Skip to content
2000
image of Biomarkers and Novel Therapies of Diabetic Neuropathy: An Updated Review

Abstract

Diabetic neuropathy is a persistent consequence of the biochemical condition known as diabetes mellitus. As of now, the identification and management of diabetic neuropathy continue to be problematic due to problems related to the safety and efficacy of existing therapies. This study examines biomarkers, molecular and cellular events associated with the advancement of diabetic neuropathy, as well as the existing pharmacological and non-pharmacological treatments employed. Furthermore, a holistic and mechanism-centric drug repurposing approach, antioxidant therapy, Gene and Cell therapies, Capsaicin and other spinal cord stimulators and lifestyle interventions are pursued for the identification, treatment and management of diabetic neuropathy. An extensive literature survey was done on databases like PubMed, Elsevier, Science Direct and Springer using the keywords “Diabetic Neuropathy”, “Biomarkers”, “Cellular and Molecular Mechanisms”, and “Novel Therapeutic Targets”.Thus, we may conclude that non-pharmacological therapies along with palliative treatment, may prove to be crucial in halting the onset of neuropathic symptoms and in lessening those symptoms once they have occurred.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010316518240924071259
2024-09-27
2025-01-19
Loading full text...

Full text loading...

References

  1. Feldman E.L. Callaghan B.C. Pop-Busui R. Zochodne D.W. Wright D.E. Bennett D.L. Bril V. Russell J.W. Viswanathan V. Diabetic neuropathy. Nat. Rev. Dis. Primers 2019 5 1 41 10.1038/s41572‑019‑0092‑1 31197153
    [Google Scholar]
  2. Callaghan B.C. Cheng H.T. Stables C.L. Smith A.L. Feldman E.L. Diabetic neuropathy: Clinical manifestations and current treatments. Lancet Neurol. 2012 11 6 521 534 10.1016/S1474‑4422(12)70065‑0 22608666
    [Google Scholar]
  3. Negi G. Nakkina V. Kamble P. Sharma S.S. Heme oxygenase-1, a novel target for the treatment of diabetic complications: focus on diabetic peripheral neuropathy. Pharmacol. Res. 2015 102 158 167 10.1016/j.phrs.2015.09.014 26432957
    [Google Scholar]
  4. Singh R. Kishore L. Kaur N. Diabetic peripheral neuropathy: Current perspective and future directions. Pharmacol. Res. 2014 80 21 35 10.1016/j.phrs.2013.12.005 24373831
    [Google Scholar]
  5. Galiero R. Caturano A. Vetrano E. Beccia D. Brin C. Alfano M. Di Salvo J. Epifani R. Piacevole A. Tagliaferri G. Rocco M. Iadicicco I. Docimo G. Rinaldi L. Sardu C. Salvatore T. Marfella R. Sasso F.C. Peripheral neuropathy in diabetes mellitus: Pathogenetic mechanisms and diagnostic options. Int. J. Mol. Sci. 2023 24 4 3554 10.3390/ijms24043554 36834971
    [Google Scholar]
  6. Rajendram R. Gyamfi D. Patel V.B. Preedy V.R. Recommended resources for biomarkers in diabetes: Methods, discoveries, and applications. Biomarkers in Diabetes Springer Cham 2023 1141 1153 10.1007/978‑3‑031‑08014‑2_58
    [Google Scholar]
  7. Bönhof G.J. Herder C. Strom A. Papanas N. Roden M. Ziegler D. emerging biomarkers, tools, and treatments for diabetic polyneuropathy. Endocr. Rev. 2018 10.1210/er.2018‑00107 30256929
    [Google Scholar]
  8. Fujita Y. Murakami T. Nakamura A. Recent Advances in Biomarkers and Regenerative Medicine for Diabetic Neuropathy. Int. J. Mol. Sci. 2021 22 5 2301 10.3390/ijms22052301 33669048
    [Google Scholar]
  9. Richner M. Ferreira N. Dudele A. Jensen T.S. Vaegter C.B. Gonçalves N.P. functional and structural changes of the blood-nerve-barrier in diabetic neuropathy. Front. Neurosci. 2019 12 1038 10.3389/fnins.2018.01038 30692907
