Skip to content
2000
Volume 26, Issue 1
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Urological cancers are one of the most prevalent malignancies around the globe. Specifically, bladder cancer severely threatens the health of humans because of its heterogeneous and aggressive nature. Extensive studies have been conducted for many years in order to address the limitations associated with the treatment of solid tumors with selective substances. This article aims to provide a summary of the therapeutic drugs that have received FDA approval or are presently in the testing phase for use in the prevention or treatment of bladder cancer. In this review, FDA-approved drugs for bladder cancer treatment have been listed along with their dose protocols, current status, pharmacokinetics, action mechanisms, and marketed products. The article also emphasizes the novel preparations of these drugs that are presently under clinical trials or are in the approval stage. Thus, this review will serve as a single point of reference for scientists involved in the formulation development of these drugs.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010314650240514053735
2024-05-23
2024-12-28
Loading full text...

Full text loading...

References

  1. BrayF. FerlayJ. SoerjomataramI. SiegelR.L. TorreL.A. JemalA. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.201868639442410.3322/caac.21492 30207593
    [Google Scholar]
  2. KouznetsovaV.L. KimE. RommE.L. ZhuA. TsigelnyI.F. Recognition of early and late stages of bladder cancer using metabolites and machine learning.Metabolomics20191579410.1007/s11306‑019‑1555‑9 31222577
    [Google Scholar]
  3. PardoJ.C. Ruiz de PorrasV. PlajaA. CarratoC. EtxanizO. BuisanO. FontA. Moving towards personalized medicine in muscle-invasive bladder cancer: where are we now and where are we going?Int. J. Mol. Sci.20202117627110.3390/ijms21176271 32872531
    [Google Scholar]
  4. ShariatS.F. SfakianosJ.P. DrollerM.J. KarakiewiczP.I. MerynS. BochnerB.H. The effect of age and gender on bladder cancer: a critical review of the literature.BJU Int.2010105330030810.1111/j.1464‑410X.2009.09076.x 19912200
    [Google Scholar]
  5. AnderssonK.E. ArnerA. Urinary bladder contraction and relaxation: physiology and pathophysiology.Physiol. Rev.200484393598610.1152/physrev.00038.2003 15269341
    [Google Scholar]
  6. MushtaqJ. ThurairajaR. NairR. Bladder cancer.Renal and Urological Surgery – II2019379529537
    [Google Scholar]
  7. MostafaM.H. SheweitaS.A. O’ConnorP.J. Relationship between schistosomiasis and bladder cancer.Clin. Microbiol. Rev.19991219711110.1128/CMR.12.1.97 9880476
    [Google Scholar]
  8. JamalA. PhillipsE. GentzkeA.S. HomaD.M. BabbS.D. KingB.A. NeffL.J. Current cigarette smoking among adults - United States, 2016.MMWR Morb. Mortal. Wkly. Rep.2018672535910.15585/mmwr.mm6702a1 29346338
    [Google Scholar]
  9. FreedmanN.D. SilvermanD.T. HollenbeckA.R. SchatzkinA. AbnetC.C. Association between smoking and risk of bladder cancer among men and women.JAMA2011306773774510.1001/jama.2011.1142 21846855
    [Google Scholar]
  10. Al-ZalabaniA.H. StewartK.F.J. WesseliusA. ScholsA.M.W.J. ZeegersM.P. Modifiable risk factors for the prevention of bladder cancer: a systematic review of meta-analyses.Eur. J. Epidemiol.201631981185110.1007/s10654‑016‑0138‑6 27000312
    [Google Scholar]
  11. KirkaliZ. ChanT. ManoharanM. AlgabaF. BuschC. ChengL. KiemeneyL. KriegmairM. MontironiR. MurphyW.M. SesterhennI.A. TachibanaM. WeiderJ. Bladder cancer: Epidemiology, staging and grading, and diagnosis.Urology2005666Suppl. 143410.1016/j.urology.2005.07.062 16399414
    [Google Scholar]
  12. van den BoschS. Alfred WitjesJ. Long-term cancer-specific survival in patients with high-risk, non-muscle-invasive bladder cancer and tumour progression: a systematic review.Eur. Urol.201160349350010.1016/j.eururo.2011.05.045 21664041
    [Google Scholar]
  13. SaginalaK. BarsoukA. AluruJ.S. RawlaP. PadalaS.A. BarsoukA. Epidemiology of bladder cancer.Med. Sci. (Basel)2020811510.3390/medsci8010015 32183076
    [Google Scholar]
  14. SylvesterR.J. OosterlinckW. van der MeijdenA.P.M. A single immediate postoperative instillation of chemotherapy decreases the risk of recurrence in patients with stage Ta T1 bladder cancer: a meta-analysis of published results of randomized clinical trials.J. Urol.20041716 Pt 12186219010.1097/01.ju.0000125486.92260.b2 15126782
    [Google Scholar]
