Skip to content
2000
Volume 26, Issue 1
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Background

Many studies have demonstrated that the expression of methyltransferase-like 3 (METTL3) is altered in various inflammatory diseases. Its specific mechanistic role in the intestinal inflammatory response during sepsis remains limited and requires further investigation.

Objectives

Explore the potential mechanism of METTL3 in the intestinal inflammatory response during sepsis.

Materials and Methods

Immunohistochemical analysis was utilized to detect the expression of METTL3 in the necrotic intestine of patients with intestinal necrosis and the small intestine of cecal ligation and puncture (CLP) mice. Mice were subjected to the CLP and Sham surgeries, intestine tissue was harvested and performed HE staining, and ELISA to examine intestinal inflammatory responses, while TUNEL staining was applied to detect intestinal cell apoptosis. Additionally, ELISA was used to detect diamine oxidase (DAO) and intestinal fatty acid binding protein (I-FABP) levels in intestinal tissue. Immunohistochemistry and RT-qPCR were also employed to examine the mRNA and protein expression levels of Zona Occludens 1 (ZO-1) and Claudin-1. Finally, transcriptomic sequencing was performed on the small intestine tissues of METTL3 Knock-out (KO) and Wild-type (WT) mice in response to sepsis.

Results

METTL3 exhibited lower expression level in the necrotic intestine of patients and the small intestine of CLP mice. Loss of METTL3 in CLP mice triggered significantly higher expression of TNF-α and IL-18, down-regulated expression of ZO-1 and claudin-1, and decreased expression of DAO and I-FABP in the intestinal tissue. KEGG enrichment analysis showed that the differential genes were significantly enriched in immune-related pathways.

Conclusion

This study reveals a novel mechanism responsible for exacerbated intestinal inflammation orchestrated by METTL3. Particularly, METTL3 null mice displayed decreased ZO-1 and Claudin-1 expression, which largely hampered intestinal epithelial barrier function, resulting in bacterial and toxin translocation and intestinal immune activation and inflammation against sepsis.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010271970240202054245
2024-03-13
2024-12-28
Loading full text...

Full text loading...