    [Google Scholar]
  10. Ristikj-Stomnaroska D. Risteska-Nejashmikj V. Papazova M. Role of inflammation in the pathogenesis of diabetic peripheral neuropathy. Open Access Maced. J. Med. Sci. 2019 7 14 2267 2270 10.3889/oamjms.2019.646 31592273
    [Google Scholar]
  11. Jin H.Y. Park T.S. Role of inflammatory biomarkers in diabetic peripheral neuropathy. J. Diabetes Investig. 2018 9 5 1016 1018 10.1111/jdi.12794 29277966
    [Google Scholar]
  12. Sugimoto K. Yasujima M. Yagihashi S. Role of advanced glycation end products in diabetic neuropathy. Curr. Pharm. Des. 2008 14 10 953 961 10.2174/138161208784139774 18473845
    [Google Scholar]
  13. Collazos-Alemán J.D. Salazar-Ocampo M.P. Mendivil C.O. The role of lipids and lipoproteins in peripheral neuropathy. Lipoproteins in Diabetes Mellitus Jenkins A.J. Toth P.P. Cham Humana 2023 10.1007/978‑3‑031‑26681‑2_18
    [Google Scholar]
  14. Garg S.S. Gupta J. Polyol pathway and redox balance in diabetes. Pharmacol. Res. 2022 182 106326 10.1016/j.phrs.2022.106326 35752357
    [Google Scholar]
  15. Vieira W.F. Malange K.F. de Magalhães S.F. Lemes J.B.P. dos Santos G.G. Nishijima C.M. de Oliveira A.L.R. da Cruz-Höfling M.A. Tambeli C.H. Parada C.A. Anti-hyperalgesic effects of photobiomodulation therapy (904 nm) on streptozotocin-induced diabetic neuropathy imply MAPK pathway and calcium dynamics modulation. Sci. Rep. 2022 12 1 16730 10.1038/s41598‑022‑19947‑2 36202956
    [Google Scholar]
  16. Qureshi Z. Ali M. N. Khalid M. An insight into potential pharmacotherapeutic agents for painful diabetic neuropathy. J. Diabetes Res. 2022 2022 1 1 9 10.1155/2022/9989272
    [Google Scholar]
  17. Akram R. Anwar H. Javed M.S. Imran A. Rasul A. Malik S.A. Manzoor M. Islam F. Khan I.U. Sajid F. Iman T. Shah M.A. Sun T. Hussain G. Shah M.A. Natural molecules as promising players against diabetic peripheral neuropathy: an emerging nutraceutical approach. Int. J. Food Prop. 2023 26 1 894 914 10.1080/10942912.2023.2189569
    [Google Scholar]
  18. Buch A. Kaur S. Nair R. Jain A. Platelet volume indices as predictive biomarkers for diabetic complications in Type 2 diabetic patients. J. Lab Physicians. 2017 9 2 84 88 10.4103/0974‑2727.199625
    [Google Scholar]
  19. Finkel R. Bertini E. Muntoni F. Mercuri E. ENMC SMA Workshop Study Group 209th ENMC international workshop: outcome measures and clinical trial readiness in spinal muscular atrophy 7–9 November 2014, Heemskerk, The Netherlands. Neuromuscul. Disord. 2015 25 7 593 602 10.1016/j.nmd.2015.04.009 26045156
    [Google Scholar]
  20. Rossor A.M. Reilly M.M. Blood biomarkers of peripheral neuropathy. Acta Neurol. Scand. 2022 146 4 325 331 10.1111/ane.13650 35611606
    [Google Scholar]
  21. Zhu T. Meng Q. Ji J. Lou X. Zhang L. Toll-like receptor 4 and tumor necrosis factor-alpha as diagnostic biomarkers for diabetic peripheral neuropathy. Neurosci. Lett. 2015 585 28 32 10.1016/j.neulet.2014.11.020 25445373
    [Google Scholar]
  22. Abd El-hafez F.F. Nsr-Allah A.A.e.M. Mohamed A.K.A.E. Ahmed A.M. Mahmoud A.A. Mahmoud A.A. Novel biomarker serum calprotectin for early diagnosis of diabetic peripheral neuropathy in Type 2 diabetes patients. Egypt. J. Hosp. Med. 2021 82 2 379 385 10.21608/ejhm.2021.144904
    [Google Scholar]
  23. Aghamiri S.H. Komlakh K. Ghaffari M. The crosstalk among TLR2, TLR4 and pathogenic pathways; a treasure trove for treatment of diabetic neuropathy. Inflammopharmacology 2022 30 1 51 60 10.1007/s10787‑021‑00919‑3 35020096
