Skip to content
2000
Volume 26, Issue 2
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Background

Tankyrases (TNKS) are homomultimers existing in two forms, . TNKS1 and TNKS2. TNKS2 plays a pivotal role in carcinogenesis by activating the Wnt//β-catenin pathway. TNKS2 has been identified as a suitable target in oncology due to its crucial role in mediating tumour progression. The discovery of 5-methyl-5-[4-(4-oxo-3H-quinazolin-2-yl) phenyl]imidazolidine-2,4-dione, a hydantoin phenylquinazolinone derivative which exists as a racemic mixture and in its pure enantiomer forms, has reportedly exhibited inhibitory potency towards TNKS2. However, the molecular events surrounding its chirality towards TNKS2 remain unresolved.

Methods

Herein, we employed methods such as molecular dynamics simulation coupled with binding free energy estimations to explore the mechanistic activity of the racemic inhibitor and its enantiomer forms on TNKS2 at a molecular level.

Results

Favourable binding free energies were noted for all three ligands propelled by electrostatic and van der Waals forces. The positive enantiomer demonstrated the highest total binding free energy (-38.15 kcal/mol), exhibiting a more potent binding affinity to TNKS2. Amino acids PHE1035, ALA1038, and HIS1048; PHE1035, HIS1048 and ILE1039; and TYR1060, SER1033 and ILE1059 were identified as key drivers of TNKS2 inhibition for all three inhibitors, characterized by the contribution of highest residual energies and the formation of crucial high-affinity interactions with the bound inhibitors. Further assessment of chirality by the inhibitors revealed a stabilizing effect of the complex systems of all three inhibitors on the TNKS2 structure. Concerning flexibility and mobility, the racemic inhibitor and negative enantiomer revealed a more rigid structure when bound to TNKS2, which could potentiate biological activity interference. The positive enantiomer, however, displayed much more elasticity and flexibility when bound to TNKS2.

Conclusion

Overall, 5-methyl-5-[4-(4-oxo-3H-quinazolin-2-yl)phenyl]imidazolidine-2,4-dione and its derivatives showed their inhibitory prowess when bound to the TNKS2 target assessment. Thus, results from this study offer insight into chirality and the possibility of adjustments of the enantiomer ratio to promote greater inhibitory results. These results could also offer insight into lead optimization to enhance inhibitory effects.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/1389201024666230330084017
2023-03-30
2025-01-13
Loading full text...

Full text loading...

References

  1. KimM. Novel insight into the function of tankyrase. (Review)Oncol. Lett. 201816668956902Available from: https://www.spandidos-publications.com/ol/16/6/6895 10.3892/ol.2018.955130546421
    [Google Scholar]
  2. VermaA. KumarA. ChughA. KumarS. KumarP. Tankyrase inhibitors: Emerging and promising therapeutics for cancer treatment.Curr. Top. Med. Chem.2020141719671976Available from: https://link.springer.com/article/10.1007/s00044-020-02657-7
    [Google Scholar]
  3. LeendersR.G.G. BrinchS.A. SowaS.T. Amundsen-IsaksenE. Galera-PratA. MurthyS. AertssenS. SmitsJ.N. NieczyporP. DamenE. WegertA. NazaréM. LehtiöL. WaalerJ. KraussS. Development of a 1,2,4-triazole-based lead tankyrase inhibitor: Part II.J. Med. Chem.20216424179361794910.1021/acs.jmedchem.1c0126434878777
    [Google Scholar]
  4. ChiangY.J. HsiaoS.J. YverD. CushmanS.W. TessarolloL. SmithS. HodesR.J. Tankyrase 1 and tankyrase 2 are essential but redundant for mouse embryonic development.PLoS One200837e263910.1371/journal.pone.000263918612384