References

  1. SingerM. DeutschmanC.S. SeymourC.W. Shankar-HariM. AnnaneD. BauerM. BellomoR. BernardG.R. ChicheJ.D. CoopersmithC.M. HotchkissR.S. LevyM.M. MarshallJ.C. MartinG.S. OpalS.M. RubenfeldG.D. van der PollT. VincentJ.L. AngusD.C. The third international consensus definitions for sepsis and septic shock (Sepsis-3).JAMA2016315880181010.1001/jama.2016.0287 26903338
    [Google Scholar]
  2. GottsJ.E. MatthayM.A. Sepsis: Pathophysiology and clinical management.BMJ2016353i158510.1136/bmj.i1585 27217054
    [Google Scholar]
  3. VincentJ.L. OpalS.M. MarshallJ.C. TraceyK.J. Sepsis definitions: Time for change.Lancet2013381986877477510.1016/S0140‑6736(12)61815‑7 23472921
    [Google Scholar]
  4. HotchkissR.S. MonneretG. PayenD. Sepsis-induced immunosuppression: From cellular dysfunctions to immunotherapy.Nat. Rev. Immunol.2013131286287410.1038/nri3552 24232462
    [Google Scholar]
  5. RhodesA. PhillipsG. BealeR. CecconiM. ChicheJ.D. De BackerD. DivatiaJ. DuB. EvansL. FerrerR. GirardisM. KoulentiD. MachadoF. SimpsonS.Q. TanC.C. WitteboleX. LevyM. The surviving sepsis campaign bundles and outcome: results from the international multicentre prevalence study on sepsis (the IMPreSS study).Intensive Care Med.20154191620162810.1007/s00134‑015‑3906‑y 26109396
    [Google Scholar]
  6. AngusD.C. Linde-ZwirbleW.T. LidickerJ. ClermontG. CarcilloJ. PinskyM.R. Epidemiology of severe sepsis in the United States: Analysis of incidence, outcome, and associated costs of care.Crit. Care Med.20012971303131010.1097/00003246‑200107000‑00002 11445675
    [Google Scholar]
  7. PrescottH.C. OsterholzerJ.J. LangaK.M. AngusD.C. IwashynaT.J. Late mortality after sepsis: Propensity matched cohort study.BMJ2016353i237510.1136/bmj.i2375 27189000
    [Google Scholar]
  8. MittalR. CoopersmithC.M. Redefining the gut as the motor of critical illness.Trends Mol. Med.201420421422310.1016/j.molmed.2013.08.004 24055446
    [Google Scholar]
  9. ChengJ. WeiZ. LiuX. LiX. YuanZ. ZhengJ. ChenX. XiaoG. LiX. The role of intestinal mucosa injury induced by intra-abdominal hypertension in the development of abdominal compartment syndrome and multiple organ dysfunction syndrome.Crit. Care2013176R28310.1186/cc13146 24321230
    [Google Scholar]
  10. TurnerJ.R. Intestinal mucosal barrier function in health and disease.Nat. Rev. Immunol.200991179980910.1038/nri2653 19855405
    [Google Scholar]
  11. FihnB.M. SjöqvistA. JodalM. Permeability of the rat small intestinal epithelium along the villus-crypt axis: Effects of glucose transport.Gastroenterology200011941029103610.1053/gast.2000.18148 11040189
    [Google Scholar]
  12. ZhangS. ZhangY. AhsanM.Z. YuanY. LiuG. HanX. ZhangJ. ZhaoX. BaiB. LiY. Atorvastatin attenuates cold-induced hypertension by preventing gut barrier injury.J. Cardiovasc. Pharmacol.201974214315110.1097/FJC.0000000000000690 31310598
    [Google Scholar]
  13. ZongX. XiaoX. KaiL. ChengY. FuJ. XuW. WangY. ZhaoK. JinM. Atractylodis macrocephalae polysaccharides protect against DSS-induced intestinal injury through a novel lncRNA ITSN1-OT1.Int. J. Biol. Macromol.2021167768410.1016/j.ijbiomac.2020.11.144 33248053
    [Google Scholar]
  14. McConnellK.W. CoopersmithC.M. Epithelial cells.Crit. Care Med.20053312Suppl.S520S52210.1097/01.CCM.0000187004.09189.1B 16340439
    [Google Scholar]
  15. GroschwitzK.R. HoganS.P. Intestinal barrier function: Molecular regulation and disease pathogenesis.J. Allergy Clin. Immunol.2009124132010.1016/j.jaci.2009.05.038 19560575
    [Google Scholar]
  16. FarquharM.G. PaladeG.E. Junctional complexes in various epithelia.J. Cell Biol.196317237541210.1083/jcb.17.2.375 13944428
    [Google Scholar]
