201061395110.1038/nrneurol.2009.19719997073
    [Google Scholar]
  62. ShiY. DuL. LinL. WangY. Tumour-associated mesenchymal stem/stromal cells: Emerging therapeutic targets.Nat. Rev. Drug Discov.2017161355210.1038/nrd.2016.19327811929
    [Google Scholar]
  63. JinM.Z. JinW.L. The updated landscape of tumor microenvironment and drug repurposing.Signal Transduct. Target. Ther.20205116610.1038/s41392‑020‑00280‑x32843638
    [Google Scholar]
  64. AlfaroukK.O. VerduzcoD. RauchC. MuddathirA.K. BashirA.H.H. ElhassanG.O. IbrahimM.E. OrozcoJ.D.P. CardoneR.A. ReshkinS.J. HarguindeyS. Glycolysis, tumor metabolism, cancer growth and dissemination. A new pH-based etiopathogenic perspective and therapeutic approach to an old cancer question.Oncoscience201411277780210.18632/oncoscience.10925621294
    [Google Scholar]
  65. MahoneyB.P. RaghunandN. BaggettB. GilliesR.J. Tumor acidity, ion trapping and chemotherapeutics.Biochem. Pharmacol.20036671207121810.1016/S0006‑2952(03)00467‑214505800
    [Google Scholar]
  66. CaoL. ZhuY. WangW. WangG. ZhangS. ChengH. Emerging nano-based strategies against drug resistance in tumor chemotherapy.Front. Bioeng. Biotechnol.2021979888210.3389/fbioe.2021.79888234950650
    [Google Scholar]
  67. JingX. YangF. ShaoC. WeiK. XieM. ShenH. ShuY. Role of hypoxia in cancer therapy by regulating the tumor microenvironment.Mol. Cancer201918115710.1186/s12943‑019‑1089‑931711497
    [Google Scholar]
  68. YangY. KarakhanovaS. WernerJ. BazhinA. Reactive oxygen species in cancer biology and anticancer therapy.Curr. Med. Chem.201320303677369210.2174/092986731132099916523862622
    [Google Scholar]
  69. ChangY.T. WangC.C.N. WangJ.Y. LeeT.E. ChengY.Y. Morris-NatschkeS.L. LeeK.H. HungC.C. Tenulin and isotenulin inhibit P-glycoprotein function and overcome multidrug resistance in cancer cells.Phytomedicine20195325226210.1016/j.phymed.2018.09.00830668405
    [Google Scholar]
  70. SenapatiS. MahantaA.K. KumarS. MaitiP. Controlled drug delivery vehicles for cancer treatment and their performance.Signal Transduct. Target. Ther.201831710.1038/s41392‑017‑0004‑329560283
    [Google Scholar]
  71. SuZ. DongS. ZhaoS.C. LiuK. TanY. JiangX. AssarafY.G. QinB. ChenZ.S. ZouC. Novel nanomedicines to overcome cancer multidrug resistance.Drug Resist. Updat.20215810077710.1016/j.drup.2021.10077734481195
    [Google Scholar]
  72. Jamal-HanjaniM. QuezadaS.A. LarkinJ. SwantonC. Translational implications of tumor heterogeneity.Clin. Cancer Res.20152161258126610.1158/1078‑0432.CCR‑14‑142925770293
    [Google Scholar]
  73. BukhariS.N.A. Emerging nanotherapeutic approaches to overcome drug resistance in cancers with update on clinical trials.Pharmaceutics202214486610.3390/pharmaceutics1404086635456698
    [Google Scholar]
  74. SahooL. TripathyN.S. DilnawazF. Naringenin nanoformulations for neurodegenerative diseases.Curr. Pharm. Biotechnol.202425162108212410.2174/011389201028145924011809113738347794
    [Google Scholar]
