Skip to content
2000
Volume 26, Issue 1
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Cancer is one of the most complicated and prevalent diseases in the world, and its incidence is growing worldwide. Natural products containing pharmacological activity are widely used in the pharmaceutical industry, especially in anticancer drugs, due to their diverse structures and distinctive functional groups that inspire new drug results by means of synthetic chemistry. Terrestrial medicinal plants have traditionally been the primary source for developing natural products (NPs). However, over the past thirty years, marine organisms such as invertebrates, plants, algae, and bacteria have revealed many new pharmaceutical compounds known as marine NPs. This field constantly evolves as a discipline in molecular targeted drug discovery, incorporating advanced screening tools that have revolutionised and become integral to modern antitumor research. This review discusses recent studies on new natural anticancer alkaloids obtained from marine organisms. The paper illustrates the structure and origin of marine alkaloids and demonstrates the cytotoxic action of new alkaloids from several structural families and their synthetic analogs. The most recent findings about the potential or development of some of them as novel medications, together with the status of our understanding of their current mechanisms of action, are also compiled.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010316791240611093022
2024-06-24
2024-12-28
Loading full text...

Full text loading...

References

  1. SiegelR.L. MillerK.D. WagleN.S. JemalA. Cancer statistics, 2023.CA Cancer J. Clin.2023731174810.3322/caac.21763 36633525
    [Google Scholar]
  2. Gurib-FakimA. Medicinal plants: Traditions of yesterday and drugs of tomorrow.Mol. Aspects Med.200627119310.1016/j.mam.2005.07.008 16105678
    [Google Scholar]
  3. HalliwellB. Dietary polyphenols: Good, bad, or indifferent for your health?Cardiovasc. Res.200773234134710.1016/j.cardiores.2006.10.004 17141749
    [Google Scholar]
  4. RiosA.O. AntunesL.M.G. BianchiM.L.P. Bixin and lycopene modulation of free radical generation induced by cisplatin–DNA interaction.Food Chem.200911341113111810.1016/j.foodchem.2008.08.084
    [Google Scholar]
  5. KikuzakiH. UsuguchiJ. NakataniN. Constituents of Zingiberaceae. I. Diarylheptanoids from the rhizomes of ginger (Zingiber officinale Roscoe).Chem. Pharm. Bull.199139112012210.1248/cpb.39.120
    [Google Scholar]
  6. JitoeA. MasudaT. TengahI.G.P. SupraptaD.N. GaraI.W. NakataniN. Antioxidant activity of tropical ginger extracts and analysis of the contained curcuminoids.J. Agric. Food Chem.19924081337134010.1021/jf00020a008
    [Google Scholar]
  7. KikuzakiH. NakataniN. Antioxidant effects of some ginger constituents.J. Food Sci.19935861407141010.1111/j.1365‑2621.1993.tb06194.x
    [Google Scholar]
  8. PriorR.L. Fruits and vegetables in the prevention of cellular oxidative damage.Am. J. Clin. Nutr.2003783Suppl.570S578S10.1093/ajcn/78.3.570S 12936951
    [Google Scholar]