  17. HotchkissR.S. SwansonP.E. FreemanB.D. TinsleyK.W. CobbJ.P. MatuschakG.M. BuchmanT.G. KarlI.E. Apoptotic cell death in patients with sepsis, shock, and multiple organ dysfunction.Crit. Care Med.19992771230125110.1097/00003246‑199907000‑00002 10446814
    [Google Scholar]
  18. HotchkissR.S. SwansonP.E. CobbJ.P. JacobsonA. BuchmanT.G. KarlI.E. Apoptosis in lymphoid and parenchymal cells during sepsis.Crit. Care Med.19972581298130710.1097/00003246‑199708000‑00015 9267941
    [Google Scholar]
  19. CoopersmithC.M. StrombergP.E. DavisC.G. DunneW.M. AmiotD.M.II KarlI.E. HotchkissR.S. BuchmanT.G. Sepsis from Pseudomonas aeruginosa pneumonia decreases intestinal proliferation and induces gut epithelial cell cycle arrest.Crit. Care Med.20033161630163710.1097/01.CCM.0000055385.29232.11 12794397
    [Google Scholar]
  20. VyasD. RobertsonC.M. StrombergP.E. MartinJ.R. DunneW.M. HouchenC.W. BarrettT.A. AyalaA. PerlM. BuchmanT.G. CoopersmithC.M. Epithelial apoptosis in mechanistically distinct methods of injury in the murine small intestine.Histol. Histopathol.2007226623630 17357092
    [Google Scholar]
  21. DeitchE.A. Gut-origin sepsis: Evolution of a concept.Surgeon201210635035610.1016/j.surge.2012.03.003 22534256
    [Google Scholar]
  22. DeitchE.A. Gut lymph and lymphatics: A source of factors leading to organ injury and dysfunction.Ann. N. Y. Acad. Sci.20101207s1Suppl. 1E103E11110.1111/j.1749‑6632.2010.05713.x 20961300
    [Google Scholar]
  23. FinkM.P. DeludeR.L. Epithelial barrier dysfunction: A unifying theme to explain the pathogenesis of multiple organ dysfunction at the cellular level.Crit. Care Clin.200521217719610.1016/j.ccc.2005.01.005 15781156
    [Google Scholar]
  24. SwankG.M. DeitchE.A. Role of the gut in multiple organ failure: Bacterial translocation and permeability changes.World J. Surg.199620441141710.1007/s002689900065 8662128
    [Google Scholar]
  25. YosephB.P. BreedE. OvergaardC.E. WardC.J. LiangZ. WagenerM.E. LexcenD.R. LusczekE.R. BeilmanG.J. BurdE.M. FarrisA.B. GuidotD.M. KovalM. FordM.L. CoopersmithC.M. Chronic alcohol ingestion increases mortality and organ injury in a murine model of septic peritonitis.PLoS One201385e6279210.1371/journal.pone.0062792 23717394
    [Google Scholar]
  26. DesrosiersR. FridericiK. RottmanF. Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells.Proc. Natl. Acad. Sci. USA197471103971397510.1073/pnas.71.10.3971 4372599
    [Google Scholar]
  27. AdamsJ.M. CoryS. Modified nucleosides and bizarre 5′-termini in mouse myeloma mRNA.Nature19752555503283310.1038/255028a0 1128665
    [Google Scholar]
  28. FuruichiY. MorganM. ShatkinA.J. JelinekW. Salditt-GeorgieffM. DarnellJ.E. Methylated, blocked 5 termini in HeLa cell mRNA.Proc. Natl. Acad. Sci. USA19757251904190810.1073/pnas.72.5.1904 1057180
    [Google Scholar]
  29. LiJ. YangX. QiZ. SangY. LiuY. XuB. LiuW. XuZ. DengY. The role of mRNA m6A methylation in the nervous system.Cell Biosci.2019916610.1186/s13578‑019‑0330‑y 31452869
    [Google Scholar]
  30. BakinA. LaneB.G. OfengandJ. Clustering of pseudouridine residues around the peptidyltransferase center of yeast cytoplasmic and mitochondrial ribosomes.Biochemistry19943345134751348310.1021/bi00249a036 7947756
    [Google Scholar]
  31. ZhaoB.S. RoundtreeI.A. HeC. Post-transcriptional gene regulation by mRNA modifications.Nat. Rev. Mol. Cell Biol.2017181314210.1038/nrm.2016.132 27808276
    [Google Scholar]
  32. GeulaS. Moshitch-MoshkovitzS. DominissiniD. MansourA.A. KolN. Salmon-DivonM. HershkovitzV. PeerE. MorN. ManorY.S. Ben-HaimM.S. EyalE. YungerS. PintoY. JaitinD.A. ViukovS. RaisY. KrupalnikV. ChomskyE. ZerbibM. MazaI. RechaviY. MassarwaR. HannaS. AmitI. LevanonE.Y. AmariglioN. Stern-GinossarN. NovershternN. RechaviG. HannaJ.H. m 6 A mRNA methylation facilitates resolution of naïve pluripotency toward differentiation.Science201534762251002100610.1126/science.1261417 25569111