  75. ChenS. LiQ. McClementsD.J. HanY. DaiL. MaoL. GaoY. Co-delivery of curcumin and piperine in zein-carrageenan core-shell nanoparticles: Formation, structure, stability and in vitro gastrointestinal digestion.Food Hydrocoll.20209910533410.1016/j.foodhyd.2019.105334
    [Google Scholar]
  76. XiongK. ZhangY. WenQ. LuoJ. LuY. WuZ. WangB. ChenY. ZhaoL. FuS. Co-delivery of paclitaxel and curcumin by biodegradable polymeric nanoparticles for breast cancer chemotherapy.Int. J. Pharm.202058911987510.1016/j.ijpharm.2020.11987532919003
    [Google Scholar]
  77. AliE.S. Targeting cancer cells with nanotherapeutics and nanodiagnostics: Current status and future perspectives.Semin. Cancer Biol.202169526810.1016/j.semcancer.2020.01.011
    [Google Scholar]
  78. ChowdhuryP. GhoshU. SamantaK. JaggiM. ChauhanS.C. YallapuM.M. Bioactive nanotherapeutic trends to combat triple negative breast cancer.Bioact. Mater.20216103269328710.1016/j.bioactmat.2021.02.03733778204
    [Google Scholar]
  79. O’BrienM.E.R. WiglerN. InbarM. RossoR. GrischkeE. SantoroA. CataneR. KiebackD.G. TomczakP. AcklandS.P. OrlandiF. MellarsL. AllandL. TendlerC. Reduced cardiotoxicity and comparable efficacy in a phase IIItrial of pegylated liposomal doxorubicin HCl(CAELYX™/Doxil®) versus conventional doxorubicin forfirst-line treatment of metastatic breast cancer.Ann. Oncol.200415344044910.1093/annonc/mdh09714998846
    [Google Scholar]
  80. HoyS.M. Albumin-bound paclitaxel: A review of its use for the first-line combination treatment of metastatic pancreatic cancer.Drugs201474151757176810.1007/s40265‑014‑0291‑825260887
    [Google Scholar]
  81. FarranB. PavitraE. KasaP. PeelaS. Rama RajuG.S. NagarajuG.P. Folate-targeted immunotherapies: Passive and active strategies for cancer.Cytokine Growth Factor Rev.201945455210.1016/j.cytogfr.2019.02.00130770191
    [Google Scholar]
  82. KuoY.C. WangL.J. RajeshR. Targeting human brain cancer stem cells by curcumin-loaded nanoparticles grafted with anti-aldehyde dehydrogenase and sialic acid: Colocalization of ALDH and CD44.Mater. Sci. Eng. C201910236237210.1016/j.msec.2019.04.06531147008
    [Google Scholar]
  83. Martínez-TorresA.C. Lorenzo-AnotaH.Y. García-JuárezM.G. Zárate-TriviñoD.G. Rodríguez-PadillaC. Chitosan gold nanoparticles induce different ROS-dependent cell death modalities in leukemic cells.Int. J. Nanomedicine2019147173719010.2147/IJN.S22102131564872
    [Google Scholar]
  84. OverchukM. WeersinkR.A. WilsonB.C. ZhengG. Photodynamic and photothermal therapies: Synergy opportunities for nanomedicine.ACS Nano20231797979800310.1021/acsnano.3c0089137129253
    [Google Scholar]
  85. NunesT. HamdanD. LeboeufC. El BouchtaouiM. GapihanG. NguyenT.T. MelesS. AngeliE. RatajczakP. LuH. Di BenedettoM. BousquetG. JaninA. Targeting cancer stem cells to overcome chemoresistance.Int. J. Mol. Sci.20181912403610.3390/ijms1912403630551640
    [Google Scholar]
  86. WangY. XieY. LiJ. PengZ.H. SheininY. ZhouJ. OupickýD. Tumor-penetrating nanoparticles for enhanced anticancer activity of combined photodynamic and hypoxia-activated therapy.ACS Nano20171122227223810.1021/acsnano.6b0873128165223
    [Google Scholar]