  9. CaiY. LuoQ. SunM. CorkeH. Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer.Life Sci.200474172157218410.1016/j.lfs.2003.09.047 14969719
    [Google Scholar]
  10. KaurC. KapoorH.C. Anti‐oxidant activity and total phenolic content of some Asian vegetables.Int. J. Food Sci. Technol.200237215316110.1046/j.1365‑2621.2002.00552.x
    [Google Scholar]
  11. NamikiM. Antioxidants/antimutagens in food.Crit. Rev. Food Sci. Nutr.199029427330010.1080/10408399009527528 2257080
    [Google Scholar]
  12. KumariS. GoyalA. Sönmez GürerE. Algın YaparE. GargM. SoodM. SindhuR.K. Bioactive loaded novel nano-formulations for targeted drug delivery and their therapeutic potential.Pharmaceutics2022145109110.3390/pharmaceutics14051091 35631677
    [Google Scholar]
  13. OberliesN.H. KrollD.J. Camptothecin and taxol: Historic achievements in natural products research.J. Nat. Prod.200467212913510.1021/np030498t 14987046
    [Google Scholar]
  14. Sithranga BoopathyN. KathiresanK.J. Anticancer drugs from marine flora: An overview.J. Oncol.20102010214186
    [Google Scholar]
  15. DyshlovoyS.A. FedorovS.N. ShubinaL.K. KuzmichA.S. BokemeyerC. Keller-von AmsbergG. HoneckerF. Aaptamines from the marine sponge Aaptos sp. display anticancer activities in human cancer cell lines and modulate AP-1-, NF-κB-, and p53-dependent transcriptional activity in mouse JB6 Cl41 cells.BioMed Res. Int.201420141710.1155/2014/469309 25215281
    [Google Scholar]
  16. McClaryB. ZinshteynB. MeyerM. JouanneauM. PellegrinoS. YusupovaG. SchullerA. ReyesJ.C.P. LuJ. GuoZ. AyindeS. LuoC. DangY. RomoD. YusupovM. GreenR. LiuJ.O. Inhibition of eukaryotic translation by the antitumor natural product agelastatin A.Cell Chem. Biol.2017245605613.e510.1016/j.chembiol.2017.04.006 28457705
    [Google Scholar]
  17. JouanneauM. McClaryB. ReyesJ.C.P. ChenR. ChenY. PlunkettW. ChengX. MilinichikA.Z. AlboneE.F. LiuJ.O. RomoD. Derivatization of agelastatin A leading to bioactive analogs and a trifunctional probe.Bioorg. Med. Chem. Lett.20162682092209710.1016/j.bmcl.2016.02.051 26951751
    [Google Scholar]
  18. StoutE.P. ChoiM.Y. CastroJ.E. MolinskiT.F. Potent fluorinated agelastatin analogues for chronic lymphocytic leukemia: design, synthesis, and pharmacokinetic studies.J. Med. Chem.201457125085509310.1021/jm4016922 24673739
    [Google Scholar]
  19. AklM. AyoubN. EbrahimH. MohyeldinM. OrabiK. FoudahA. SayedK. Araguspongine C induces autophagic death in breast cancer cells through suppression of c-Met and HER2 receptor tyrosine kinase signaling.Mar. Drugs201513128831110.3390/md13010288 25580621
    [Google Scholar]
  20. PalkarM. RaneR. ThapliyalN. ShaikhM. AlwanW. An insight into purine, tyrosine and tryptophan derived marine antineoplastic alkaloids. Anti-Canc.Agen. Med. Chem.2015158947954
    [Google Scholar]
  21. MathieuV. WauthozN. LefrancF. NiemannH. AmighiK. KissR. ProkschP. Cyclic versus hemi-bastadins. pleiotropic anti-cancer effects: from apoptosis to anti-angiogenic and anti-migratory effects.Molecules20131833543356110.3390/molecules18033543 23519198
    [Google Scholar]