    [Google Scholar]
  33. DominissiniD. Moshitch-MoshkovitzS. SchwartzS. Salmon-DivonM. UngarL. OsenbergS. CesarkasK. Jacob-HirschJ. AmariglioN. KupiecM. SorekR. RechaviG. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq.Nature2012485739720120610.1038/nature11112 22575960
    [Google Scholar]
  34. PatilD.P. ChenC.K. PickeringB.F. ChowA. JacksonC. GuttmanM. JaffreyS.R. m6A RNA methylation promotes XIST-mediated transcriptional repression.Nature2016537762036937310.1038/nature19342 27602518
    [Google Scholar]
  35. LiuJ. YueY. HanD. WangX. FuY. ZhangL. JiaG. YuM. LuZ. DengX. DaiQ. ChenW. HeC.A. METTL3–METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation.Nat. Chem. Biol.2014102939510.1038/nchembio.1432 24316715
    [Google Scholar]
  36. WangJ. YanS. LuH. WangS. XuD. METTL3 attenuates LPS-induced inflammatory response in macrophages via NF- κ B signaling pathway.Mediators Inflamm.201920191810.1155/2019/3120391 31772500
    [Google Scholar]
  37. FengZ. LiQ. MengR. YiB. XuQ. METTL 3 regulates alternative splicing of MyD88 upon the lipopolysaccharide‐induced inflammatory response in human dental pulp cells.J. Cell. Mol. Med.20182252558256810.1111/jcmm.13491 29502358
    [Google Scholar]
  38. LiuQ. LiM. JiangL. JiangR. FuB. METTL3 promotes experimental osteoarthritis development by regulating inflammatory response and apoptosis in chondrocyte.Biochem. Biophys. Res. Commun.20195161222710.1016/j.bbrc.2019.05.168 31186141
    [Google Scholar]
  39. LiQ. YuL. GaoA. RenR. ZhangJ. CaoL. WangX. LiuY. QiW. CaiL. LiW. WangW. GuoX. SuG. YuX. ZhangJ. XiB. ZhangY. ZhangM. ZhangC. METTL3 (Methyltransferase Like 3)-dependent n6-methyladenosine modification on Braf mRNA promotes macrophage inflammatory response and atherosclerosis in mice.Arterioscler. Thromb. Vasc. Biol.202343575577310.1161/ATVBAHA.122.318451 36951060
    [Google Scholar]
  40. LuoS. LiaoC. ZhangL. LingC. ZhangX. XieP. SuG. ChenZ. ZhangL. LaiT. TangJ. METTL3-mediated m6A mRNA methylation regulates neutrophil activation through targeting TLR4 signaling.Cell Rep.202342311225910.1016/j.celrep.2023.112259 36920907
    [Google Scholar]
  41. ChenY. WuY. ZhuL. ChenC. XuS. TangD. JiaoY. YuW. METTL3-mediated N6-methyladenosine modification of Trim59 mRNA protects against sepsis-induced acute respiratory distress syndrome.Front. Immunol.20221389748710.3389/fimmu.2022.897487 35693774
    [Google Scholar]
  42. RittirschD. Huber-LangM.S. FlierlM.A. WardP.A. Immunodesign of experimental sepsis by cecal ligation and puncture.Nat. Protoc.200941313610.1038/nprot.2008.214 19131954
    [Google Scholar]
  43. RittirschD. HoeselL.M. WardP.A. The disconnect between animal models of sepsis and human sepsis.J. Leukoc. Biol.200781113714310.1189/jlb.0806542 17020929
    [Google Scholar]
  44. RemickD.G. NewcombD.E. BolgosG.L. CallD.R. Comparison of the mortality and inflammatory response of two models of sepsis: Lipopolysaccharide vs. cecal ligation and puncture.Shock200013211011610.1097/00024382‑200013020‑00004 10670840
    [Google Scholar]
  45. YamashitaS. SuzukiT. IguchiK. SakamotoT. TomitaK. YokooH. SakaiM. MisawaH. HattoriK. NagataT. WatanabeY. MatsudaN. YoshimuraN. HattoriY. Cardioprotective and functional effects of levosimendan and milrinone in mice with cecal ligation and puncture-induced sepsis.Naunyn Schmiedebergs Arch. Pharmacol.201839191021103210.1007/s00210‑018‑1527‑z 29922941
    [Google Scholar]
  46. CaiY. YuR. ZhangZ. LiD. YiB. FengZ. XuQ. Mettl3/Ythdf2 regulate macrophage inflammation and ROS generation by controlling Pyk2 mRNA stability.Immunol. Lett.2023264647310.1016/j.imlet.2023.11.004 37952687