  87. DaiL. LiX. YaoM. NiuP. YuanX. LiK. ChenM. FuZ. DuanX. LiuH. CaiK. YangH. Programmable prodrug micelle with size-shrinkage and charge-reversal for chemotherapy-improved IDO immunotherapy.Biomaterials202024111990110.1016/j.biomaterials.2020.11990132109706
    [Google Scholar]
  88. SchützC.A. Juillerat-JeanneretL. MuellerH. LynchI. RiedikerM. Therapeutic nanoparticles in clinics and under clinical evaluation.Nanomedicine (Lond.)20138344946710.2217/nnm.13.823477336
    [Google Scholar]
  89. van der MeelR. VehmeijerL.J.C. KokR.J. StormG. van GaalE.V.B. Ligand-targeted particulate nanomedicines undergoing clinical evaluation: Current status.Adv. Drug Deliv. Rev.201365101284129810.1016/j.addr.2013.08.01224018362
    [Google Scholar]
  90. BoboD. RobinsonK.J. IslamJ. ThurechtK.J. CorrieS.R. Nanoparticle-based medicines: A review of FDA-approved materials and clinical trials to date.Pharm. Res.201633102373238710.1007/s11095‑016‑1958‑527299311
    [Google Scholar]
  91. NiaziM. Zakeri-MilaniP. Najafi HajivarS. Soleymani GoloujehM. GhobakhlouN. Shahbazi MojarradJ. ValizadehH. Nano-based strategies to overcome p-glycoprotein-mediated drug resistance.Expert Opin. Drug Metab. Toxicol.20161291021103310.1080/17425255.2016.119618627267126
    [Google Scholar]
  92. WangD XuX ZhangK SunB WangL MengL LiuQ ZhengC YangB SunH Codelivery of doxorubicin and MDR1-siRNA by mesoporous silica nanoparticles-polymerpolyethylenimine to improve oral squamous carcinoma treatment.Int. J. Nanomed201713187198doi: 10.2147/IJN.S150610. Erratum in: Int J Nanomedicine. 2021; 16: 7859-7860.10.2147/IJN.S34985129343957PMC5749394
    [Google Scholar]
  93. JiangY. WangZ. DuanW. LiuL. SiM. ChenX. FangC.J. The critical size of gold nanoparticles for overcoming P-gp mediated multidrug resistance.Nanoscale20201231164511646110.1039/D0NR03226C32790812
    [Google Scholar]
  94. HuangI.P. SunS.P. ChengS.H. LeeC.H. WuC.Y. YangC.S. LoL.W. LaiY.K. Enhanced chemotherapy of cancer using pH-sensitive mesoporous silica nanoparticles to antagonize P-glycoprotein-mediated drug resistance.Mol. Cancer Ther.201110576176910.1158/1535‑7163.MCT‑10‑088421411714
    [Google Scholar]
  95. LuoC. LiY. GuoL. ZhangF. LiuH. ZhangJ. ZhengJ. ZhangJ. GuoS. Graphene quantum dots downregulate multiple multidrug-resistant genes via interacting with their C-rich promoters.Adv. Healthc. Mater.2017621170032810.1002/adhm.20170032828748603
    [Google Scholar]
  96. LiJ. WangF. HaraldsonK. ProtopopovA. DuhF.M. GeilL. KuzminI. MinnaJ.D. StanbridgeE. BragaE. KashubaV.I. KleinG. LermanM.I. ZabarovskyE.R. Functional characterization of the candidate tumor suppressor gene NPRL2/G21 located in 3p21.3C.Cancer Res.200464186438644310.1158/0008‑5472.CAN‑03‑386915374952
    [Google Scholar]
  97. UedaK. KawashimaH. OhtaniS. DengW.G. RavooriM. BanksonJ. GaoB. GirardL. MinnaJ.D. RothJ.A. KundraV. JiL. The 3p21.3 tumor suppressor NPRL2 plays an important role in cisplatin-induced resistance in human non-small-cell lung cancer cells.Cancer Res.200666199682969010.1158/0008‑5472.CAN‑06‑148317018626
    [Google Scholar]