    [Google Scholar]
  24. Chong Z.Z. Menkes D.L. Souayah N. Targeting neuroinflammation in distal symmetrical polyneuropathy in diabetes. Drug Discov. Today 2024 29 8 104087 10.1016/j.drudis.2024.104087 38969091
    [Google Scholar]
  25. Wu J. Li K. Zhou M. Gao H. Wang W. Xiao W. Natural compounds improve diabetic nephropathy by regulating the TLR4 signaling pathway. J. Pharm. Anal. 2024 14 8 100946 10.1016/j.jpha.2024.01.014
    [Google Scholar]
  26. Terashima T. Katagi M. Ohashi N. Neuronal-hematopoietic cell fusion in diabetic neuropathy. Stem Cells Transl. Med. 2023 12 4 215 220 10.1093/stcltm/szad015 36976582
    [Google Scholar]
  27. Verma S.K. Kishore J. Kumari U. A comparative study of tnf-alpha and IL-6 as potential biomarkers for patients with diabetic neuropathy. Int. J. Life Sci. Biotechnol. Pharma. Res. 2023 12 3 1132 1134
    [Google Scholar]
  28. El Sheikh W.M. Alahmar I.E. Salem G.M. El-Sheikh M.A. Tumor necrosis factor alpha in peripheral neuropathy in type 2 diabetes mellitus. Egypt. J. Neurol. Psychiat. Neurosurg. 2019 55 1 37 10.1186/s41983‑019‑0080‑0
    [Google Scholar]
  29. Shi X. Chen Y. Nadeem L. Xu G. Beneficial effect of TNF-α inhibition on diabetic peripheral neuropathy. J. Neuroinflammation 2013 10 1 836 10.1186/1742‑2094‑10‑69 23735240
    [Google Scholar]
  30. Mussa B.M. Srivastava A. Al-Habshi A. Mohammed A.K. Halwani R. Abusnana S. Inflammatory biomarkers levels in T2DM emirati patients with diabetic neuropathy. Diabetes Metab. Syndr. Obes. 2021 14 3389 3397 10.2147/DMSO.S319863 34345175
    [Google Scholar]
  31. Qi M. Zhou Q. Zeng W. Wu L. Zhao S. Chen W. Luo C. Shen M. Zhang J. Tang C.E. Growth factors in the pathogenesis of diabetic foot ulcers. front. Biosci. (Landmark Ed) 2018 23 2 310 317 28930549
    [Google Scholar]
  32. Voelker J. Berg P.H. Sheetz M. Duffin K. Shen T. Moser B. Greene T. Blumenthal S.S. Rychlik I. Yagil Y. Zaoui P. Lewis J.B. Anti–TGF-β1 antibody therapy in patients with diabetic nephropathy. J. Am. Soc. Nephrol. 2017 28 3 953 962 10.1681/ASN.2015111230 27647855
    [Google Scholar]
  33. Massagué J. TGFβ in cancer. Cell 2008 134 2 215 230 10.1016/j.cell.2008.07.001 18662538
    [Google Scholar]
  34. Antonelli A. Ferrari S.M. Corrado A. Ferrannini E. Fallahi P. CXCR3, CXCL10 and type 1 diabetes. Cytokine Growth Factor Rev. 2014 25 1 57 65 10.1016/j.cytogfr.2014.01.006 24529741
    [Google Scholar]
  35. Ascaso P. Palanca A. Martinez-Hervás S. Sanz M.J. Ascaso J.F. Piqueras L. Real J.T. Peripheral blood levels of CXCL10 are a useful marker for diabetic polyneuropathy in subjects with type 2 diabetes. Int. J. Clin. Pract. 2021 75 8 e14302 10.1111/ijcp.14302 33930221
    [Google Scholar]
  36. Gonçalves N.P. Vægter C.B. Andersen H. Østergaard L. Calcutt N.A. Jensen T.S. Schwann cell interactions with axons and microvessels in diabetic neuropathy. Nat. Rev. Neurol. 2017 13 3 135 147 10.1038/nrneurol.2016.201 28134254
    [Google Scholar]
  37. Panee J. Monocyte Chemoattractant Protein 1 (MCP-1) in obesity and diabetes. Cytokine 2012 60 1 1 12 10.1016/j.cyto.2012.06.018 22766373
    [Google Scholar]
  38. Kohl B. Fischer S. Groh J. Wessig C. Martini R. MCP-1/CCL2 modifies axon properties in a PMP22-overexpressing mouse model for Charcot-Marie-tooth 1A neuropathy. Am. J. Pathol. 2010 176 3 1390 1399 10.2353/ajpath.2010.090694 20093502
    [Google Scholar]
  39. Fischer S. Weishaupt A. Troppmair J. Martini R. Increase of MCP‐1 (CCL2) in myelin mutant Schwann cells is mediated by MEK‐ERK signaling pathway. Glia 2008 56 8 836 843 10.1002/glia.20657 18383340