  22. El-DemerdashA. MoriouC. MartinM.T. Rodrigues-StienA.S. PetekS. Demoy-SchneiderM. HallK. HooperJ.N.A. DebitusC. Al-MourabitA. Cytotoxic guanidine alkaloids from a French Polynesian Monanchora n. sp. sponge.J. Nat. Prod.20167981929193710.1021/acs.jnatprod.6b00168 27419263
    [Google Scholar]
  23. RaneR.A. SahuN.U. GutteS.D. MahajanA.A. ShahC.P. BangaloreP. Synthesis and evaluation of novel marine bromopyrrole alkaloid-based hybrids as anticancer agents.Eur. J. Med. Chem.20136379379910.1016/j.ejmech.2013.03.029 23584542
    [Google Scholar]
  24. XuS. NijampatnamB. DuttaS. VeluS. Cyanobacterial metabolite calothrixins: Recent advances in synthesis and biological evaluation.Mar. Drugs20161411710.3390/md14010017 26771620
    [Google Scholar]
  25. YingyuadP. SinthuvanichC. LeepasertT. ThongyooP. BoonrungsimanS. Preparation, characterization and in vitro evaluation of calothrixin B liposomes.J. Drug Deliv. Sci. Technol.20184449149710.1016/j.jddst.2018.02.010
    [Google Scholar]
  26. Iglesias-ArteagaM.A. MorzyckiJ.W. Cephalostatins and Ritterazines.Alkaloids Chem. Biol.20137215327910.1016/B978‑0‑12‑407774‑4.00002‑9 24712099
    [Google Scholar]
  27. KotokuN. Creation of readily accessible analogue of cortistatin A as an antitumor drug lead.Yakugaku Zasshi2013133886787210.1248/yakushi.13‑00159 23903226
    [Google Scholar]
  28. NitulescuI.I. MeyerS.C. WenQ.J. CrispinoJ.D. LemieuxM.E. LevineR.L. PelishH.E. ShairM.D. Mediator kinase phosphorylation of STAT1 S727 promotes growth of neoplasms with JAK-STAT activation.EBioMedicine20172611212510.1016/j.ebiom.2017.11.013 29239838
    [Google Scholar]
  29. PossZ.C. EbmeierC.C. OdellA.T. TangpeerachaikulA. LeeT. PelishH.E. ShairM.D. DowellR.D. OldW.M. TaatjesD.J. Identification of mediator kinase substrates in human cells using cortistatin A and quantitative phosphoproteomics.Cell Rep.201615243645010.1016/j.celrep.2016.03.030 27050516
    [Google Scholar]
  30. RoelM. RubioloJ.A. Guerra-VarelaJ. SilvaS.B.L. ThomasO.P. Cabezas-SainzP. SánchezL. LópezR. BotanaL.M. Marine guanidine alkaloids crambescidins inhibit tumor growth and activate intrinsic apoptotic signaling inducing tumor regression in a colorectal carcinoma zebrafish xenograft model.Oncotarget2016750830718308710.18632/oncotarget.13068 27825113
    [Google Scholar]
  31. BharateS.B. YadavR.R. BattulaS. VishwakarmaR.A. Meridianins: Marine-derived potent kinase inhibitors.Mini Rev. Med. Chem.201212761863110.2174/138955712800626728 22512550
    [Google Scholar]
  32. ZhidkovM.E. SmirnovaP.A. TryapkinO.A. KantemirovA.V. KhudyakovaY.V. MalyarenkoO.S. ErmakovaS.P. GrigorchukV.P. KauneM. AmsbergG.V. DyshlovoyS.A. Total syntheses and preliminary biological evaluation of brominated fascaplysin and reticulatine alkaloids and their analogues.Mar. Drugs201917949610.3390/md17090496 31450717
    [Google Scholar]
  33. EgorovM. DelpechB. AubertG. CresteilT. Garcia-AlvarezM.C. CollinP. MarazanoC. A concise formation of N-substituted 3,4-diarylpyrroles synthesis and cytotoxic activity.Org. Biomol. Chem.20141291518152410.1039/C3OB42309C 24448828
    [Google Scholar]