  98. ShuhendlerA.J. CheungR.Y. ManiasJ. ConnorA. RauthA.M. WuX.Y. A novel doxorubicin-mitomycin C co-encapsulated nanoparticle formulation exhibits anti-cancer synergy in multidrug resistant human breast cancer cells.Breast Cancer Res. Treat.2010119225526910.1007/s10549‑008‑0271‑319221875
    [Google Scholar]
  99. MengH. MaiW.X. ZhangH. XueM. XiaT. LinS. WangX. ZhaoY. JiZ. ZinkJ.I. NelA.E. Codelivery of an optimal drug/siRNA combination using mesoporous silica nanoparticles to overcome drug resistance in breast cancer in vitro and in vivo.ACS Nano201372994100510.1021/nn304406623289892
    [Google Scholar]
  100. SuoA. QianJ. ZhangY. LiuR. XuW. WangH. Comb-like amphiphilic polypeptide-based copolymer nanomicelles for co-delivery of doxorubicin and P-gp siRNA into MCF-7 cells.Mater. Sci. Eng. C20166256457310.1016/j.msec.2016.02.00726952460
    [Google Scholar]
  101. KievitF.M. WangF.Y. FangC. MokH. WangK. SilberJ.R. EllenbogenR.G. ZhangM. Doxorubicin loaded iron oxide nanoparticles overcome multidrug resistance in cancer in vitro.J. Control. Release20111521768310.1016/j.jconrel.2011.01.02421277920
    [Google Scholar]
  102. LingD. ParkW. ParkS. LuY. KimK.S. HackettM.J. KimB.H. YimH. JeonY.S. NaK. HyeonT. Multifunctional tumor pH-sensitive self-assembled nanoparticles for bimodal imaging and treatment of resistant heterogeneous tumors.J. Am. Chem. Soc.2014136155647565510.1021/ja410828724689550
    [Google Scholar]
  103. RajanA. SahuN.K. Review on magnetic nanoparticle-mediated hyperthermia for cancer therapy.J. Nanopart. Res.2020221131910.1007/s11051‑020‑05045‑9
    [Google Scholar]
  104. KossatzS. GrandkeJ. CouleaudP. LatorreA. AiresA. Crosbie-StauntonK. LudwigR. DähringH. EtteltV. Lazaro-CarrilloA. CaleroM. SaderM. CourtyJ. VolkovY. Prina-MelloA. VillanuevaA. SomozaÁ. CortajarenaA.L. MirandaR. HilgerI. Efficient treatment of breast cancer xenografts with multifunctionalized iron oxide nanoparticles combining magnetic hyperthermia and anti-cancer drug delivery.Breast Cancer Res.20151716610.1186/s13058‑015‑0576‑125968050
    [Google Scholar]
  105. LeeS.M. KimH.J. KimS.Y. KwonM.K. KimS. ChoA. YunM. ShinJ.S. YooK.H. Drug-loaded gold plasmonic nanoparticles for treatment of multidrug resistance in cancer.Biomaterials20143572272228210.1016/j.biomaterials.2013.11.06824342728
    [Google Scholar]
  106. LiJ.M. WangY.Y. ZhaoM.X. TanC.P. LiY.Q. LeX.Y. JiL.N. MaoZ.W. Multifunctional QD-based co-delivery of siRNA and doxorubicin to HeLa cells for reversal of multidrug resistance and real-time tracking.Biomaterials20123392780279010.1016/j.biomaterials.2011.12.03522243797
    [Google Scholar]
  107. AndersonN.M. SimonM.C. The tumor microenvironment.Curr. Biol.20203016R921R92510.1016/j.cub.2020.06.08132810447
    [Google Scholar]
  108. HuoQ. ZhuJ. NiuY. ShiH. GongY. LiY. SongH. LiuY. pH-triggered surface charge-switchable polymer micelles for the co-delivery of paclitaxel/disulfiram and overcoming multidrug resistance in cancer.Int. J. Nanomedicine2017128631864710.2147/IJN.S14445229270012
    [Google Scholar]