    [Google Scholar]
  5. De RyckerM. PriceC.M. Tankyrase polymerization is controlled by its sterile alpha motif and poly(ADP-ribose) polymerase domains.Mol. Cell. Biol.200424229802981210.1128/MCB.24.22.9802‑9812.200415509784
    [Google Scholar]
  6. Zamudio-MartinezE. Herrera-CamposA.B. MuñozA. Rodríguez-VargasJ.M. OliverF.J. Tankyrases as modulators of pro-tumoral functions: molecular insights and therapeutic opportunities.J. Exp. Clin. Cancer Res.2021401144[Internet10.1186/s13046‑021‑01950‑6
    [Google Scholar]
  7. VillegasI. Sanchez-FidalgoS. Sánchez-FidalgoS. Alarcon de la LastraC. VillegasI. Sanchez-FidalgoS. Poly(ADP-ribose) polymerase inhibitors: new pharmacological functions and potential clinical implications.Curr. Pharm. Des.200713993396210.2174/13816120778041424117430191
    [Google Scholar]
  8. PetersX.Q. MalingaT.H. AgoniC. OlotuF.A. SolimanM.E.S. Zoning in on Tankyrases: A brief review on the past, present and prospective studies.Anticancer. Agents Med. Chem.202019161920193410.2174/187152061966619101911432131648650
    [Google Scholar]
  9. NkizinkikoY. DesantisJ. KoivunenJ. HaikarainenT. MurthyS. SancinetoL. MassariS. IanniF. ObajiE. LozaM.I. PihlajaniemiT. BreaJ. TabarriniO. LehtiöL. 2-Phenylquinazolinones as dual-activity tankyrase-kinase inhibitors.Sci. Rep.201881168010.1038/s41598‑018‑19872‑329374194
    [Google Scholar]
  10. MariottiL. PollockK. GuettlerS. Regulation of Wnt/β-catenin signalling by tankyrase-dependent poly(ADP-ribosyl)ation and scaffolding.Br. J. Pharmacol.2017174244611463610.1111/bph.1403828910490
    [Google Scholar]
  11. MenonM. ElliottR. BowersL. BalanN. RafiqR. Costa-CabralS. MunkongeF. TrinidadeI. PorterR. CampbellA.D. JohnsonE.R. EsdarC. BuchstallerH.P. LeuthnerB. RohdichF. SchneiderR. SansomO. WienkeD. AshworthA. LordC.J. A novel tankyrase inhibitor, MSC2504877, enhances the effects of clinical CDK4/6 inhibitors.Sci. Rep.20199120110.1038/s41598‑018‑36447‑430655555
    [Google Scholar]
  12. HuangS.M.A. MishinaY.M. LiuS. CheungA. StegmeierF. MichaudG.A. CharlatO. WielletteE. ZhangY. WiessnerS. HildM. ShiX. WilsonC.J. MickaninC. MyerV. FazalA. TomlinsonR. SerlucaF. ShaoW. ChengH. ShultzM. RauC. SchirleM. SchleglJ. GhidelliS. FawellS. LuC. CurtisD. KirschnerM.W. LengauerC. FinanP.M. TallaricoJ.A. BouwmeesterT. PorterJ.A. BauerA. CongF. Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling.Nature20094617264614620Available from: https://www.nature.com/articles/nature08356 10.1038/nature0835619759537
    [Google Scholar]
  13. Kierulf-VieiraK.S. SandbergC.J. WaalerJ. LundK. SkagaE. SaberniakB.M. PanagopoulosI. BrandalP. KraussS. LangmoenI.A. Vik-MoE.O. A small-molecule tankyrase inhibitor reduces glioma stem cell proliferation and sphere formation.Cancers2020126163010.3390/cancers1206163032575464
    [Google Scholar]
  14. PatelJ.P. GönenM. FigueroaM.E. FernandezH. SunZ. RacevskisJ. Van VlierbergheP. DolgalevI. ThomasS. AminovaO. HubermanK. ChengJ. VialeA. SocciN.D. HeguyA. CherryA. VanceG. HigginsR.R. KetterlingR.P. GallagherR.E. LitzowM. van den BrinkM.R.M. LazarusH.M. RoweJ.M. LugerS. FerrandoA. PaiettaE. TallmanM.S. MelnickA. Abdel-WahabO. LevineR.L. Prognostic relevance of integrated genetic profiling in acute myeloid leukemia.N. Engl. J. Med.2012366121079108910.1056/NEJMoa111230422417203
    [Google Scholar]
  15. HsiaoS.J. PoitrasM.F. CookB.D. LiuY. SmithS. Tankyrase 2 poly(ADP-ribose) polymerase domain-deleted mice exhibit growth defects but have normal telomere length and capping.Mol. Cell. Biol.20062662044205410.1128/MCB.26.6.2044‑2054.200616507985