  15. MatulewiczR.S. SteinbergG.D. Non-muscle-invasive bladder cancer: overview and contemporary treatment landscape of neoadjuvant chemoablative therapies.Rev. Urol.20202224351 32760227
    [Google Scholar]
  16. TranL. XiaoJ.F. AgarwalN. DuexJ.E. TheodorescuD. Advances in bladder cancer biology and therapy.Nat. Rev. Cancer202121210412110.1038/s41568‑020‑00313‑1 33268841
    [Google Scholar]
  17. LiuB. GaoX. HanB. ChenG. SongS. BoH. Mouse model to explore the therapeutic effect of nano-doxorubicin drug delivery system on bladder cancer.J. Nanosci. Nanotechnol.202121291492010.1166/jnn.2021.18651 33183424
    [Google Scholar]
  18. LuY. WangS. WangY. LiM. LiuY. XueD. Current researches on nanodrug delivery systems in bladder cancer intravesical chemotherapy.Front. Oncol.20221287982810.3389/fonc.2022.879828 35720013
    [Google Scholar]
  19. SanliO. DobruchJ. KnowlesM.A. BurgerM. AlemozaffarM. NielsenM.E. LotanY. Bladder cancer.Nat. Rev. Dis. Primers2017311702210.1038/nrdp.2017.22 28406148
    [Google Scholar]
  20. BurdettS. FisherD.J. ValeC.L. SternbergC.N. ClarkeN.W. ParmarM.K.B. BonoA.V. CognettiF. ColletteL. CoteR.J. GoebellP.J. GroshenS. LehmannJ. RolevichA.I. SonntagR.W. StockleM. StuderU.E. TortiF.M. ZhegalikA.G. TierneyJ.F. Adjuvant chemotherapy for muscle-invasive bladder cancer: a systematic review and meta-analysis of individual participant data from randomized controlled trials.Eur. Urol.2022811506110.1016/j.eururo.2021.09.028 34802798
    [Google Scholar]
  21. HartshornC.M. RussellL.M. GrodzinskiP. National Cancer Institute Alliance for nanotechnology in cancer—Catalyzing research and translation toward novel cancer diagnostics and therapeutics.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.2019116e157010.1002/wnan.1570 31257722
    [Google Scholar]
  22. KellandL. The resurgence of platinum-based cancer chemotherapy.Nat. Rev. Cancer20077857358410.1038/nrc2167 17625587
    [Google Scholar]
  23. O’DwyerP.J. StevensonJ.P. JohnsonS.W. Clinical pharmacokinetics and administration of established platinum drugs.Drugs200059Suppl. 4192710.2165/00003495‑200059004‑00003 10864227
    [Google Scholar]
  24. OzolsR.F. BundyB.N. GreerB.E. FowlerJ.M. Clarke-PearsonD. BurgerR.A. MannelR.S. DeGeestK. HartenbachE.M. BaergenR. Phase III trial of carboplatin and paclitaxel compared with cisplatin and paclitaxel in patients with optimally resected stage III ovarian cancer: a Gynecologic Oncology Group study.J. Clin. Oncol.200321173194320010.1200/JCO.2003.02.153 12860964
    [Google Scholar]
  25. FuG. WuY. ZhaoG. ChenX. XuZ. SunJ. TianJ. ChengZ. ShiY. JinB. Activation of CGAS-STING signal to inhibit the proliferation of bladder cancer: the immune effect of cisplatin.Cells20221119301110.3390/cells11193011 36230972
    [Google Scholar]
  26. LeoC. P. LeoC. SzucsT. D. Breast cancer drug approvals by the US FDA from 1949 to 2018Nat Rev Drug Discov., 2020, 19(1), 11.2020, Erratum in: Nat Rev Drug Discov. 2020 Apr;19(4):291.10.1038/d41573‑019‑00201‑w 31907423
    [Google Scholar]
  27. NakadaT. AkiyaT. YoshikawaM. KoikeH. KayayamaT. Intravesical instillation of doxorubicin hydrochloride and its incorporation into bladder tumors.J. Urol.19851341545710.1016/S0022‑5347(17)46977‑1 4009823
    [Google Scholar]
  28. PintoI. Systemic therapy in bladder cancer.Indian J. Urol.201733211812610.4103/iju.IJU_294_16 28469299
    [Google Scholar]
  29. PfisterC. GravisG. FléchonA. ChevreauC. MahammediH. LaguerreB. GuillotA. JolyF. SouliéM. AlloryY. HarterV. CulineS. Dose-dense methotrexate, vinblastine, doxorubicin, and cisplatin or gemcitabine and cisplatin as perioperative chemotherapy for patients with nonmetastatic muscle-invasive bladder cancer: results of the GETUG-AFU V05 VESPER trial.J. Clin. Oncol.202240182013202210.1200/JCO.21.02051 35254888
    [Google Scholar]
  30. HuX. LiG. WuS. Advances in diagnosis and therapy for bladder cancer.Cancers (Basel)20221413318110.3390/cancers14133181 35804953
    [Google Scholar]
  31. CharpentierX. KayE. SchneiderD. ShumanH.A. Antibiotics and UV radiation induce competence for natural transformation in Legionella pneumophila.J. Bacteriol.201119351114112110.1128/JB.01146‑10 21169481
    [Google Scholar]
  32. VeeratterapillayR. HeerR. JohnsonM.I. PersadR. BachC. High-risk non-muscle-invasive bladder cancer-therapy options during intravesical bcg shortage.Curr. Urol. Rep.20161796810.1007/s11934‑016‑0625‑z 27492610
    [Google Scholar]