  109. HuT. GongH. XuJ. HuangY. WuF. HeZ. Nanomedicines for overcoming cancer drug resistance.Pharmaceutics2022148160610.3390/pharmaceutics1408160636015232
    [Google Scholar]
  110. WareK.E. HinzT.K. KleczkoE. SingletonK.R. MarekL.A. HelfrichB.A. CummingsC.T. GrahamD.K. AstlingD. TanA-C. HeasleyL.E. A mechanism of resistance to gefitinib mediated by cellular reprogramming and the acquisition of an FGF2-FGFR1 autocrine growth loop.Oncogenesis201323e39e3910.1038/oncsis.2013.423552882
    [Google Scholar]
  111. AlsaabH.O. SauS. AlzhraniR.M. CheriyanV.T. PolinL.A. VaishampayanU. RishiA.K. IyerA.K. Tumor hypoxia directed multimodal nanotherapy for overcoming drug resistance in renal cell carcinoma and reprogramming macrophages.Biomaterials201818328029410.1016/j.biomaterials.2018.08.05330179778
    [Google Scholar]
  112. FengL. BetzerO. TaoD. SadanT. PopovtzerR. LiuZ. Oxygen nanoshuttles for tumor oxygenation and enhanced cancer treatment.CCS Chem.20191323925010.31635/ccschem.019.20190010
    [Google Scholar]
  113. JiangC. ShenC. NiM. HuangL. HuH. DaiQ. ZhaoH. ZhuZ. Molecular mechanisms of cisplatin resistance in ovarian cancer.Genes Dis.202411610106310.1016/j.gendis.2023.06.03239224110
    [Google Scholar]
  114. ChenJ. WangX. YuanY. ChenH. ZhangL. XiaoH. ChenJ. ZhaoY. ChangJ. GuoW. LiangX.J. Exploiting the acquired vulnerability of cisplatin-resistant tumors with a hypoxia-amplifying DNA repair-inhibiting (HYDRI) nanomedicine.Sci. Adv.2021713eabc526710.1126/sciadv.abc526733771859
    [Google Scholar]
  115. PengJ. YangQ. ShiK. XiaoY. WeiX. QianZ. Intratumoral fate of functional nanoparticles in response to microenvironment factor: Implications on cancer diagnosis and therapy.Adv. Drug Deliv. Rev.2019143376710.1016/j.addr.2019.06.00731276708
    [Google Scholar]
  116. LeeN. YooD. LingD. ChoM.H. HyeonT. CheonJ. Iron oxide based nanoparticles for multimodal imaging and magnetoresponsive therapy.Chem. Rev.201511519106371068910.1021/acs.chemrev.5b0011226250431
    [Google Scholar]
  117. ChenL.L. ZhaoL. WangZ.G. LiuS.L. PangD.W. Near‐infrared-II quantum dots for in vivo imaging and cancer therapy.Small2022188210456710.1002/smll.20210456734837314
    [Google Scholar]
  118. TripathiS.K. Quantum dots and their potential role in cancer theranostics.Crit. Rev. Ther. Drug Carrier Syst.201532646150210.1615/CritRevTherDrugCarrierSyst.2015012360
    [Google Scholar]
  119. ZhangY. YangH. AnX. WangZ. YangX. YuM. ZhangR. SunZ. WangQ. Controlled synthesis of Ag2Te@ Ag2S Core-Shell quantum dots with enhanced and tunable fluorescence in the second near-infrared window.Small20201614200100310.1002/smll.20200100332162848
    [Google Scholar]
  120. JinC. WangK. Oppong-GyebiA. HuJ. Application of nanotechnology in cancer diagnosis and therapy-a mini-review.Int. J. Med. Sci.202017182964297310.7150/ijms.4980133173417
    [Google Scholar]
  121. AdityanS. TranM. BhavsarC. WuS.Y. Nano-therapeutics for modulating the tumour microenvironment: Design, development, and clinical translation.J. Control. Release202032751253210.1016/j.jconrel.2020.08.01632800879