    [Google Scholar]
  40. Mahmoud A.A. Soliman M.S. Moustafa A. Evaluation of monocyte chemoattractant protein 1 (MCP-1) as a predictor of complications in type 2 diabetes mellitus in Zagazig University Hospital. Egypt. J. Hosp. Med. 2021 83 1 995 1001 10.21608/ejhm.2021.160038
    [Google Scholar]
  41. Karahmet E. Prnjavorac B. Bego T. Softić A. Begić L. Begić E. Karahmet E. Prnjavorac L. Prnjavorac I. Clinical use of an analysis of oxidative stress and IL-6 as the promoters of diabetic polyneuropathy. Med. Glas. 2021 18 1 12 17 33480229
    [Google Scholar]
  42. Cox A.A. Sagot Y. Hedou G. Grek C. Wilkes T. Vinik A.I. Ghatnekar G. Low-dose pulsatile interleukin-6 as a treatment option for diabetic peripheral neuropathy. Front. Endocrinol. (Lausanne) 2017 8 89 10.3389/fendo.2017.00089 28512447
    [Google Scholar]
  43. Chanda D. Ray S. Chakraborti D. Sen S. Mitra A. Interleukin-6 levels in patients with diabetic polyneuropathy. Cureus 2022 14 2 e21952 10.7759/cureus.21952 35155045
    [Google Scholar]
  44. Zhou J. Zhou S. Inflammation: Therapeutic targets for diabetic neuropathy. Mol. Neurobiol. 2014 49 1 536 546 10.1007/s12035‑013‑8537‑0 23990376
    [Google Scholar]
  45. Mureșan A.V. Tomac A. Opriș D.R. Bandici B.C. Coșarcă C.M. Covalcic D.C. Hălmaciu I. Akácsos-Szász O.Z. Rădulescu F. Lázár K. Stoian A. Tilinca M.C. Inflammatory markers used as predictors of subclinical atherosclerosis in patients with diabetic polyneuropathy. Life (Basel) 2023 13 9 1861 10.3390/life13091861 37763265
    [Google Scholar]
  46. Adki K.M. Kulkarni Y.A. Biomarkers in diabetic neuropathy. Arch. Physiol. Biochem. 2020 ••• 1 16 10.1080/13813455.2020.1837183 33186087
    [Google Scholar]
  47. Sun Q. Yan B. Yang D. Guo J. Wang C. Zhang Q. Shi Y. Shi X. Tian G. Liang X. Serum adiponectin levels are positively associated with diabetic peripheral neuropathy in chinese patients with type 2 diabetes. Front. Endocrinol. (Lausanne) 2020 11 567959 10.3389/fendo.2020.567959 33324342
    [Google Scholar]
  48. Al-Dulaimy A.H. Abdul Ghafoor K.F. Evaluation of adiponectin serum levels and their association with oxidative stress in individuals with type 2 diabetes mellitus in Iraq. Anaesth. Pain Intensive Care 2024 28 3 553 557 10.35975/apic.v28i3.2475
    [Google Scholar]
  49. Chistyakov D.A. Savost’anov K.V. Zotova E.V. Nosikov V.V. Polymorphisms in the Mn-SOD and EC-SOD genes and their relationship to diabetic neuropathy in type 1 diabetes mellitus. BMC Med. Genet. 2001 2 1 4 10.1186/1471‑2350‑2‑4 11299047
    [Google Scholar]
  50. Vincent A.M. Russell J.W. Low P. Feldman E.L. Oxidative stress in the pathogenesis of diabetic neuropathy. Endocr. Rev. 2004 25 4 612 628 10.1210/er.2003‑0019 15294884
    [Google Scholar]
  51. Tiwari B.K. Pandey K.B. Abidi A.B. Rizvi S.I. Markers of oxidative stress during diabetes mellitus. J. Biomark. 2013 2013 378790 10.1155/2013/378790
    [Google Scholar]
  52. Dayanand C.D. Vegi P.K. Kutty A.V. Protein carbonyl content as a stable oxidative stress marker in type II diabetes. Int. J. Biol. Med. Res. 2012 3 4 2362 2365
    [Google Scholar]
  53. Mizukami H. Pathological evaluation of the pathogenesis of diabetes mellitus and diabetic peripheral neuropathy. Pathol. Int. 2024 74 8 438 453 10.1111/pin.13458 38888200
    [Google Scholar]
  54. Masenga S.K. Kabwe L.S. Chakulya M. Kirabo A. Mechanisms of oxidative stress in metabolic syndrome. Int. J. Mol. Sci. 2023 24 9 7898 10.3390/ijms24097898 37175603
    [Google Scholar]