    [Google Scholar]
  16. ParkH.W. GuanK.L. Regulation of the Hippo pathway and implications for anticancer drug development.Trends Pharmacol. Sci.2013341058158910.1016/j.tips.2013.08.00624051213
    [Google Scholar]
  17. Wang, 2015. Tankyrase inhibitors target YAP by stabilizing angiomotin family proteins.Physiol. Behav.20181765139148
    [Google Scholar]
  18. LorenzH. Seidel-MorgensternA. Processes to separate enantiomers.Angew. Chem. Int. Ed. Engl.201453512181250Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/anie.201302823
    [Google Scholar]
  19. MaierN.M. FrancoP. LindnerW. Separation of enantiomers: Needs, challenges, perspectives.J. Chromatogr. A2001906333
    [Google Scholar]
  20. WilliaK. LeeE. Importance of drug enantiomers in clinical pharmacology.Drugs2012304333354Available from: :https://link.springer.com/article/10.2165/00003495-198530040-00003
    [Google Scholar]
  21. SmithD. Field Guide to Physical Optics Society of Photo-Optical Instrumentation Engineers.2013Available from: https://chem.libretexts.org/@go/page/800
    [Google Scholar]
  22. RouhiA.M. Chiral business [InternetChem. Eng. News. [Internet].200381184561Available from: https://elibrary.ru/item.asp?id=6183504 10.1021/cen‑v081n018.p045
    [Google Scholar]
  23. LinG.Q. YouQ.D. ChengJ.F. Chiral Drugs:Chemistry and Biological ActionJohn Wiley and SonsUS2011Available from: https://books.google.co.za/books?hl=en&lr=&id=Zgx13oMZaYUC&oi=fnd&pg=PR7&dq=Chiral+Drugs:+Chemistry+and+Biological+Action,+(Eds.:+G.-Q.+Lin,+Q.-D.+You,+J.-F.+Cheng),+Wiley,+Hoboken,+2011&ots=sZzdIYf3DG&sig=21dyT89r9_68Y2pmxCeXfU1yTCo&redir_esc=y#v=onepage
    [Google Scholar]
  24. HaikarainenT. KoivunenJ. NarwalM. VenkannagariH. ObajiE. JoensuuP. PihlajaniemiT. LehtiöL. Para-Substituted 2-phenyl-3,4-dihydroquinazolin-4-ones as potent and selective tankyrase inhibitors.ChemMedChem20138121978198510.1002/cmdc.20130033724130191
    [Google Scholar]
  25. UshaT. ShanmugarajanD. GoyalA.K. KumarC.S. MiddhaS.K. Recent updates on computer-aided drug discovery: Time for a paradigm shift.Curr. Top. Med. Chem.2018173032963307Available from: https://www.ingentaconnect.com/content/ben/ctmc/2017/00000017/00000030/art00009 10.2174/156802661866618010116365129295698
    [Google Scholar]
  26. PoonanP. AgoniC. SolimanM.E.S. Dual-Knockout of mutant isocitrate dehydrogenase 1 and 2 subtypes towards glioma therapy: structural mechanistic insights on the role of vorasidenib.Chem Biodivers187e2100110
    [Google Scholar]
  27. YoungD. A practical guide for applying techniques to real world problemsGoogle Books; [Internet].John Wiley and SonsUS2001Available from: https://books.google.co.za/books?hl=en&lr=&id=-pn8K53IUqgC&oi=fnd&pg=PR7&dq=why+is+computational+chemkistry+advantageous&ots=x_l2_AUxVR&sig=Z-CfZh-uJPOMNqW8EFKukxAAcaI&redir_esc=y#v=onepage&q=why
    [Google Scholar]
  28. BermanH.M. WestbrookJ. FengZ. GillilandG. BhatT.N. WeissigH. ShindyalovP.E.B. I.N. The Protein Data Bank.Nucleic Acids Res.200028235242Internet Available from: http://www.rcsb.org/
    [Google Scholar]
  29. BermanH.M. BattistuzT. BhatT.N. BluhmW.F. BourneP.E. BurkhardtK. TheProtein Data Bank. Acta Crystallogr Sect D.2002Internet Available from: https://www.onlinelibrary.wiley. com/doi/abs/10.1107/S0907444902003451
    [Google Scholar]
  30. PettersenE.F. GoddardT.D. HuangC.C. CouchG.S. GreenblattD.M. MengE.C. FerrinT.E. UCSF Chimera? A visualization system for exploratory research and analysis.J. Comput. Chem.2004251316051612[https://pubmed.ncbi.nlm. nih.gov/15264254/10.1002/jcc.2008415264254