  34. IbrahimS.R.M. MohamedG.A. Ingenine E, a new cytotoxic β-carboline alkaloid from the Indonesian sponge Acanthostrongylophora ingens.J. Asian Nat. Prod. Res.201719550450910.1080/10286020.2016.1213723 27588456
    [Google Scholar]
  35. SirimangkalakittiN. ChamniS. CharupantK. ChanvorachoteP. MoriN. SaitoN. SuwanboriruxK. Chemistry of renieramycins. 15. Synthesis of 22-O-ester derivatives of jorunnamycin A and their cytotoxicity against non-small-cell lung cancer cells.J. Nat. Prod.20167982089209310.1021/acs.jnatprod.6b00433 27487087
    [Google Scholar]
  36. BallotC. MartoriatiA. JendoubiM. BucheS. FormstecherP. MortierL. KluzaJ. MarchettiP. Another facet to the anticancer response to lamellarin D: induction of cellular senescence through inhibition of topoisomerase I and intracellular Ros production.Mar. Drugs201412277979810.3390/md12020779 24473175
    [Google Scholar]
  37. ZhangN. WangD. ZhuY. WangJ. LinH. Inhibition effects of lamellarin D on human leukemia K562 cell proliferation and underlying mechanisms.Asian Pac. J. Cancer Prev.201415229915991910.7314/APJCP.2014.15.22.9915 25520128
    [Google Scholar]
  38. WangA. ZhaoZ. ZhengX. CaoH. Recent research progress in anticancer alkaloid lamellarin N and lamellarin L.Youji Huaxue201333348310.6023/cjoc201209034
    [Google Scholar]
  39. TheppawongA. PloypradithP. ChuawongP. RuchirawatS. ChittchangM. Facile and divergent synthesis of lamellarins and lactam‐containing derivatives with improved drug likeness and biological activities.Chem. Asian J.201510122631265010.1002/asia.201500611 26183429
    [Google Scholar]
  40. WangW. NijampatnamB. VeluS.E. ZhangR. Discovery and development of synthetic tricyclic pyrroloquinone (TPQ) alkaloid analogs for human cancer therapy.Front. Chem. Sci. Eng.201610111510.1007/s11705‑016‑1562‑6
    [Google Scholar]
  41. ZhangX. XuH. ZhangX. VorugantiS. MurugesanS. NadkarniD.H. VeluS.E. WangM.H. WangW. ZhangR. Preclinical evaluation of anticancer efficacy and pharmacological properties of FBA-TPQ, a novel synthetic makaluvamine analog.Mar. Drugs201210121138115510.3390/md10051138 22822362
    [Google Scholar]
  42. DyshlovoyS.A. VenzS. HauschildJ. TabakmakherK.M. OtteK. MadanchiR. WaltherR. GuziiA.G. MakarievaT.N. ShubinaL.K. FedorovS.N. StonikV.A. BokemeyerC. BalabanovS. HoneckerF. V. AmsbergG. Anti-migratory activity of marine alkaloid monanchocidin A proteomics-based discovery and confirmation.Proteomics201616101590160310.1002/pmic.201500334 27001414
    [Google Scholar]
  43. DyshlovoyS. TabakmakherK. HauschildJ. ShchekalevaR. OtteK. GuziiA. MakarievaT. KudryashovaE. FedorovS. ShubinaL. BokemeyerC. HoneckerF. StonikV. von AmsbergG. Guanidine alkaloids from the marine sponge Monanchora pulchra show cytotoxic properties and prevent EGF-induced neoplastic transformation in vitro.Mar. Drugs201614713310.3390/md14070133 27428983
    [Google Scholar]
  44. LiL. AbrahamA. ZhouQ. AliH. O’BrienJ. HamillB. ArcaroliJ. MessersmithW. LaBarberaD. An improved high yield total synthesis and cytotoxicity study of the marine alkaloid neoamphimedine: an ATP-competitive inhibitor of topoisomerase IIα and potent anticancer agent.Mar. Drugs20141294833485010.3390/md12094833 25244109