  55. Klöppel E. Sinzato Y.K. Rodrigues T. Gallego F.Q. Karki B. Volpato G.T. Corrente J.E. Roy S. Damasceno D.C. Benefits of vitamin D supplementation on pregnancy of rats with pregestational diabetes and their offspring. Reprod. Sci. 2023 30 4 1241 1256 10.1007/s43032‑022‑01056‑0 35999443
    [Google Scholar]
  56. Spirlandeli A.L. Deminice R. Jordao A.A. Plasma malondialdehyde as biomarker of lipid peroxidation: effects of acute exercise. Int. J. Sports Med. 2014 35 1 14 18 23771832
    [Google Scholar]
  57. Janicka M. Kot-Wasik A. Kot J. Namieśnik J. Isoprostanes-biomarkers of lipid peroxidation: Their utility in evaluating oxidative stress and analysis. Int. J. Mol. Sci. 2010 11 11 4631 4659 10.3390/ijms11114631 21151461
    [Google Scholar]
  58. Subjects General Biomarkers of lipid peroxidation in clinical material. Biochim. Biophys. Acta. 2014 1840 2 809 817 10.1016/j.bbagen.2013.03.020
    [Google Scholar]
  59. Shichiri M. The role of lipid peroxidation in neurological disorders. J. Clin. Biochem. Nutr. 2014 54 3 151 160 10.3164/jcbn.14‑10 24895477
    [Google Scholar]
  60. Pushpakom S. Iorio F. Eyers P.A. Escott K.J. Hopper S. Wells A. Drug repurposing: Progress, challenges and recommendations. Nat. Rev. Drug Discov. 2018 10.1038/nrd.2018.168 30310233
    [Google Scholar]
  61. Jonker A.H. O’Connor D. Cavaller-Bellaubi M. Fetro C. Gogou M. ’T Hoen P.A.C. de Kort M. Stone H. Valentine N. Pasmooij A.M.G. Drug repurposing for rare: Progress and opportunities for the rare disease community. Front. Med. (Lausanne) 2024 11 1352803 10.3389/fmed.2024.1352803 38298814
    [Google Scholar]
  62. Oprea T.I. Mestres J. Drug repurposing: Far beyond new targets for old drugs. AAPS J. 2012 14 4 759 763 10.1208/s12248‑012‑9390‑1 22826034
    [Google Scholar]
  63. Parvathaneni V. Kulkarni N.S. Muth A. Gupta V. Drug repurposing: A promising tool to accelerate the drug discovery process. Drug Discov. Today 2019 24 10 2076 2085 10.1016/j.drudis.2019.06.014 31238113
    [Google Scholar]
  64. Corsello S.M. Bittker J.A. Liu Z. Gould J. McCarren P. Hirschman J.E. Johnston S.E. Vrcic A. Wong B. Khan M. Asiedu J. Narayan R. Mader C.C. Subramanian A. Golub T.R. The Drug Repurposing Hub: a next-generation drug library and information resource. Nat. Med. 2017 23 4 405 408 10.1038/nm.4306 28388612
    [Google Scholar]
  65. Masoudi-Sobhanzadeh Y. Omidi Y. Amanlou M. Masoudi-Nejad A. Drug databases and their contributions to drug repurposing. Genomics 2020 112 2 1087 1095 10.1016/j.ygeno.2019.06.021 31226485
    [Google Scholar]
  66. Roessler H.I. Knoers N.V.A.M. van Haelst M.M. van Haaften G. Drug repurposing for rare diseases. Trends Pharmacol. Sci. 2021 42 4 255 267 10.1016/j.tips.2021.01.003 33563480
    [Google Scholar]
  67. Sonaye H.V. Sheikh R.Y. Doifode C.A. Drug repurposing: Iron in the fire for older drugs. Biomed. Pharmacother. 2021 141 111638 10.1016/j.biopha.2021.111638 34153846
    [Google Scholar]
  68. Paul A. Kumar M. Das P. Guha N. Rudrapal M. Zaman M.K. Drug repurposing – A search for novel therapy for the treatment of diabetic neuropathy. Biomed. Pharmacother. 2022 156 113846 10.1016/j.biopha.2022.113846 36228378
    [Google Scholar]
  69. Backonja M.M. Use of anticonvulsants for treatment of neuropathic pain. Neurology 2002 59 5_suppl_2 Suppl. 2 S14 S17 10.1212/WNL.59.5_suppl_2.S14 12221151
    [Google Scholar]
  70. Raskin P. Donofrio P.D. Rosenthal N.R. Hewitt D.J. Jordan D.M. Xiang J. Vinik A.I. CAPSS-141 Study Group Topiramate vs placebo in painful diabetic neuropathy. Neurology 2004 63 5 865 873 10.1212/01.WNL.0000137341.89781.14 15365138
    [Google Scholar]