    [Google Scholar]
  122. RosenblumD. JoshiN. TaoW. KarpJ.M. PeerD. Progress and challenges towards targeted delivery of cancer therapeutics.Nat. Commun.201891141010.1038/s41467‑018‑03705‑y29650952
    [Google Scholar]
  123. MaininiF. EcclesM.R. Lipid and polymer-based nanoparticle siRNA delivery systems for cancer therapy.Molecules20202511269210.3390/molecules2511269232532030
    [Google Scholar]
  124. HuaS. de MatosM.B.C. MetselaarJ.M. StormG. Current trends and challenges in the clinical translation of nanoparticulate nanomedicines: Pathways for translational development and commercialization.Front. Pharmacol.2018979010.3389/fphar.2018.0079030065653
    [Google Scholar]
  125. KraussA.C. GaoX. LiL. ManningM.L. PatelP. FuW. JanoriaK.G. GieserG. BatemanD.A. PrzepiorkaD. ShenY.L. ShordS.S. ShethC.M. BanerjeeA. LiuJ. GoldbergK.B. FarrellA.T. BlumenthalG.M. PazdurR. FDA approval summary:(daunorubicin and cytarabine) liposome for injection for the treatment of adults with high-risk acute myeloid leukemia.Clin. Cancer Res.20192592685269010.1158/1078‑0432.CCR‑18‑299030541745
    [Google Scholar]
  126. GajeraK. PatelA. An overview of FDA approved liposome formulations for cancer therapy.J. Adv. Med. Pharm. Sci.20222431710.9734/jamps/2022/v24i330288
    [Google Scholar]
  127. AbulateefehS.R. Long-acting injectable PLGA/PLA depots for leuprolide acetate: Successful translation from bench to clinic.Drug Deliv. Transl. Res.202313252053010.1007/s13346‑022‑01228‑035976565
    [Google Scholar]
  128. Harshita; Barkat, M.A.; Beg, S.; Pottoo, F.H.; Ahmad, F.J. Nanopaclitaxel therapy: An evidence based review on the battle for next-generation formulation challenges.Nanomedicine (Lond.)201914101323134110.2217/nnm‑2018‑031331124758
    [Google Scholar]
  129. KarabaszA. BzowskaM. SzczepanowiczK. Biomedical applications of multifunctional polymeric nanocarriers: A review of current literature.Int. J. Nanomedicine2020158673869610.2147/IJN.S23147733192061
    [Google Scholar]
  130. CastanedaR.T. Labeling stem cells with ferumoxytol, an FDA-approved iron oxide nanoparticle.J. Vis. Exp.2011457e3482
    [Google Scholar]
  131. RodríguezF. CaruanaP. De la FuenteN. EspañolP. GámezM. BalartJ. LlurbaE. RoviraR. RuizR. Martín-LorenteC. CorcheroJ.L. CéspedesM.V. Nano-based approved pharmaceuticals for cancer treatment: present and future challenges.Biomolecules202212678410.3390/biom1206078435740909
    [Google Scholar]
  132. Al BostamiR.D. AbuwatfaW.H. HusseiniG.A. Recent advances in nanoparticle-based co-delivery systems for cancer therapy.Nanomaterials20221215267210.3390/nano1215267235957103
    [Google Scholar]
  133. AshiqueS. GargA. HussainA. FaridA. KumarP. Taghizadeh-HesaryF. Nanodelivery systems: An efficient and target-specific approach for drug-resistant cancers.Cancer Med.20231218187971882510.1002/cam4.650237668041
    [Google Scholar]
  134. MacDiarmidJ.A. Amaro-MugridgeN.B. Madrid-WeissJ. SedliarouI. WetzelS. KocharK. BrahmbhattV.N. PhillipsL. PattisonS.T. PettiC. StillmanB. GrahamR.M. BrahmbhattH. Sequential treatment of drug-resistant tumors with targeted minicells containing siRNA or a cytotoxic drug.Nat. Biotechnol.200927764365110.1038/nbt.154719561595