    [Google Scholar]
  45. LacerdaR.B. Bromopyrrole marine alkaloids.Revista Virtual de Química.201572713729
    [Google Scholar]
  46. DysonL. WrightA.D. YoungK.A. SakoffJ.A. McCluskeyA. Synthesis and anticancer activity of focused compound libraries from the natural product lead, oroidin.Bioorg. Med. Chem.20142251690169910.1016/j.bmc.2014.01.021 24508308
    [Google Scholar]
  47. LiuQ.Y. ZhouT. ZhaoY.Y. ChenL. GongM.W. XiaQ.W. YingM.G. ZhengQ.H. ZhangQ.Q. Antitumor effects and related mechanisms of penicitrinine A, a novel alkaloid with a unique spiro skeleton from the marine fungus Penicillium citrinum.Mar. Drugs20151384733475310.3390/md13084733 26264002
    [Google Scholar]
  48. VitaleR.M. GattiM. CarboneM. BarbieriF. FelicitàV. GavagninM. FlorioT. AmodeoP. Minimalist hybrid ligand/receptor-based pharmacophore model for CXCR4 applied to a small-library of marine natural products led to the identification of phidianidine a as a new CXCR4 ligand exhibiting antagonist activity.ACS Chem. Biol.20138122762277010.1021/cb400521b 24102412
    [Google Scholar]
  49. BuchananJ.C. PetersenB.P. ChamberlandS. Concise total synthesis of phidianidine A and B.Tetrahedron Lett.201354456002600410.1016/j.tetlet.2013.08.063
    [Google Scholar]
  50. SunasseeS.N. RansomT. HenrichC.J. BeutlerJ.A. CovellD.G. McMahonJ.B. GustafsonK.R. Steroidal alkaloids from the marine sponge Corticium niger that inhibit growth of human colon carcinoma cells.J. Nat. Prod.201477112475248010.1021/np500556t 25338277
    [Google Scholar]
  51. MartínM.J. CoelloL. FernándezR. ReyesF. RodríguezA. MurciaC. GarranzoM. MateoC. Sánchez-SanchoF. BuenoS. de EguiliorC. FranceschA. MuntS. CuevasC. Isolation and first total synthesis of PM050489 and PM060184, two new marine anticancer compounds.J. Am. Chem. Soc.201313527101641017110.1021/ja404578u 23750450
    [Google Scholar]
  52. PereiraR.B. EvdokimovN.M. LefrancF. ValentãoP. KornienkoA. PereiraD.M. AndradeP.B. GomesN.G.M. Marine-derived anticancer agents: Clinical benefits, innovative mechanisms, and new targets.Mar. Drugs201917632910.3390/md17060329 31159480
    [Google Scholar]
  53. LeeY.J. HanS. LeeH.S. KangJ.S. YunJ. SimC.J. ShinH.J. LeeJ.S. Cytotoxic psammaplysin analogues from a Suberea sp. marine sponge and the role of the spirooxepinisoxazoline in their activity.J. Nat. Prod.20137691731173610.1021/np400448y 23964644
    [Google Scholar]
  54. SongY. HuL. ChenR. ChenX. Research progress in synthesis of renieramycin-type alkaloids.Youji Huaxue20153581627164010.6023/cjoc201504003
    [Google Scholar]
  55. SiengalewiczP. RinnerU. MulzerJ. Recent progress in the total synthesis of naphthyridinomycin and lemonomycin tetrahydroisoquinoline antitumor antibiotics (TAAs).Chem. Soc. Rev.200837122676269010.1039/b804167a 19020681
    [Google Scholar]
  56. Cheun-AromT. ChanvorachoteP. SirimangkalakittiN. ChuanasaT. SaitoN. AbeI. SuwanboriruxK. Replacement of a quinone by a 5-O-acetylhydroquinone abolishes the accidental necrosis inducing effect while preserving the apoptosis-inducing effect of renieramycin M on lung cancer cells.J. Nat. Prod.20137681468147410.1021/np400277m 23876104