  33. VolpeA. RacioppiM. D’AgostinoD. CappaE. FilianotiA. BassiP.F. Mitomycin C for the treatment of bladder cancer.Minerva Urol. Nefrol.2010622133144 20562793
    [Google Scholar]
  34. FDA Approves Jelmyto (Mitomycin gel) for Urothelial Cancer. Available from: https://www.cancer.org/cancer/latest-news/fda-approvesjelmyto-mitomycin-gel-for-urothelial-cancer.html
  35. ChengS.Y. Delgado-CruzataL. ClementC.C. ZacariasO. Concheiro-GuisanM. TowlerN. SnyderT. ZhengM. AlmodovarN. GonzalezC. RomaineM. SapseA.M. ChampeilE. Cytotoxicity, crosslinking and biological activity of three mitomycins.Bioorg. Chem.202212310574410.1016/j.bioorg.2022.105744 35349830
    [Google Scholar]
  36. LiuP.C.C. KoblishH. WuL. BowmanK. DiamondS. DiMatteoD. ZhangY. HansburyM. RuparM. WenX. CollierP. FeldmanP. KlabeR. BurkeK.A. SolovievM. GardinerC. HeX. VolginaA. CovingtonM. RuggeriB. WynnR. BurnT.C. ScherleP. YeleswaramS. YaoW. HuberR. HollisG. INCB054828 (pemigatinib), a potent and selective inhibitor of fibroblast growth factor receptors 1, 2, and 3, displays activity against genetically defined tumor models.PLoS One2020154e023187710.1371/journal.pone.0231877 32315352
    [Google Scholar]
  37. SubbiahV. IannottiN.O. GutierrezM. SmithD.C. FélizL. LihouC.F. TianC. SilvermanI.M. JiT. SalehM. FIGHT-101, a first-in-human study of potent and selective FGFR 1-3 inhibitor pemigatinib in pan-cancer patients with FGF/FGFR alterations and advanced malignancies.Ann. Oncol.202233552253310.1016/j.annonc.2022.02.001 35176457
    [Google Scholar]
  38. NecchiA. PouesselD. LeibowitzR. GuptaS. FléchonA. García-DonasJ. BilenM.A. DebruyneP.R. MilowskyM.I. FriedlanderT. MaioM. GilmartinA. LiX. VeroneseM.L. LoriotY. Pemigatinib for metastatic or surgically unresectable urothelial carcinoma with FGF/FGFR genomic alterations: final results from FIGHT-201.Ann. Oncol.202435220021010.1016/j.annonc.2023.10.794 37956738
    [Google Scholar]
  39. HoyS.M. Pemigatinib: First Approval.Drugs202080992392910.1007/s40265‑020‑01330‑y 32472305
    [Google Scholar]
  40. FranzaA. PirovanoM. GiannatempoP. CosmaiL. Erdafitinib in locally advanced/metastatic urothelial carcinoma with certain FGFR genetic alterations.Future Oncol.202218192455246410.2217/fon‑2021‑1151 35387485
    [Google Scholar]
  41. MarandinoL. RaggiD. GiannatempoP. FarèE. NecchiA. Erdafitinib for the treatment of urothelial cancer.Expert Rev. Anticancer Ther.2019191083584610.1080/14737140.2019.1671190 31544541
    [Google Scholar]
  42. SayeghN. TripathiN. AgarwalN. SwamiU. Clinical evidence and selecting patients for treatment with erdafitinib in advanced urothelial carcinoma.OncoTargets Ther.2022151047105510.2147/OTT.S318332 36186154
    [Google Scholar]
  43. OuyangY. OuZ. ZhongW. YangJ. FuS. OuyangN. ChenJ. XuL. WuD. QianJ. LinY. LinT. HuangJ. FGFR3 Alterations in bladder cancer stimulate serine synthesis to induce immune-inert macrophages that suppress t-cell recruitment and activation.Cancer Res.202383244030404610.1158/0008‑5472.CAN‑23‑1065 37768887
    [Google Scholar]
  44. CattoJ.W.F. TranB. RouprêtM. GschwendJ.E. LoriotY. NishiyamaH. RedortaJ.P. DaneshmandS. HussainS.A. CutuliH.J. ProcopioG. GuadalupiV. VasdevN. NainiV. CrowL. TriantosS. BaigM. SteinbergG. BengioR. CutuliH. SalinasJ. AmeyeF. JoniauS. Rodrigues da RosaD. Martins da TrindadeK. LuzM.A. BavarescoM.H. de PaulaA. SantiagJ. WangS. YeD. BoegemannM. RoghmannF. HeidrichA. HellmisE. FabaÓ.R. DominguezJ.L. MathieuR. ColombelM. BladouF. ArtignanX. VasdevN. ShimpiR. GuadalupiV. TambaroR. SirotovaZ. SpadaM. NecchiA. NakatsuH. KikuchiE. ShimizuN. KanaoK. SumitomoM. NaitoY. HamW.S. JungS-I. HaH. JooK.J. KuJ.H. SeoH.K. YunS. KolodziejA. LawinskiJ. MorrisD. DaneshmandS. MianB. LeeE. Erdafitinib in BCG-treated high-risk non-muscle-invasive bladder cancer.Ann. Oncol.20243519810610.1016/j.annonc.2023.09.3116 37871701
    [Google Scholar]
  45. LiuN. RowleyB.R. BullC.O. SchneiderC. HaegebarthA. SchatzC.A. FracassoP.R. WilkieD.P. HentemannM. WilhelmS.M. ScottW.J. MumbergD. ZiegelbauerK. BAY 80-6946 is a highly selective intravenous PI3K inhibitor with potent p110α and p110δ activities in tumor cell lines and xenograft models.Mol. Cancer Ther.201312112319233010.1158/1535‑7163.MCT‑12‑0993‑T 24170767
    [Google Scholar]
  46. KrauseG. HassenrückF. HallekM. Copanlisib for treatment of B-cell malignancies: the development of a PI3K inhibitor with considerable differences to idelalisib.Drug Des. Devel. Ther.2018122577259010.2147/DDDT.S142406 30174412