    [Google Scholar]
  31. CherinkaB. AndrewsB.H. Sánchez-GallegoJ. BrownsteinJ. Argudo-FernándezM. BlantonM. BundyK. JonesA. MastersK. LawD.R. RowlandsK. WeijmansA-M. WestfallK. YanR. Marvin: A tool kit for streamlined access and visualization of the SDSS-IV MaNGA data set.Astron. J.2019158274Available from: https://ui.adsabs.harvard.edu/abs/2019AJ....158...74C/abstract 10.3847/1538‑3881/ab2634
    [Google Scholar]
  32. ChemAxon. Marvin, InternetAvailable from: https://chemaxon.com/products/marvin
  33. HanwellM.D. CurtisD.E. LonieD.C. VandermeerschT. ZurekE. HutchisonG.R. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform.J. Cheminform.2012411710.1186/1758‑2946‑4‑1722889332
    [Google Scholar]
  34. TrottO. OlsonA.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading.J. Comput. Chem.2009312455461
    [Google Scholar]
  35. EberhardtJ. Santos-MartinsD. TillackA.F. ForliS. AutoDock Vina 1.2.0: New docking methods, expanded force field, and python bindings.J. Chem. Inf. Model.20216183891389810.1021/acs.jcim.1c0020334278794
    [Google Scholar]
  36. SliwoskiG. KothiwaleS. MeilerJ. LoweE.W. Computational methods in drug discovery.Pharmacol. Rev.201466133433910.1124/pr.112.007336
    [Google Scholar]
  37. CaseD.A. Ben-ShalomI.Y. BrozellS.R. CeruttiD.S. CheathamT.E.III CruzeiroV.W.D. Amber; University of California:San Francisco20181[Internet] Available from: http://ambermd.org/
    [Google Scholar]
  38. WangJ. WangW. KollmanP.A. CaseD.A. Automatic atom type and bond type perception in molecular mechanical calculations.J. Mol. Graph. Model.2006252247260Available from: https://www.sciencedirect.com/science/article/pii/S1093326305001737 10.1016/j.jmgm.2005.12.00516458552
    [Google Scholar]
  39. MaierJ.A. MartinezC. KasavajhalaK. WickstromL. HauserK.E. SimmerlingC. ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB.J. Chem. Theory Comput.20151183696371310.1021/acs.jctc.5b0025526574453
    [Google Scholar]
  40. JorgensenW.L. ChandrasekharJ. MaduraJ.D. ImpeyR.W. KleinM.L. JorgensenW.L. Comparison of simple potential functions for simulating liquid water.J. Chem. Phys.1983792926935Available from: https://aip.scitation.org/doi/abs/10.1063/1.445869 [Internet]10.1063/1.445869
    [Google Scholar]
  41. BerendsenH.J.C. PostmaJ.P.M. van GunsterenW.F. DiNolaA. HaakJ.R. Molecular dynamics with coupling to an external bath.J. Chem. Phys.198481836843690Available from: http://aip.scitation.org/doi/10.1063/1.448118 [Internet10.1063/1.448118
    [Google Scholar]
  42. KräutlerV. Van GunsterenW.F. HünenbergerP.H. A fast SHAKE algorithm to solve distance constraint equations for small molecules in molecular dynamics simulations.J. Comput. Chem.2001225501508Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/1096-987X%2820010415%2922%3A5%3C501%3A%3AAID-JCC1021%3E3.0.CO%3B2-V [Internet10.1002/1096‑987X(20010415)22:5<501:AID‑JCC1021>3.0.CO;2‑V
    [Google Scholar]
  43. RoeD.R. CheathamT.E. III PTRAJ and CPPTRAJ: Software for processing and analysis of molecular synamics trajectory data.J. Chem. Theory Comput.2013973084309510.1021/ct400341p26583988
    [Google Scholar]
  44. DeschenesL.A. Scientific data analysis and graphing software origin lab corporation (formerly Microcal Software, Inc.).J. Am. Chem. Soc.20001223995678Available from: www.originlab.com
    [Google Scholar]
  45. AmaroR.E. SchnauferA. InterthalH. HolW. StuartK.D. McCammonJ.A. Discovery of drug-like inhibitors of an essential RNA-editing ligase in Trypanosoma brucei.Proc. Natl. Acad. Sci. USA2008105451727817283Available from: https://www.pnas.org/doi/abs/10.1073/pnas.0805820105 10.1073/pnas.080582010518981420