    [Google Scholar]
  57. ScottR. KarkiM. ReisenauerM.R. RodriguesR. DasariR. SmithW.R. PellyS.C. van OtterloW.A.L. ShusterC.B. RogeljS. MagedovI.V. FrolovaL.V. KornienkoA. Synthetic and biological studies of tubulin targeting c2-substituted 7-deazahypoxanthines derived from marine alkaloid rigidins.ChemMedChem2014971428143510.1002/cmdc.201300532 24644272
    [Google Scholar]
  58. FongH. CoppB. Synthesis, DNA binding and antitumor evaluation of styelsamine and cystodytin analogues.Mar. Drugs2013111227429910.3390/md11020274 23358307
    [Google Scholar]
  59. MonkB.J. DaltonH. BenjaminI. TanovićA. Trabectedin as a new chemotherapy option in the treatment of relapsed platinum sensitive ovarian cancer.Curr. Pharm. Des.201218253754376910.2174/138161212802002814 22591421
    [Google Scholar]
  60. RomanoM. FrapolliR. ZangariniM. BelloE. PorcuL. GalmariniC.M. García-FernándezL.F. CuevasC. AllavenaP. ErbaE. D’IncalciM. Comparison of in vitro and in vivo biological effects of trabectedin, lurbinectedin (PM01183) and Zalypsis® (PM00104).Int. J. Cancer201313392024203310.1002/ijc.28213 23588839
    [Google Scholar]
  61. NairV SchuhmannI AnkeH KelterG FiebigHH HelmkeE Laatsch, H Marine bacteria, XLVII–Psychrotolerant bacteria from extreme antarctic habitats as producers of rare bis-and trisindole alkaloids.Planta Medica.20168209/10910918
    [Google Scholar]
  62. CanalsA. Arribas-BosacomaR. AlbericioF. ÁlvarezM. AymamíJ. CollM. Intercalative DNA binding of the marine anticancer drug variolin B.Sci. Rep.2017713968010.1038/srep39680 28051169
    [Google Scholar]
  63. NijampatnamB. DuttaS. VeluS.E. Recent advances in isolation, synthesis, and evaluation of bioactivities of bispyrroloquinone alkaloids of marine origin.Chin. J. Nat. Med.201513856157710.1016/S1875‑5364(15)30052‑2 26253489
    [Google Scholar]
  64. MondalA. BoseS. BanerjeeS. PatraJ.K. MalikJ. MandalS.K. KilpatrickK.L. DasG. KerryR.G. FimognariC. BishayeeA. Marine cyanobacteria and microalgae metabolites—A rich source of potential anticancer drugs.Mar. Drugs202018947610.3390/md18090476 32961827
    [Google Scholar]
  65. MatuljaD. WittineK. MalatestiN. LaclefS. TurksM. MarkovicM.K. AmbrožićG. MarkovićD. Marine natural products with high anticancer activities.Curr. Med. Chem.20202781243130710.2174/0929867327666200113154115 31931690
    [Google Scholar]
  66. HanL. HuangK. ChenC. ZhuW. MaY. HaoX. HeH. ZhangY. Taberdines L and M, two new alkaloids from Tabernaemontana divaricata.Nat. Prod. Res.202236215470547510.1080/14786419.2021.2015596 34933610
    [Google Scholar]
  67. HeoC.S. KangJ.S. KwonJ.H. AnhC.V. ShinH.J. Pyrrole-containing alkaloids from a marine-derived actinobacterium Streptomyces zhaozhouensis and their antimicrobial and cytotoxic activities.Mar. Drugs202321316710.3390/md21030167 36976216
    [Google Scholar]
  68. LeeH. MoonS.J. YooY.D. JeongE.J. RhoJ.R. Voratins A–C: Pyridinium alkaloids from the marine dinoflagellate Effrenium voratum with inhibitory effects on biomarkers for benign prostatic hyperplasia.J. Nat. Prod.20228561495150210.1021/acs.jnatprod.1c01190 35671052