    [Google Scholar]
  135. YuanY. CaiT. XiaX. ZhangR. ChibaP. CaiY. Nanoparticle delivery of anticancer drugs overcomes multidrug resistance in breast cancer.Drug Deliv.20162393350335710.1080/10717544.2016.117882527098896
    [Google Scholar]
  136. WerleM. HofferM. Glutathione and thiolated chitosan inhibit multidrug resistance P-glycoprotein activity in excised small intestine.J. Control. Release20061111-2414610.1016/j.jconrel.2005.11.01116377016
    [Google Scholar]
  137. MehtaS. SureshA. NayakY. NarayanR. NayakU.Y. Hybrid nanostructures: Versatile systems for biomedical applications.Coord. Chem. Rev.202246021448210.1016/j.ccr.2022.214482
    [Google Scholar]
  138. YuM. ZhangY. FangM. JehanS. ZhouW. Current advances of nanomedicines delivering arsenic trioxide for enhanced tumor therapy.Pharmaceutics202214474310.3390/pharmaceutics1404074335456577
    [Google Scholar]
  139. LiuM.N. LiuA.Y. DuY.J. PeiF.H. WangX.H. ChenJ. LiuD. LiuB.R. Nitrogen permease regulator-like 2 enhances sensitivity to oxaliplatin in colon cancer cells.Mol. Med. Rep.20151211189119610.3892/mmr.2015.349525777765
    [Google Scholar]
  140. ZhangR.X. Polymer and lipid-based nanomedicine of synergistic drug combinations for improving chemotherapy of multidrug resistant breast cancer.CanadaUniversity of Toronto2016
    [Google Scholar]
  141. WangZ. XuZ. ZhuG. A platinum (IV) anticancer prodrug targeting nucleotide excision repair to overcome cisplatin resistance.Angew. Chem. Int. Ed.20165550155641556810.1002/anie.20160893627736029
    [Google Scholar]
  142. LibuttiS.K. PaciottiG.F. ByrnesA.A. AlexanderH.R.Jr GannonW.E. WalkerM. SeidelG.D. YuldashevaN. TamarkinL. Phase I and pharmacokinetic studies of CYT-6091, a novel PEGylated colloidal gold-rhTNF nanomedicine.Clin. Cancer Res.201016246139614910.1158/1078‑0432.CCR‑10‑097820876255
    [Google Scholar]
  143. MamotC. RitschardR. WickiA. StehleG. DieterleT. BubendorfL. HilkerC. DeusterS. HerrmannR. RochlitzC. Tolerability, safety, pharmacokinetics, and efficacy of doxorubicin-loaded anti-EGFR immunoliposomes in advanced solid tumours: A phase 1 dose-escalation study.Lancet Oncol.201213121234124110.1016/S1470‑2045(12)70476‑X23153506
    [Google Scholar]
  144. SubbiahV. Grilley-OlsonJ.E. CombestA.J. SharmaN. TranR.H. BobeI. OsadaA. TakahashiK. BalkissoonJ. CampA. MasadaA. ReitsmaD.J. BazhenovaL.A. Phase Ib/II trial of NC-6004 (nanoparticle cisplatin) plus gemcitabine in patients with advanced solid tumors.Clin. Cancer Res.2018241435110.1158/1078‑0432.CCR‑17‑111429030354
    [Google Scholar]
  145. SenzerN. NemunaitisJ. NemunaitisD. BedellC. EdelmanG. BarveM. NunanR. PirolloK.F. RaitA. ChangE.H. Phase I study of a systemically delivered p53 nanoparticle in advanced solid tumors.Mol. Ther.20132151096110310.1038/mt.2013.3223609015
    [Google Scholar]
  146. ParasharD. RajendranV. ShuklaR. SistlaR. Lipid-based nanocarriers for delivery of small interfering RNA for therapeutic use.Eur. J. Pharm. Sci.202014210515910.1016/j.ejps.2019.10515931747618