    [Google Scholar]
  46. DurrantJ.D. HallL. SwiftR.V. LandonM. SchnauferA. AmaroR.E. Novel naphthalene-based inhibitors of Trypanosoma brucei RNA editing ligase 1.PLoS Negl. Trop. Dis.201048e80310.1371/journal.pntd.000080320808768
    [Google Scholar]
  47. DurrantJ.D. UrbaniakM.D. FergusonM.A.J. McCammonJ.A. Computer-aided identification of Trypanosoma brucei uridine diphosphate galactose 4′-epimerase inhibitors: toward the development of novel therapies for African sleeping sickness.J. Med. Chem.201053135025503210.1021/jm100456a20527952
    [Google Scholar]
  48. PetersX.Q. AgoniC. SolimanM.E.S. Unravelling the structural mechanism of action of 5-methyl-5-[4-(4-oxo-3H-quinazolin-2-yl)phenyl]imidazolidine-2,4-dione in dual-targeting tankyrase 1 and 2: A novel avenue in cancer therapy.Cell Biochem. Biophys.202280505518[https://doi.org/10.1007/s12013-022-01076-2
    [Google Scholar]
  49. OlotuF.A. AgoniC. AdenijiE. AbdullahiM. SolimanM.E. Probing gallate-mediated selectivity and high-affinity binding of epigallocatechin gallate: A way-forward in the design of selective inhibitors for anti-apoptotic Bcl-2 Proteins.Appl. Biochem. Biotechnol.201918731061108010.1007/s12010‑018‑2863‑730155742
    [Google Scholar]
  50. AgoniC. RamharackP. AdvancesM.S-R. Allosteric inhibition induces an open WPD-loop: A new avenue towards glioblastoma therapy.RSC Advances20188704018740197[https://pubs.rsc.org/en/content/articlehtml/2018/ra/c8ra08427k Available from:pubs.rsc.org
    [Google Scholar]
  51. MunsamyG. AgoniC. SolimanM. A dual target of Plasmepsin IX and X: Unveiling the atomistic superiority of a core chemical scaffold in malaria therapy: MUNSAMY et al. Lipid bilayer simu234 lation View project.Artic J Cell Biochem2018120578767887[Internet] Available from: https://www.researchgate.net/publication/328958144
    [Google Scholar]
  52. AgoniC. RamharackP. SolimanM.E.S. Co-inhibition as a strategic therapeutic approach to overcome rifampin resistance in tuberculosis therapy: Atomistic insights.Future Med. Chem.201810141665167510.4155/fmc‑2017‑019729957065
    [Google Scholar]
  53. AgoniC. RamharackP. SolimanM.E.S. Synergistic interplay of the co-administration of rifampin and newly developed Anti-TB drug: Could it be a promising new line of TB therapy?Comb. Chem. High Throughput Screen.2018216453460Available from: https://www.ingentaconnect.com/content/ben/cchts/2018/00000021/00000006/art00009 10.2174/138620732166618071609361730009705
    [Google Scholar]
  54. YlilauriM. PentikäinenO.T. MMGBSA as a tool to understand the binding affinities of filamin-peptide interactions.J. Chem. Inf. Model.201353102626263310.1021/ci400247523988151
    [Google Scholar]
  55. OmolabiK.F. IwuchukwuE.A. AgoniC. OlotuF.A. SolimanM.E.S. A probable means to an end: Exploring P131 pharmacophoric scaffold to identify potential inhibitors of Cryptosporidium parvum inosine monophosphate dehydrogenase.J. Mol. Model.202127235Available from: https://link.springer.com/article/10.1007/s00894-020-04663-3 10.1007/s00894‑020‑04663‑333423140
    [Google Scholar]
  56. SalifuE.Y. AgoniC. SolimanM.E.S. Highlighting the mechanistic role of Olutasidenib (FT-2102) in the selective inhibition of mutated isocitrate dehydrogenase 1 (mIDH1) in cancer therapy.Informatics Med Unlocked202228[Internet]. Available from: https://www.sciencedirect.com/science/article/pii/S2352914821002914
    [Google Scholar]