    [Google Scholar]
  69. TangW.Z. YuH.B. LuJ.R. LinH.W. SunF. WangS.P. YangF. Aaptolines A and B, two new quinoline alkaloids from the marine sponge Aaptos aaptos.Chem. Biodivers.2020174e200007410.1002/cbdv.202000074 32110847
    [Google Scholar]
  70. HitoraY. MaedaR. HondaK. SadahiroY. IseY. AngkouwE.D. E.P.Mangindaan R.; Tsukamoto, S. Neopetrosidines A-D, pyridine alkaloids isolated from the marine sponge Neopetrosia chaliniformis and their cell cycle elongation activity.Bioorg. Med. Chem.20215011646110.1016/j.bmc.2021.116461 34649068
    [Google Scholar]
  71. XiangY. ZengQ. MaiZ.M. ChenY.C. ShiX.F. ChenX.Y. ZhongW.M. WeiX.Y. ZhangW.M. ZhangS. WangF.Z. Asperorydines N-P, three new cyclopiazonic acid alkaloids from the marine-derived fungus Aspergillus flavus SCSIO F025.Fitoterapia202115010483910.1016/j.fitote.2021.104839 33513431
    [Google Scholar]
  72. JiangJ. JiangH. ShenD. ChenY. ShiH. HeF. Citrinadin C, a new cytotoxic pentacyclic alkaloid from marine-derived fungus Penicillium citrinum.J. Antibiot.202275530130310.1038/s41429‑022‑00516‑8 35288677
    [Google Scholar]
  73. LongS. ResendeD. KijjoaA. SilvaA. FernandesR. XavierC. VasconcelosM. SousaE. PintoM. Synthesis of new proteomimetic quinazolinone alkaloids and evaluation of their neuroprotective and antitumor effects.Molecules201924353410.3390/molecules24030534 30717179
    [Google Scholar]
  74. ChengX.W. LiJ.Q. JiangY.J. LiuH.Z. HuoC. A new indolizinium alkaloid from marine-derived Streptomyces sp. HNA39.J. Asian Nat. Prod. Res.202123991391810.1080/10286020.2020.1799987 32819162
    [Google Scholar]
  75. Abdul-HameedZ.H. BawakidN.O. AlorfiH.S. SobahiT.R. AlburaeN.A. Abdel-LateffA. ElbehairiS.E.I. AlfaifiM.Y. AlhakamyN.A. AlarifW.M. Monoterpene indole alkaloids from the aerial parts of Rhazya stricta induce cytotoxicity and apoptosis in human adenocarcinoma cells.Molecules2022274142210.3390/molecules27041422 35209210
    [Google Scholar]
  76. SunC. GeX. MudassirS. ZhouL. YuG. CheQ. ZhangG. PengJ. GuQ. ZhuT. LiD. New glutamine-containing azaphilone alkaloids from deep-sea-derived fungus Chaetomium globosum HDN151398.Mar. Drugs201917525310.3390/md17050253 31035362
    [Google Scholar]
  77. WeiX. FengC. WangS.Y. ZhangD.M. LiX.H. ZhangC.X. New indole diketopiperazine alkaloids from soft coral-associated epiphytic fungus Aspergillus sp. EGF 15-0-3.Chem. Biodivers.2020175e200010610.1002/cbdv.202000106 32212241
    [Google Scholar]
  78. ChenS.C. LiuZ.M. TanH.B. ChenY.C. LiS.N. LiH.H. GuoH. ZhuS. LiuH.X. ZhangW.M. Tersone AG, new pyridone alkaloids from the deep-sea fungus Phomopsis tersa.Mar. Drugs201917739410.3390/md17070394 31277263
    [Google Scholar]
  79. El-KashefD.H. DaletosG. PlenkerM. HartmannR. MándiA. KurtánT. WeberH. LinW. AncheevaE. ProkschP. Polyketides and a dihydroquinolone alkaloid from a marine-derived strain of the fungus Metarhizium marquandii.J. Nat. Prod.20198292460246910.1021/acs.jnatprod.9b00125 31432669
    [Google Scholar]
  80. ShubinaL.K. MakarievaT.N. von AmsbergG. DenisenkoV.A. PopovR.S. DyshlovoyS.A. Monanchoxymycalin C with anticancer properties, new analogue of crambescidin 800 from the marine sponge Monanchora pulchra.Nat. Prod. Res.201933101415142210.1080/14786419.2017.1419231 29272957