    [Google Scholar]
  47. ZhuS. MaA.H. ZhuZ. AdibE. RaoT. LiN. NiK. ChittepuV.C.S.R. PrabhalaR. Garisto RiscoJ. KwiatkowskiD. MouwK. SonpavdeG. ChengF. PanC. Synergistic antitumor activity of pan-PI3K inhibition and immune checkpoint blockade in bladder cancer.J. Immunother. Cancer2021911e00291710.1136/jitc‑2021‑002917 34725212
    [Google Scholar]
  48. FarrukhH. ZhuZ. ZhuS. MontgomeryR.B. MeeksJ.J. VanderWeeleD.J. WongY.N. LewR.A. PanC. A phase II trial with copanlisib plus avelumab as maintenance therapy for metastatic bladder cancer after platinum-based chemotherapy. J. Clin. Oncol.20234116_supplTPS4610TPS461010.1200/JCO.2023.41.16_suppl.TPS4610
    [Google Scholar]
  49. MunozJ. FollowsG.A. NastoupilL.J. Copanlisib for the treatment of malignant lymphoma: clinical experience and future perspectives.Target. Oncol.202116329530810.1007/s11523‑021‑00802‑9 33687623
    [Google Scholar]
  50. du RusquecP. de CalbiacO. RobertM. CamponeM. FrenelJ.S. Clinical utility of pembrolizumab in the management of advanced solid tumors: an evidence-based review on the emerging new data.Cancer Manag. Res.2019114297431210.2147/CMAR.S151023 31190995
    [Google Scholar]
  51. Pembrolizumab (Keytruda) for the treatment of advanced bladder cancer (urothelial carcinoma): Overview;Available from: https://www.ncbi.nlm.nih.gov/books/NBK481481/
  52. CristM. IyerG. HsuM. HuangW.C. BalarA.V. Pembrolizumab in the treatment of locally advanced or metastatic urothelial carcinoma: clinical trial evidence and experience.Ther. Adv. Urol.20191110.1177/1756287219839285 31057668
    [Google Scholar]
  53. NishiyamaH. YamamotoY. SassaN. NishimuraK. FujimotoK. FukasawaS. YokoyamaM. EnokidaH. TakahashiK. TanakaY. ImaiK. ShimamotoT. PeriniR. FrenklT. BajorinD. BellmuntJ. Pembrolizumab versus chemotherapy in recurrent, advanced urothelial cancer in Japanese patients: a subgroup analysis of the phase 3 KEYNOTE-045 trial.Int. J. Clin. Oncol.202025116517410.1007/s10147‑019‑01545‑4 31729625
    [Google Scholar]
  54. VukyJ. BalarA.V. CastellanoD. O’DonnellP.H. GrivasP. BellmuntJ. PowlesT. BajorinD. HahnN.M. SavageM.J. FangX. GodwinJ.L. FrenklT.L. Homet MorenoB. de WitR. PlimackE.R. Long-term outcomes in keynote-052: phase ii study investigating first-line pembrolizumab in cisplatin-ineligible patients with locally advanced or metastatic urothelial cancer.J. Clin. Oncol.202038232658266610.1200/JCO.19.01213 32552471
    [Google Scholar]
  55. BalarA.V. KamatA.M. KulkarniG.S. UchioE.M. BoormansJ.L. RoumiguiéM. KriegerL.E.M. SingerE.A. BajorinD.F. GrivasP. SeoH.K. NishiyamaH. KonetyB.R. LiH. NamK. KapadiaE. FrenklT. de WitR. Pembrolizumab monotherapy for the treatment of high-risk non-muscle-invasive bladder cancer unresponsive to BCG (KEYNOTE-057): an open-label, single-arm, multicentre, phase 2 study.Lancet Oncol.202122791993010.1016/S1470‑2045(21)00147‑9 34051177
    [Google Scholar]
  56. HazarikaM. ChukM.K. TheoretM.R. MushtiS. HeK. WeisS.L. PutmanA.H. HelmsW.S. CaoX. LiH. ZhaoH. ZhaoL. WelchJ. GrahamL. LibegM. SridharaR. KeeganP. PazdurR. FDA approval summary: nivolumab for treatment of unresectable or metastatic melanoma following progression on ipilimumab.Clin. Cancer Res.201723143484348810.1158/1078‑0432.CCR‑16‑0712 28087644
    [Google Scholar]
  57. GuoL. ZhangH. ChenB. Nivolumab as programmed death-1 (pd-1) inhibitor for targeted immunotherapy in tumor.J. Cancer20178341041610.7150/jca.17144 28261342
    [Google Scholar]
  58. BajorinD.F. WitjesJ.A. GschwendJ.E. SchenkerM. ValderramaB.P. TomitaY. BamiasA. LebretT. ShariatS.F. ParkS.H. YeD. AgerbaekM. EntingD. McDermottR. GajateP. PeerA. MilowskyM.I. NosovA. Neif AntonioJ.Jr TupikowskiK. TomsL. FischerB.S. QureshiA. ColletteS. Unsal-KacmazK. BroughtonE. ZardavasD. KoonH.B. GalskyM.D. Adjuvant nivolumab versus placebo in muscle-invasive urothelial carcinoma.N. Engl. J. Med.2021384222102211410.1056/NEJMoa2034442 34077643
    [Google Scholar]
  59. WeiS.C. DuffyC.R. AllisonJ.P. Fundamental mechanisms of immune checkpoint blockade therapy.Cancer Discov.2018891069108610.1158/2159‑8290.CD‑18‑0367 30115704
    [Google Scholar]
  60. GalskyM.D. SaciA. SzaboP.M. HanG.C. GrossfeldG. ColletteS. Siefker-RadtkeA. NecchiA. SharmaP. Nivolumab in patients with advanced platinum-resistant urothelial carcinoma: efficacy, safety, and biomarker analyses with extended follow-up from checkmate 275.Clin. Cancer Res.202026195120512810.1158/1078‑0432.CCR‑19‑4162 32532789
    [Google Scholar]