  71. Alrashood S.T. Carbamazepine. Profiles Drug Subst. Excip. Relat. Methodol. 2016 41 133 321 10.1016/bs.podrm.2015.11.001 26940169
    [Google Scholar]
  72. Dyong T.M. Gess B. Dumke C. Rolke R. Dohrn M.F. Carbamazepine for chronic muscle pain: A retrospective assessment of indications, side effects, and treatment response. Brain Sci. 2023 13 1 123 10.3390/brainsci13010123 36672104
    [Google Scholar]
  73. Jang H.N. Oh T.J. Pharmacological and nonpharmacological treatments for painful diabetic peripheral neuropathy. Diabetes Metab. J. 2023 47 6 743 756 10.4093/dmj.2023.0018 37670573
    [Google Scholar]
  74. Russo M. Graham B. Santarelli D.M. Gabapentin — Friend or foe? Pain Pract. 2023 23 1 63 69 10.1111/papr.13165 36300903
    [Google Scholar]
  75. Chang M.C. Yang S. Diabetic peripheral neuropathy essentials: A narrative review. Ann. Palliat. Med. 2023 12 2 390 398 10.21037/apm‑22‑693 36786097
    [Google Scholar]
  76. Mokhtar N. Doly S. Courteix C. Diabetic neuropathic pain and serotonin: What is new in the last 15 years? Biomedicines 2023 11 7 1924 10.3390/biomedicines11071924 37509563
    [Google Scholar]
  77. Gylfadottir S.S. Finnerup N.B. Characteristics and treatment of painful diabetic neuropathy. Diabetic Neuropathy Humana Press Cham 2023 441 452 10.1007/978‑3‑031‑15613‑7_25
    [Google Scholar]
  78. Micheli L. Rajamoni J. Di Cesare Mannelli L. Rajagopalan P. Ghelardini C. Rajagopalan R. DDD-028: A potent, neuroprotective, non-opioid compound for the treatment of diabetic neuropathy. Bioorg. Med. Chem. Lett. 2023 95 129472 10.1016/j.bmcl.2023.129472 37690597
    [Google Scholar]
  79. Sagar T.V. Yatish B. Safety and efficacy of duloxetine versus gabapentin in painful diabetic polyneuropathy. IP Int. J. Compr. Adv. Pharmacol. 2022 7 4 223 227
    [Google Scholar]
  80. Nugroho A. Irfana L. Triastuti N. Indrawati N.D. Effectiveness of anticonvulsants compared to antidepressants in reducing pain in diabetic neuropathy complications. Borneo Rev. Med. Sci. 2023 4 1 3 11
    [Google Scholar]
  81. Chang K.C. Pai Y.W. Lin C.H. Lee I.T. Chang M.H. The association between hyperlipidemia, lipid-lowering drugs and diabetic peripheral neuropathy in patients with type 2 diabetes mellitus. PLoS One 2023 18 6 e0287373 10.1371/journal.pone.0287373 37319238
    [Google Scholar]
  82. Eid S.A. Rumora A.E. Beirowski B. Bennett D.L. Hur J. Savelieff M.G. Feldman E.L. New perspectives in diabetic neuropathy. Neuron 2023 111 17 2623 2641 10.1016/j.neuron.2023.05.003 37263266
    [Google Scholar]
  83. Laakso M. Fernandes Silva L. Statins and risk of type 2 diabetes: Mechanism and clinical implications. Front. Endocrinol. (Lausanne) 2023 14 1239335 10.3389/fendo.2023.1239335 37795366
    [Google Scholar]
  84. Goh J.K. Koh L. Evaluating treatment options for cardiovascular autonomic neuropathy in patients with diabetes mellitus: A systematic review. Diabetol. Int. 2023 14 3 224 242 10.1007/s13340‑023‑00629‑x 37397902
    [Google Scholar]
  85. Cohen S.D. Faselis C. Blood pressure lowering and microvascular complications of diabetes. Blood Pressure Disorders in Diabetes Mellitus Springer Cham 2023 327 335 10.1007/978‑3‑031‑13009‑0_19
    [Google Scholar]
  86. Mancia G. Seravalle G. Grassi G. Diabetogenic effects of antihypertensive drugs and statins. Blood Pressure Disorders in Diabetes Mellitus Springer Cham 421 435 2023 10.1007/978‑3‑031‑13009‑0_26
    [Google Scholar]