  57. CaseD.A. CheathamT.E.III DardenT. GohlkeH. LuoR. MerzK.M.Jr OnufrievA. SimmerlingC. WangB. WoodsR.J. The Amber biomolecular simulation programs.J. Comput. Chem.200526161668168810.1002/jcc.2029016200636
    [Google Scholar]
  58. Spontaneous Reactions and Free EnergyCK-122014
    [Google Scholar]
  59. QureshiR. Are there any differences between binding energy and binding affinity?2022
    [Google Scholar]
  60. OmolabiK.F. AgoniC. OlotuF.A. SolimanM.E.S. ‘Finding the needle in the haystack’- will natural products fit for purpose in the treatment of cryptosporidiosis? – A theoretical perspective.Mol. Simul.202147863664910.1080/08927022.2021.1895435
    [Google Scholar]
  61. SalifuE.Y. AgoniC. OlotuF.A. DokuruguY.M. SolimanM.E.S. Halting ionic shuttle to disrupt the synthetic machinery-Structural and molecular insights into the inhibitory roles of Bedaquiline towards Mycobacterium tuberculosis ATP synthase in the treatment of tuberculosis.J. Cell. Biochem.20191209161081611910.1002/jcb.2889131125144
    [Google Scholar]
  62. KarshikoffA. NilssonL. LadensteinR. Rigidity versus flexibility: The dilemma of understanding protein thermal stability.FEBS J.2015[https://doi.org/10.1111/febs.13343
    [Google Scholar]
  63. AgoniC. SalifuE.Y. MunsamyG. OlotuF.A. SolimanM. CF3‐Pyridinyl substitution on antimalarial therapeutics: Probing differential ligand binding and dynamical inhibitory effects of a novel triazolopyrimidine‐based inhibitor on Plasmodium falciparum dihydroorotate dehydrogenase.Chem. Biodivers.20191612e190036510.1002/cbdv.20190036531589372
    [Google Scholar]
  64. PiteraJ.W. Expected distributions of root-mean-square positional deviations in proteins.J. Phys. Chem. B2014118246526653010.1021/jp412776d24655018
    [Google Scholar]
  65. AgoniC. RamharackP. MunsamyG. SolimanM.E.S. Human rhinovirus inhibition through capsid “canyon” perturbation: Structural insights into the role of a novel benzothiophene derivative.Cell Biochem. Biophys.202078131310.1007/s12013‑019‑00896‑z31834576
    [Google Scholar]
  66. AgoniC. RamharackP. SalifuE.Y. SolimanM.E.S. The dual-targeting activity of the metabolite substrate of para-amino salicyclic acid in the mycobacterial folate pathway: atomistic and structural perspectives.Protein J.202039210611710.1007/s10930‑020‑09885‑132086691
    [Google Scholar]
  67. MoureyR.J. BurnetteB.L. BrustkernS.J. DanielsJ.S. HirschJ.L. HoodW.F. MeyersM.J. MnichS.J. PierceB.S. SaabyeM.J. SchindlerJ.F. SouthS.A. WebbE.G. ZhangJ. AndersonD.R. A benzothiophene inhibitor of mitogen-activated protein kinase-activated protein kinase 2 inhibits tumor necrosis factor α production and has oral anti-inflammatory efficacy in acute and chronic models of inflammation.J. Pharmacol. Exp. Ther.20103333797807Available from: https://jpet.aspetjournals.org/content/333/3/797.short 10.1124/jpet.110.16617320237073
    [Google Scholar]
  68. AbdullahiM. OlotuF.A. SolimanM.E. Allosteric inhibition abrogates dysregulated LFA-1 activation: Structural insight into mechanisms of diminished immunologic disease.Comput. Biol. Chem.2018734956Available from: https://www. sciencedirect.com/science/article/pii/S1476927118300458 10.1016/j.compbiolchem.2018.02.00229427909
    [Google Scholar]
  69. LobanovM.Y. BogatyrevaN.S. GalzitskayaO.V. Radius of gyration as an indicator of protein structure compactness.Mol. Biol.2008424623628Available from: https://link.springer. com/article/10.1134/S0026893308040195 10.1134/S002689330804019518856071
    [Google Scholar]
/content/journals/cpb/10.2174/1389201024666230330084017
Loading
/content/journals/cpb/10.2174/1389201024666230330084017
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test