  61. AydinA.M. WolduS.L. HutchinsonR.C. BoegemannM. BagrodiaA. LotanY. MargulisV. KrabbeL.M. Spotlight on atezolizumab and its potential in the treatment of advanced urothelial bladder cancer.OncoTargets Ther.2017101487150210.2147/OTT.S109453 28331342
    [Google Scholar]
  62. DengR. BumbacaD. PastuskovasC.V. BoswellC.A. WestD. CowanK.J. ChiuH. McBrideJ. JohnsonC. XinY. KoeppenH. LeabmanM. IyerS. Preclinical pharmacokinetics, pharmacodynamics, tissue distribution, and tumor penetration of anti-PD-L1 monoclonal antibody, an immune checkpoint inhibitor.MAbs20168359360310.1080/19420862.2015.1136043 26918260
    [Google Scholar]
  63. KrishnamurthyA. JimenoA. Atezolizumab: A novel PD-L1 inhibitor in cancer therapy with a focus in bladder and non-small cell lung cancers.Drugs Today (Barc)201753421723710.1358/dot.2017.53.4.2589163 28492290
    [Google Scholar]
  64. MengX. HuangZ. TengF. XingL. YuJ. Predictive biomarkers in PD-1/PD-L1 checkpoint blockade immunotherapy.Cancer Treat. Rev.2015411086887610.1016/j.ctrv.2015.11.001 26589760
    [Google Scholar]
  65. ChiangA.C. SequistL.V.D. GilbertJ. ConklingP. ThompsonD. MarcouxJ.P. GettingerS. KowanetzM. MolineroL. O’HearC. FassòM. LamS. GordonM.S. Clinical activity and safety of atezolizumab in a phase 1 study of patients with relapsed/refractory small-cell lung cancer.Clin. Lung Cancer2020215455463.e410.1016/j.cllc.2020.05.008 32586767
    [Google Scholar]
  66. BalarA.V. GalskyM.D. RosenbergJ.E. PowlesT. PetrylakD.P. BellmuntJ. LoriotY. NecchiA. Hoffman-CensitsJ. Perez-GraciaJ.L. DawsonN.A. van der HeijdenM.S. DreicerR. SrinivasS. RetzM.M. JosephR.W. DrakakiA. VaishampayanU.N. SridharS.S. QuinnD.I. DuránI. ShafferD.R. EiglB.J. GrivasP.D. YuE.Y. LiS. KadelE.E.III BoydZ. BourgonR. HegdeP.S. MariathasanS. ThåströmA. AbidoyeO.O. FineG.D. BajorinD.F. Atezolizumab as first-line treatment in cisplatin-ineligible patients with locally advanced and metastatic urothelial carcinoma: a single-arm, multicentre, phase 2 trial.Lancet201738910064677610.1016/S0140‑6736(16)32455‑2 27939400
    [Google Scholar]
  67. MarciscanoA.E. GulleyJ.L. KaufmanH.L. Avelumab: is it time to get excited?Expert Rev. Anticancer Ther.201818981582110.1080/14737140.2018.1493380 29939083
    [Google Scholar]
  68. VaddepallyR.K. KharelP. PandeyR. GarjeR. ChandraA.B. Review of indications of fda-approved immune checkpoint inhibitors per NCCN guidelines with the level of evidence.Cancers(Basel) 202012373810.3390/cancers12030738 32245016
    [Google Scholar]
  69. PatelM.R. EllertonJ. InfanteJ.R. AgrawalM. GordonM. AljumailyR. BrittenC.D. DirixL. LeeK.W. TaylorM. SchöffskiP. WangD. RavaudA. GelbA.B. XiongJ. RosenG. GulleyJ.L. ApoloA.B. Avelumab in metastatic urothelial carcinoma after platinum failure (JAVELIN Solid Tumor): pooled results from two expansion cohorts of an open-label, phase 1 trial.Lancet Oncol.2018191516410.1016/S1470‑2045(17)30900‑2 29217288
    [Google Scholar]
  70. NishimuraC.D. PulancoM.C. CuiW. LuL. ZangX. PD-L1 and B7-1 cis-interaction: new mechanisms in immune checkpoints and immunotherapies.Trends Mol. Med.202127320721910.1016/j.molmed.2020.10.004 33199209
    [Google Scholar]
  71. ZehraM. FatimaT. HanifA. RaufiN. KhanA. Nadofaragene: A new era of precision medicine for bladder cancer.Ann. Med. Surg. (Lond.)201286171010.1097/MS9.0000000000001488
    [Google Scholar]
  72. GalskyM.D. HoimesC.J. NecchiA. ShoreN. WitjesJ.A. SteinbergG. BedkeJ. NishiyamaH. FangX. KatariaR. SbarE. JiaX. Siefker-RadtkeA. Perioperative pembrolizumab therapy in muscle-invasive bladder cancer: Phase III KEYNOTE-866 and KEYNOTE-905/EV-303.Future Oncol.202117243137315010.2217/fon‑2021‑0273 34008425
    [Google Scholar]
  73. LeeA. Nadofaragene firadenovec: first approval.Drugs202383435335710.1007/s40265‑023‑01846‑z 36856952
    [Google Scholar]
  74. FennK.M. KalinskyK. Sacituzumab govitecan: antibody-drug conjugate in triple-negative breast cancer and other solid tumors.Drugs Today (Barc)201955957558510.1358/dot.2019.55.9.3039669 31584574
    [Google Scholar]
  75. CardilloT.M. GovindanS.V. SharkeyR.M. TrisalP. ArrojoR. LiuD. RossiE.A. ChangC.H. GoldenbergD.M. Sacituzumab govitecan (IMMU-132), an anti-trop-2/SN-38 antibody-drug conjugate: characterization and efficacy in pancreatic, gastric, and other cancers.Bioconjug. Chem.201526591993110.1021/acs.bioconjchem.5b00223 25915780
    [Google Scholar]