    [Google Scholar]
  47. XiangS. WangY. LeiD. LuoY. PengD. ZongK. LiuY. HuangZ. MoS. PuX. ZhengJ. WuZ. Donor graft METTL3 gene transfer ameliorates rat liver transplantation ischemia-reperfusion injury by enhancing HO-1 expression in an m6A-dependent manner.Clin. Immunol.202325110932510.1016/j.clim.2023.109325 37030526
    [Google Scholar]
  48. ShenH. XieK. TianY. WangX. N6-methyladenosine writer METTL3 accelerates the sepsis-induced myocardial injury by regulating m6A-dependent ferroptosis.Apoptosis2023283-451452410.1007/s10495‑022‑01808‑y 36645573
    [Google Scholar]
  49. HanX. LiuL. HuangS. XiaoW. GaoY. ZhouW. ZhangC. ZhengH. YangL. XieX. LiangQ. TuZ. YuH. FuJ. WangL. ZhangX. QianL. ZhouY. RNA m6A methylation modulates airway inflammation in allergic asthma via PTX3-dependent macrophage homeostasis.Nat. Commun.2023141732810.1038/s41467‑023‑43219‑w 37957139
    [Google Scholar]
  50. LiY.J. XuQ.W. XuC.H. LiW.M. MSC promotes the secretion of exosomal miR-34a-5p and improve intestinal barrier function through METTL3-mediated pre-miR-34A m6A modification.Mol. Neurobiol.20225985222523510.1007/s12035‑022‑02833‑3 35687301
    [Google Scholar]
  51. MengJ. LiuX. TangS. LiuY. ZhaoC. ZhouQ. LiN. HouS. METTL3 inhibits inflammation of retinal pigment epithelium cells by regulating NR2F1 in an m6A-dependent manner.Front. Immunol.20221390521110.3389/fimmu.2022.905211 35936005
    [Google Scholar]
  52. WenL. SunW. XiaD. WangY. LiJ. YangS. The m6A methyltransferase METTL3 promotes LPS-induced microglia inflammation through TRAF6/NF-κB pathway.Neuroreport202233624325110.1097/WNR.0000000000001550 33165191
    [Google Scholar]
  53. YangX. YangY. WuY. FuM. METTL3 promotes inflammation and cell apoptosis in a pediatric pneumonia model by regulating EZH2.Allergol. Immunopathol.2021495495610.15586/aei.v49i5.445 34476922
    [Google Scholar]
  54. YangL. WuG. WuQ. PengL. YuanL. METTL3 overexpression aggravates LPS-induced cellular inflammation in mouse intestinal epithelial cells and DSS-induced IBD in mice.Cell Death Discov.2022816210.1038/s41420‑022‑00849‑1 35165276
    [Google Scholar]
  55. ZhangY. LiM. MengM. QinC. Effect of ethyl pyruvate on physical and immunological barriers of the small intestine in a rat model of sepsis.J. Trauma20096651355136410.1097/TA.0b013e31817d0568 19430239
    [Google Scholar]
  56. FukudomeI. KobayashiM. DabanakaK. MaedaH. OkamotoK. OkabayashiT. BabaR. KumagaiN. ObaK. FujitaM. HanazakiK. Diamine oxidase as a marker of intestinal mucosal injury and the effect of soluble dietary fiber on gastrointestinal tract toxicity after intravenous 5-fluorouracil treatment in rats.Med. Mol. Morphol.201447210010710.1007/s00795‑013‑0055‑7 24005798
    [Google Scholar]
  57. KarabulutK.U. NarciH. GulM. DundarZ.D. CanderB. GirisginA.S. ErdemS. Diamine oxidase in diagnosis of acute mesenteric ıschemia.Am. J. Emerg. Med.201331230931210.1016/j.ajem.2012.07.029 23158606
    [Google Scholar]
  58. LukG.D. BaylessT.M. BaylinS.B. Plasma postheparin diamine oxidase. Sensitive provocative test for quantitating length of acute intestinal mucosal injury in the rat.J. Clin. Invest.19837151308131510.1172/JCI110881 6406546
    [Google Scholar]
  59. ShakirK.M.M. MargolisS. BaylinS.B. Localization of histaminase (diamine oxidase) in rat small intestinal mucosa: Site of release by heparin.Biochem. Pharmacol.197726242343234710.1016/0006‑2952(77)90438‑5 413549
    [Google Scholar]
  60. BiegańskiT. Biochemical, physiological and pathophysiological aspects of intestinal diamine oxidase.Acta Physiol. Pol.1983341139154 6416024
    [Google Scholar]
  61. LukG.D. BaylessT.M. BaylinS.B. Diamine oxidase (histaminase). A circulating marker for rat intestinal mucosal maturation and integrity.J. Clin. Invest.1980661667010.1172/JCI109836 6772669