    [Google Scholar]
  81. XieY. GuoL. HuangJ. HuangX. CongZ. LiuQ. WangQ. PangX. XiangS. ZhouX. LiuY. WangJ. WangJ. Cyclopentenone-containing tetrahydroquinoline and geldanamycin alkaloids from streptomyces malaysiensis as potential anti-androgens against prostate cancer cells.J. Nat. Prod.20218472004201110.1021/acs.jnatprod.1c00297 34225450
    [Google Scholar]
  82. DyshlovoyS.A. KauneM. KriegsM. HauschildJ. BusenbenderT. ShubinaL.K. MakarievaT.N. HofferK. BokemeyerC. GraefenM. StonikV.A. von AmsbergG. Marine alkaloid monanchoxymycalin C: A new specific activator of JNK1/2 kinase with anticancer properties.Sci. Rep.20201011317810.1038/s41598‑020‑69751‑z 32764580
    [Google Scholar]
  83. DiX. HardardottirI. FreysdottirJ. WangD. GustafsonK.R. OmarsdottirS. MolinskiT.F. Geobarrettin D, a rare herbipoline-containing 6-bromoindole alkaloid from Geodia barretti.Molecules2023287293710.3390/molecules28072937 37049700
    [Google Scholar]
  84. ChenY. LiuZ. HuangY. LiuL. HeJ. WangL. YuanJ. SheZ. Ascomylactams A–C, cytotoxic 12-or 13-membered-ring macrocyclic alkaloids isolated from the mangrove endophytic fungus Didymella sp. CYSK-4, and structure revisions of phomapyrrolidones A and C.J. Nat. Prod.20198271752175810.1021/acs.jnatprod.8b00918 31251621
    [Google Scholar]
  85. NiuS. ChenZ. PeiS. ShaoZ. ZhangG. HongB. Acremolin D, a new acremolin alkaloid from the deep-sea sediment derived Aspergillus sydowii fungus.Nat. Prod. Res.202236194936494210.1080/14786419.2021.1913587 33977846
    [Google Scholar]
  86. CarboneD. GalloC. NuzzoG. BarraG. Dell’IsolaM. AffusoM. FolleroO. AlbianiF. SansoneC. ManzoE. d’IppolitoG. FontanaA. Marine natural product lepadin A as a novel inducer of immunogenic cell death via CD91-dependent pathway.Nat. Prod. Bioprospect.20231313410.1007/s13659‑023‑00401‑3 37779162
    [Google Scholar]
  87. DyshlovoyS.A. KudryashovaE.K. KauneM. MakarievaT.N. ShubinaL.K. BusenbenderT. DenisenkoV.A. PopovR.S. HauschildJ. FedorovS.N. BokemeyerC. GraefenM. StonikV.A. von AmsbergG. UrupocidinC. A new marine guanidine alkaloid which selectively kills prostate cancer cells via mitochondria targeting.Sci. Rep.2020101976410.1038/s41598‑020‑66428‑5 32555282
    [Google Scholar]
  88. BiliaAR PiazziniV AspreaM RisalitiL VantiG BergonziMC Plants extracts loaded in nanocarriers: An emergent formulating approach.Nat. prod. commun.20181391934578X1801300914
    [Google Scholar]
  89. BaldassariS. BalboniA. DravaG. DonghiaD. CanepaP. AilunoG. CaviglioliG. Phytochemicals and cancer treatment: Cell-derived and biomimetic vesicles as promising carriers.Pharmaceutics2023155144510.3390/pharmaceutics15051445 37242687
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010316791240611093022
Loading
/content/journals/cpb/10.2174/0113892010316791240611093022
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Anticancer; cancer cell lines; cytotoxic; marine alkaloid; natural products; tumor
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test