  76. IacovelliR. CicalaC.M. CiccareseC. SaccoE. RacioppiM. BassiP.F. TortoraG. Management of metastatic urothelial carcinoma: Current approach, emerging agents, and future perspectives.Urologia202390131010.1177/03915603221139907 36537831
    [Google Scholar]
  77. CathomasR. LorchA. BruinsH.M. CompératE.M. CowanN.C. EfstathiouJ.A. FietkauR. GakisG. HernándezV. EspinósE.L. NeuzilletY. RibalM.J. RouanneM. ThalmannG.N. van der HeijdenA.G. VeskimäeE. Alfred WitjesJ. MilowskyM.I. The 2021 updated european association of urology guidelines on metastatic urothelial carcinoma.Eur. Urol.20228119510310.1016/j.eururo.2021.09.026 34742583
    [Google Scholar]
  78. ChoiW. LombardoK. PatelS. EpsteinG. FengM. GabrielsonA. HahnN.M. Hoffman-CensitsJ. McConkeyD. BivalacquaT.J. MatosoA. KatesM. A molecular inquiry into the role of antibody-drug conjugates in bacillus calmette-guérin-exposed non-muscle-invasive bladder cancer.Eur. Urol.202281213814210.1016/j.eururo.2021.10.009 34736796
    [Google Scholar]
  79. SyedY.Y. Sacituzumab Govitecan: First approval.Drugs202080101019102510.1007/s40265‑020‑01337‑5 32529410
    [Google Scholar]
  80. GrivasP. PouesselD. ParkC.H. BarthelemyP. BupathiM. PetrylakD.P. AgarwalN. GuptaS. FléchonA. RamamurthyC. DavisN.B. Recio-BoilesA. SternbergC.N. BhatiaA. PichardoC. SiereckiM. TonelliJ. ZhouH. TagawaS.T. LoriotY. Sacituzumab govitecan in combination with pembrolizumab for patients with metastatic urothelial cancer that progressed after platinum-based chemotherapy: TROPHY-U-01 cohort 3.J. Clin. Oncol.202442121415142510.1200/JCO.22.02835 38261969
    [Google Scholar]
  81. Challita-EidP.M. SatpayevD. YangP. AnZ. MorrisonK. ShostakY. RaitanoA. NadellR. LiuW. LortieD.R. CapoL. VerlinskyA. LeavittM. MalikF. AviñaH. GuevaraC.I. DinhN. KarkiS. AnandB.S. PereiraD.S. JosephI.B.J. DoñateF. MorrisonK. StoverD.R. Enfortumab vedotin antibody-drug conjugate targeting nectin-4 is a highly potent therapeutic agent in multiple preclinical cancer models.Cancer Res.201676103003301310.1158/0008‑5472.CAN‑15‑1313 27013195
    [Google Scholar]
  82. LiS. ShiY. DongH. GuoH. LiY. KadeerbaiH. XuC. KimE. LeeS. GorlaS.R. ZhangJ. GuoJ. ShengX. EV- 203: Phase 2 trial of enfortumab vedotin in patients with previously treated advanced urothelial carcinoma in China. J. Clin. Oncol.20234116_supple16574e1657410.1200/JCO.2023.41.16_suppl.e16574 36626707
    [Google Scholar]
  83. MaioranoB.A. CatalanoM. MaielloE. RovielloG. Enfortumab vedotin in metastatic urothelial carcinoma: the solution EVentually?Front. Oncol.202313125490610.3389/fonc.2023.1254906 37781180
    [Google Scholar]
  84. LongleyD.B. HarkinD.P. JohnstonP.G. 5-Fluorouracil: mechanisms of action and clinical strategies.Nat. Rev. Cancer20033533033810.1038/nrc1074 12724731
    [Google Scholar]
  85. de Haar-HollemanA. van HoogstratenL.M.C. HulshofM.C.C.M. TascilarM. BrückK. MeijerR.P. Alfred WitjesJ. KiemeneyL.A. AbenK.K.H. Chemoradiation for muscle-invasive bladder cancer using 5-fluorouracil versus capecitabine: A nationwide cohort study.Radiother. Oncol.202318310958410.1016/j.radonc.2023.109584 36863459
    [Google Scholar]
  86. HoroH. DasS. MandalB. KunduL.M. Development of a photoresponsive chitosan conjugated prodrug nano-carrier for controlled delivery of antitumor drug 5-fluorouracil.Int. J. Biol. Macromol.20191211070107610.1016/j.ijbiomac.2018.10.095 30342947
    [Google Scholar]
  87. BaraniM. BilalM. SabirF. RahdarA. KyzasG.Z. Nanotechnology in ovarian cancer: Diagnosis and treatment.Life Sci.202126611891410.1016/j.lfs.2020.118914 33340527
    [Google Scholar]
  88. BaraniM. MukhtarM. RahdarA. SargaziS. PandeyS. KangM. Recent advances in nanotechnology-based diagnosis and treatments of human osteosarcoma.Biosensors (Basel)20211125510.3390/bios11020055 33672770
    [Google Scholar]
  89. ChenC.H. ChanT.M. WuY.J. ChenJ.J. Review: application of nanoparticles in urothelial cancer of the urinary bladder.J. Med. Biol. Eng.201535441942710.1007/s40846‑015‑0060‑5 26339222
    [Google Scholar]
  90. YanW. LeungS.S.Y. ToK.K.W. Updates on the use of liposomes for active tumor targeting in cancer therapy.Nanomedicine (Lond.)202015330331810.2217/nnm‑2019‑0308 31802702
    [Google Scholar]
  91. LiM. DuC. GuoN. TengY. MengX. SunH. LiS. YuP. GalonsH. Composition design and medical application of liposomes.Eur. J. Med. Chem.201916464065310.1016/j.ejmech.2019.01.007 30640028
    [Google Scholar]