    [Google Scholar]
  62. NiewoldT.A. MeinenM. van der MeulenJ. Plasma intestinal fatty acid binding protein (I-FABP) concentrations increase following intestinal ischemia in pigs.Res. Vet. Sci.2004771899110.1016/j.rvsc.2004.02.006 15120958
    [Google Scholar]
  63. PelsersM.M.A.L. HermensW.T. GlatzJ.F.C. Fatty acid-binding proteins as plasma markers of tissue injury.Clin. Chim. Acta20053521-2153510.1016/j.cccn.2004.09.001 15653098
    [Google Scholar]
  64. RahmanS. AmmoriB.J. HolmfieldJ. LarvinM. McMahonM.J. Intestinal hypoperfusion contributes to gut barrier failure in severe acute pancreatitis.J. Gastrointest. Surg.200371263610.1016/S1091‑255X(02)00090‑2 12559182
    [Google Scholar]
  65. GlatzJ.F.C. van der VusseG.J. Cellular fatty acid-binding proteins: Their function and physiological significance.Prog. Lipid Res.199635324328210.1016/S0163‑7827(96)00006‑9 9082452
    [Google Scholar]
  66. HermistonM.L. GordonJ.I. In vivo analysis of cadherin function in the mouse intestinal epithelium: Essential roles in adhesion, maintenance of differentiation, and regulation of programmed cell death.J. Cell Biol.1995129248950610.1083/jcb.129.2.489 7721948
    [Google Scholar]
  67. AmashehS. MeiriN. GitterA.H. SchönebergT. MankertzJ. SchulzkeJ.D. FrommM. Claudin-2 expression induces cation-selective channels in tight junctions of epithelial cells.J. Cell Sci.2002115244969497610.1242/jcs.00165 12432083
    [Google Scholar]
  68. ColegioO.R. ItallieC.V. RahnerC. AndersonJ.M. Claudin extracellular domains determine paracellular charge selectivity and resistance but not tight junction fibril architecture.Am. J. Physiol. Cell Physiol.20032846C1346C135410.1152/ajpcell.00547.2002 12700140
    [Google Scholar]
  69. SimonD.B. LuY. ChoateK.A. VelazquezH. Al-SabbanE. PragaM. CasariG. BettinelliA. ColussiG. Rodriguez-SorianoJ. McCredieD. MilfordD. SanjadS. LiftonR.P. Paracellin-1, a renal tight junction protein required for paracellular Mg2+ resorption.Science1999285542410310610.1126/science.285.5424.103 10390358
    [Google Scholar]
  70. DörfelM.J. HuberO. Modulation of tight junction structure and function by kinases and phosphatases targeting occludin.J. Biomed. Biotechnol.2012201211410.1155/2012/807356 22315516
    [Google Scholar]
  71. SuzukiH. TaniK. FujiyoshiY. Crystal structures of claudins: Insights into their intermolecular interactions.Ann. N. Y. Acad. Sci.201713971253410.1111/nyas.13371 28605828
    [Google Scholar]
  72. MüllerS.L. PortwichM. SchmidtA. UtepbergenovD.I. HuberO. BlasigI.E. KrauseG. The tight junction protein occludin and the adherens junction protein alpha-catenin share a common interaction mechanism with ZO-1.J. Biol. Chem.200528053747375610.1074/jbc.M411365200 15548514
    [Google Scholar]
  73. OdenwaldM.A. TurnerJ.R. Intestinal permeability defects: Is it time to treat?Clin. Gastroenterol. Hepatol.20131191075108310.1016/j.cgh.2013.07.001 23851019
    [Google Scholar]
  74. RupaniB. CaputoF.J. WatkinsA.C. VegaD. MagnottiL.J. LuQ. XuD.Z. DeitchE.A. Relationship between disruption of the unstirred mucus layer and intestinal restitution in loss of gut barrier function after trauma hemorrhagic shock.Surgery2007141448148910.1016/j.surg.2006.10.008 17383525
    [Google Scholar]
  75. ChenC. WangP. SuQ. WangS. WangF. Myosin light chain kinase mediates intestinal barrier disruption following burn injury.PLoS One201274e3494610.1371/journal.pone.0034946 22529961
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010271970240202054245
Loading
/content/journals/cpb/10.2174/0113892010271970240202054245
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test