  87. Choi J.S. Zhang L. Dib-Hajj S.D. Han C. Tyrrell L. Lin Z. Wang X. Yang Y. Waxman S.G. Mexiletine-responsive erythromelalgia due to a new Nav1.7 mutation showing use-dependent current fall-off. Exp. Neurol. 2009 216 2 383 389 10.1016/j.expneurol.2008.12.012 19162012
    [Google Scholar]
  88. Wang Q. Ye Y. Yang L. Xiao L. Liu J. Zhang W. Du G. Painful diabetic neuropathy: The role of ion channels. Biomed. Pharmacother. 2024 173 116417 10.1016/j.biopha.2024.116417 38490158
    [Google Scholar]
  89. Chen Y.F. Chen Y.T. Chiu W.T. Shen M.R. Remodeling of calcium signaling in tumor progression. J. Biomed. Sci. 2013 20 1 23 10.1186/1423‑0127‑20‑23 23594099
    [Google Scholar]
  90. Sisignano M. Gribbon P. Geisslinger G. Drug repurposing to target neuroinflammation and sensory neuron-dependent pain. Drugs 2022 82 4 357 373 10.1007/s40265‑022‑01689‑0 35254645
    [Google Scholar]
  91. Bennici G. Almahasheer H. Alghrably M. Valensin D. Kola A. Kokotidou C. Lachowicz J. Jaremko M. Mitigating diabetes associated with reactive oxygen species (ROS) and protein aggregation through pharmacological interventions. RSC Advances 2024 14 25 17448 17460 10.1039/D4RA02349H 38813124
    [Google Scholar]
  92. Chianese D. Bonora M. Sambataro M. Sambato L. Paola L.D. Tremoli E. Cappucci I.P. Scatto M. Pinton P. Picari M. Ferroni L. Zavan B. Exploring mitochondrial interactions with pulsed electromagnetic fields: An insightful inquiry into strategies for addressing neuroinflammation and oxidative stress in diabetic neuropathy. Int. J. Mol. Sci. 2024 25 14 7783 10.3390/ijms25147783 39063025
    [Google Scholar]
  93. Li J. Ma J. Lacagnina M.J. Lorca S. Odem M.A. Walters E.T. Kavelaars A. Grace P.M. Oral dimethyl fumarate reduces peripheral neuropathic pain in rodents via NFE2L2 antioxidant signaling. Anesthesiology 2020 132 2 343 356 10.1097/ALN.0000000000003077 31939850
    [Google Scholar]
  94. Aziz N. Dash B. Wal P. Kumari P. Joshi P. Wal A. New horizons in diabetic neuropathies: An updated review on their pathology, diagnosis, mechanism, screening techniques, pharmacological, and future approaches. Curr. Diabetes Rev. 2023 10.2174/0115733998242299231011181615 37867268
    [Google Scholar]
  95. Zhu J. Hu Z. Luo Y. Liu Y. Luo W. Du X. Luo Z. Hu J. Peng S. Diabetic peripheral neuropathy: Pathogenetic mechanisms and treatment. Front. Endocrinol. (Lausanne) 2024 14 1265372 10.3389/fendo.2023.1265372 38264279
    [Google Scholar]
  96. Chen W. Wu J.Y. Fan Y.Y. Li B.L. Yuan H.B. Zhao X. Purpurin ameliorated neuropathic allodynia and hyperalgesia by modulating neuronal mitochondrial bioenergetics and redox status in type 1 diabetic mice. Eur. J. Pharmacol. 2024 978 176749 10.1016/j.ejphar.2024.176749 38897444
    [Google Scholar]
  97. Goodwin B. Chiplunkar M. Salerno R. Coombs K. Sannoh U. Shah V. Averell N. Al-Shebab U. Janora D. Topical capsaicin for the management of painful diabetic neuropathy: A narrative systematic review. Pain Manag. (Lond.) 2023 13 5 309 316 10.2217/pmt‑2023‑0006 37435696
    [Google Scholar]
  98. Zhang W. Zhang Y. Fan J. Feng Z. Song X. Pharmacological activity of capsaicin: Mechanisms and controversies (Review). Mol. Med. Rep. 2024 29 3 38 10.3892/mmr.2024.13162 38240083
    [Google Scholar]
  99. Liang W. Lan Y. Chen C. Song M. Xiao J. Huang Q. Cao Y. Ho C.T. Lu M. Modulating effects of capsaicin on glucose homeostasis and the underlying mechanism. Crit. Rev. Food Sci. Nutr. 2023 63 19 3634 3652 10.1080/10408398.2021.1991883 34657531
    [Google Scholar]
  100. Attal N. Bouhassira D. Colvin L. Advances and challenges in neuropathic pain: A narrative review and future directions. Br. J. Anaesth. 2023 131 1 79 92 10.1016/j.bja.2023.04.021 37210279