  92. MustafaG. AhmadM.Z. AslamM. GargA. AhmadJ. Nanoliposomal system for breast cancer therapy bt - hormone related cancer mechanistic and nanomedicines: challenges and prospects AlrobaianM. BegS. AlharbiK.S. Springer Nature: Singapore202219921810.1007/978‑981‑19‑5558‑7_10
    [Google Scholar]
  93. BahadurS. SharmaM. Liposome based drug delivery for the management of psoriasis - a comprehensive review.Curr. Pharm. Biotechnol.202324111383139610.2174/1389201024666221213144228 36518042
    [Google Scholar]
  94. HsuJ.W. KingM. Applications of nanotechnology in bladder cancer therapy.J. Healthc. Eng.20123453555010.1260/2040‑2295.3.4.535
    [Google Scholar]
  95. LiF. QinY. LeeJ. LiaoH. WangN. DavisT.P. QiaoR. LingD. Stimuli-responsive nano-assemblies for remotely controlled drug delivery.J. Control. Release202032256659210.1016/j.jconrel.2020.03.051 32276006
    [Google Scholar]
  96. D’MelloS.R. CruzC.N. ChenM.L. KapoorM. LeeS.L. TynerK.M. The evolving landscape of drug products containing nanomaterials in the United States.Nat. Nanotechnol.201712652352910.1038/nnano.2017.67 28436961
    [Google Scholar]
  97. PirolloK.F. RaitA. ZhouQ. ZhangX. ZhouJ. KimC.S. BenedictW.F. ChangE.H. Tumor-targeting nanocomplex delivery of novel tumor suppressor RB94 chemosensitizes bladder carcinoma cells in vitro and in vivo.Clin. Cancer Res.20081472190219810.1158/1078‑0432.CCR‑07‑1951 18381961
    [Google Scholar]
  98. BrummelhuisI.S.G. SimonsM. LindnerL.H. KortS. de JongS. HossannM. WitjesJ.A. OosterwijkE. DPPG 2 -based thermosensitive liposomes as drug delivery system for effective muscle-invasive bladder cancer treatment in vivo.Int. J. Hyperthermia20213811415142410.1080/02656736.2021.1983038 34581259
    [Google Scholar]
  99. HarwanshR.K. DeshmukhR. RahmanM.A. Nanoemulsion: Promising nanocarrier system for delivery of herbal bioactives.J. Drug Deliv. Sci. Technol.20195122423310.1016/j.jddst.2019.03.006
    [Google Scholar]
  100. TalegaonkarS. NegiL.M. Nanoemulsion in drug targeting bt - targeted drug delivery : concepts and design.ChamSpringer201543345910.1007/978‑3‑319‑11355‑5_14
    [Google Scholar]
  101. GantaS. TalekarM. SinghA. ColemanT.P. AmijiM.M. Nanoemulsions in translational research-opportunities and challenges in targeted cancer therapy.AAPS PharmSciTech201415369470810.1208/s12249‑014‑0088‑9 24510526
    [Google Scholar]
  102. GuptaA. EralH.B. HattonT.A. DoyleP.S. Nanoemulsions: formation, properties and applications.Soft Matter201612112826284110.1039/C5SM02958A 26924445
    [Google Scholar]
  103. RinaldiF. MauriziL. ForteJ. MarazzatoM. HaniehP. ConteA. AmmendoliaM. MarianecciC. CarafaM. LonghiC. Resveratrol-loaded nanoemulsions: In vitro activity on human t24 bladder cancer cells.Nanomaterials (Basel)2021116156910.3390/nano11061569 34203613
    [Google Scholar]
  104. JainS. AncheriaR.K. ShrivastavaS. SoniS.L. SharmaM. An overview of nanogel –novel drug delivery system.AJPRD201972475510.22270/ajprd.v7i2.482
    [Google Scholar]
  105. Dalir AbdolahiniaE. BaratiG. Ranjbar-NavaziZ. KadkhodaJ. IslamiM. HashemzadehN. Maleki DizajS. SharifiS. Application of nanogels as drug delivery systems in multicellular spheroid tumor model.J. Drug Deliv. Sci. Technol.20226810310910.1016/j.jddst.2022.103109
    [Google Scholar]
  106. LuS. NeohK.G. KangE.T. MahendranR. ChiongE. Mucoadhesive polyacrylamide nanogel as a potential hydrophobic drug carrier for intravesical bladder cancer therapy.Eur. J. Pharm. Sci.201572576810.1016/j.ejps.2015.03.006 25772330
    [Google Scholar]
  107. GuoH. XuW. ChenJ. YanL. DingJ. HouY. ChenX. Positively charged polypeptide nanogel enhances mucoadhesion and penetrability of 10-hydroxycamptothecin in orthotopic bladder carcinoma.J. Control. Release201725913614810.1016/j.jconrel.2016.12.041 28062300
    [Google Scholar]
  108. ZhangY. RenT. GouJ. ZhangL. TaoX. TianB. TianP. YuD. SongJ. LiuX. ChaoY. XiaoW. TangX. Strategies for improving the payload of small molecular drugs in polymeric micelles.J. Control. Release201726135236610.1016/j.jconrel.2017.01.047 28163211
    [Google Scholar]
  109. AlmajidiY.Q. KadhimM.M. AlsaikhanF. Turki JalilA. Hassan SayyidN. Alexis Ramírez-CoronelA. Hassan JawharZ. GuptaJ. NabaviN. YuW. ErtasY.N. Doxorubicin-loaded micelles in tumor cell-specific chemotherapy.Environ. Res.202322711572210.1016/j.envres.2023.115722 36948284
    [Google Scholar]
  110. LuoL. JinX. ZhangP. ChengH. LiY. DuT. ZouB. GouM. Efficient intravesical therapy of bladder cancer with cationic doxorubicin nanoassemblies.Int. J. Nanomedicine2016114535454410.2147/IJN.S103994 27660445