    [Google Scholar]
  147. LiuX. Targeting polo-like kinases: A promising therapeutic approach for cancer treatment.Transl. Oncol.20158318519510.1016/j.tranon.2015.03.01026055176
    [Google Scholar]
  148. ArranjaA.G. PathakV. LammersT. ShiY. Tumor-targeted nanomedicines for cancer theranostics.Pharmacol. Res.2017115879510.1016/j.phrs.2016.11.01427865762
    [Google Scholar]
  149. TaberneroJ. ShapiroG.I. LoRussoP.M. CervantesA. SchwartzG.K. WeissG.J. Paz-AresL. ChoD.C. InfanteJ.R. AlsinaM. GounderM.M. FalzoneR. HarropJ. WhiteA.C.S. ToudjarskaI. BumcrotD. MeyersR.E. HinkleG. SvrzikapaN. HutabaratR.M. ClausenV.A. CehelskyJ. NochurS.V. Gamba-VitaloC. VaishnawA.K. SahD.W.Y. GollobJ.A. BurrisH.A. III First-in-humans trial of an RNA interference therapeutic targeting VEGF and KSP in cancer patients with liver involvement.Cancer Discov.20133440641710.1158/2159‑8290.CD‑12‑042923358650
    [Google Scholar]
  150. TelesR.H.G. MorallesH.F. CominettiM.R. Global trends in nanomedicine research on triple negative breast cancer: A bibliometric analysis.Int. J. Nanomedicine2018132321233610.2147/IJN.S16435529713164
    [Google Scholar]
  151. HwangH.J. LeeY.R. KangD. LeeH.C. SeoH.R. RyuJ.K. KimY.N. KoY.G. ParkH.J. LeeJ.S. Endothelial cells under therapy-induced senescence secrete CXCL11, which increases aggressiveness of breast cancer cells.Cancer Lett.202049010011010.1016/j.canlet.2020.06.01932659248
    [Google Scholar]
  152. WeissG.J. ChaoJ. NeidhartJ.D. RamanathanR.K. BassettD. NeidhartJ.A. ChoiC.H.J. ChowW. ChungV. FormanS.J. GarmeyE. HwangJ. KalinoskiD.L. KoczywasM. LongmateJ. MeltonR.J. MorganR. OliverJ. PeterkinJ.J. RyanJ.L. SchluepT. SynoldT.W. TwardowskiP. DavisM.E. YenY. First-in-human phase 1/2a trial of CRLX101, a cyclodextrin-containing polymer-camptothecin nanopharmaceutical in patients with advanced solid tumor malignancies.Invest. New Drugs2013314986100010.1007/s10637‑012‑9921‑823397498
    [Google Scholar]
  153. GrazianiS.R. VitalC.G. MorikawaA.T. Van EyllB.M. FernandesJunior H.J. Kalil FilhoR. MaranhãoR.C. Phase II study of paclitaxel associated with lipid core nanoparticles (LDE) as third-line treatment of patients with epithelial ovarian carcinoma.Med. Oncol.201734915110.1007/s12032‑017‑1009‑z28756613
    [Google Scholar]
  154. HamaguchiT. DoiT. Eguchi-NakajimaT. KatoK. YamadaY. ShimadaY. FuseN. OhtsuA. MatsumotoS. TakanashiM. MatsumuraY. Phase I study of NK012, a novel SN-38-incorporating micellar nanoparticle, in adult patients with solid tumors.Clin. Cancer Res.201016205058506610.1158/1078‑0432.CCR‑10‑038720943763
    [Google Scholar]
  155. NirmalaM.J. KizhuveetilU. JohnsonA. GB. NagarajanR. MuthuvijayanV. Cancer nanomedicine: A review of nano-therapeutics and challenges ahead.RSC Advances202313138606862910.1039/D2RA07863E36926304
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010336491241022094511
Loading
/content/journals/cpb/10.2174/0113892010336491241022094511
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test