    [Google Scholar]
  111. BeltzJ. PfaffA. AbdullahiI.M. CristeaA. MochalinV.N. ErcalN. Effect of nanodiamond surface chemistry on adsorption and release of tiopronin.Diamond Related Materials201910010759010.1016/j.diamond.2019.107590 31814658
    [Google Scholar]
  112. AliM.S. MetwallyA.A. FahmyR.H. OsmanR. Chitosan-coated nanodiamonds: Mucoadhesive platform for intravesical delivery of doxorubicin.Carbohydr. Polym.202024511652810.1016/j.carbpol.2020.116528 32718632
    [Google Scholar]
  113. LuS. XuL. KangE.T. MahendranR. ChiongE. NeohK.G. Co-delivery of peptide-modified cisplatin and doxorubicin via mucoadhesive nanocapsules for potential synergistic intravesical chemotherapy of non-muscle-invasive bladder cancer.Eur. J. Pharm. Sci.20168410311510.1016/j.ejps.2016.01.013 26780592
    [Google Scholar]
  114. AshrafizadehM. ZarrabiA. Karimi-MalehH. TaheriazamA. MirzaeiS. HashemiM. HushmandiK. MakvandiP. Nazarzadeh ZareE. SharifiE. GoelA. WangL. RenJ. Nuri ErtasY. KumarA.P. WangY. RabieeN. SethiG. MaZ. (Nano)platforms in bladder cancer therapy: Challenges and opportunities.Bioeng. Transl. Med.202381e1035310.1002/btm2.10353 36684065
    [Google Scholar]
  115. KimE.S. Avelumab: first global approval.Drugs201777892993710.1007/s40265‑017‑0749‑6 28456944
    [Google Scholar]
  116. HoyS.M. Tazemetostat: First Approval.Drugs202080551352110.1007/s40265‑020‑01288‑x 32166598
    [Google Scholar]
  117. ChangE. WeinstockC. ZhangL. CharlabR. DorffS.E. GongY. HsuV. LiF. RicksT.K. SongP. TangS. WaldronP.E. YuJ. ZahalkaE. GoldbergK.B. PazdurR. TheoretM.R. IbrahimA. BeaverJ.A. FDA approval summary: enfortumab vedotin for locally advanced or metastatic urothelial carcinoma.Clin. Cancer Res.202127492292710.1158/1078‑0432.CCR‑20‑2275 32962979
    [Google Scholar]
  118. MarkhamA. Erdafitinib: first global approval.Drugs20197991017102110.1007/s40265‑019‑01142‑9 31161538
    [Google Scholar]
  119. VyasM. SimboD.A. MursalinM. MishraV. BasharyR. KhatikG.L. Drug delivery approaches for doxorubicin in the management of cancers.Curr. Cancer Ther. Rev.202016432033110.2174/1573394716666191216114950
    [Google Scholar]
  120. MarkhamA. Copanlisib: first global approval.Drugs201777182057206210.1007/s40265‑017‑0838‑6 29127587
    [Google Scholar]
  121. InmanB.A. LongoT.A. RamalingamS. HarrisonM.R. Atezolizumab: A PD-L1-blocking antibody for bladder cancer.Clin. Cancer Res.20172381886189010.1158/1078‑0432.CCR‑16‑1417 27903674
    [Google Scholar]
  122. RaedlerL.A. Opdivo (Nivolumab): Second PD-1 inhibitor receives fda approval for unresectable or metastatic melanoma.Am. Health Drug Benefits20158180183
    [Google Scholar]
  123. PooleR.M. Pembrolizumab: first global approval.Drugs201474161973198110.1007/s40265‑014‑0314‑5 25331768
    [Google Scholar]
  124. Study of erdafitinib intravesical delivery system for localized bladder cancerNCT053161552024
  125. A Study of Erdafitinib Intravesical Delivery System in Japanese Participants With Bladder Cancer (TAR-210).NCT055671852024
  126. An Efficacy and Safety Study of Erdafitinib (JNJ-42756493) in Participants With Urothelial Cancer.NCT023655972024
  127. A study of oral erdafitinib in people with recurrent non-invasive bladder cancer. NCT049178092024
  128. PLZ4-coated paclitaxel-loaded micelles for the treatment of patients with recurrent or refractory non-muscle invasive bladder cancer.NCT061733492023
  129. Paclitaxel in treating patients with early-stage bladder cancerNCT000029172013
  130. Proliposomal intravesical paclitaxel for treatment of low-grade, Stage Ta, non muscle invasive bladder cancerNCT030818582022
  131. Pegylated Liposomal Doxorubicin, PD-1 in Treating Muscle Invasive Bladder CancerNCT041018122019
  132. Keyhole limpet hemocyanin compared with doxorubicin in treating patients with bladder cancer.NCT000060342013
  133. A study of atezolizumab in participants with locally advanced or metastatic urothelial bladder cancer (cohort 2).NCT021086522024
  134. ADSTILADRIN (=INSTILADRIN) in patients with high grade, Bacillus Calmette-Guerin (BCG) unresponsive Non-Muscle Invasive Bladder Cancer (NMIBC).NCT027738492023
/content/journals/cpb/10.2174/0113892010314650240514053735
Loading
/content/journals/cpb/10.2174/0113892010314650240514053735
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): bladder cancer; clinical trials; FDA; solid tumors; targeted drugs; Urological cancer
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test