    [Google Scholar]
  101. Hassan A.I. Revolutionary approaches to managing neuropathies: A review of innovative therapies. Neurodegener. Dis. Cur. Res. 2023 3 1 1 8 10.53043/NDCR‑3‑004
    [Google Scholar]
  102. Pușcașu C. Zanfirescu A. Negreș S. Recent progress in gels for neuropathic pain. Gels 2023 9 5 417 10.3390/gels9050417 37233008
    [Google Scholar]
  103. Thornton T. Mills D. Bliss E. Capsaicin: A Potential treatment to improve cerebrovascular function and cognition in obesity and ageing. Nutrients 2023 15 6 1537 10.3390/nu15061537 36986266
    [Google Scholar]
  104. Managing pain after stroke: A review of the literature. Available from: http://ochsner-craft.s3.amazonaws.com/education/static/Hanyu-Deutmeyer-Treating-Pain-in-Stroke-Patients-A-Review-Stroke-and-Pain.pdf
  105. de Geus T.J. Franken G. Joosten E.A. Conventional, high frequency and differential targeted multiplexed spinal cord stimulation in experimental painful diabetic peripheral neuropathy: Pain behavior and role of the central inflammatory balance. Mol. Pain 2023 19 17448069231193368 10.1177/17448069231193368 37488684
    [Google Scholar]
  106. Grigsby E. Slangen R. Johanek L. LaRue M. de Vos C. Murphy M. ID: 215433 the history of spinal cord stimulation to treat painful diabetic peripheral neuropathy. Neuromodulation 2023 26 4 S61 10.1016/j.neurom.2023.04.105
    [Google Scholar]
  107. Amorizzo E. De Sanctis F. Baldeschi G.C. Fast-acting sub-perception spinal cord stimulation for a case of painful diabetic polyneuropathy. Anesth Pain Med. 2023 13 2 e134901 10.5812/aapm‑134901
    [Google Scholar]
  108. Amorizzo E. De Sanctis F. Baldeschi G.C. Fast-acting sub-perception spinal cord stimulation for a case of painful diabetic polyneuropathy: A case report. Anesth. Pain Med. 2023 13 2 37529140
    [Google Scholar]
  109. Chen J. Castellanos J. Reddy R. Furnish T. Halter K. Azalde R. Frizzi K. Calcutt N. ID: 212826 investigation of 10khz spinal cord stimulation on small fiber painful diabetic neuropathy (PDN). Neuromodulation 2023 26 4 S135 10.1016/j.neurom.2023.04.236
    [Google Scholar]
  110. Akpoveso O.O.P. Ubah E.E. Obasanmi G. Antioxidant phytochemicals as potential therapy for diabetic complications. Antioxidants 2023 12 1 123 10.3390/antiox12010123 36670985
    [Google Scholar]
  111. Pérez-Zabala E. Basterretxea A. Castro B. Aizpuru A. Arancon J.A. Moreno C. Zubizarreta A. Larizgoitia Z. Ysa A. Lobato M. Larrazabal A. New antioxidant therapy for hard-to-heal neuroischaemic diabetic foot ulcers with deep exposure. J. Wound Care 2023 32 4 238 246 10.12968/jowc.2023.32.4.238 37029973
    [Google Scholar]
  112. Rahman M. Ibrahim F.S. Amom Z. Amran A.A The antioxidant mechanism in the prevention of type 2 diabetes and its complications: A narrative review. J. Health Transl. Med. 2023 2 10.22452/jummec.sp2023no2.45
    [Google Scholar]
  113. Tomah S. Zhang H. Al-Badri M. Salah T. Dhaver S. Khater A. Tasabehji M.W. Hamdy O. Long-term effect of intensive lifestyle intervention on cardiometabolic risk factors and microvascular complications in patients with diabetes in real-world clinical practice: A 10-year longitudinal study. BMJ Open Diabetes Res. Care 2023 11 3 e003179 10.1136/bmjdrc‑2022‑003179 37217237
    [Google Scholar]
  114. Enders J. Wright D.E. Lifestyle and dietary modifications: Relevance in the management of diabetic neuropathy. Diabetic neuropathy Tesfaye S. Gibbons C.H. Malik R.A. Veves A. Cham Humana 2023 10.1007/978‑3‑031‑15613‑7_22
    [Google Scholar]
  115. Enders J. Elliott D. Wright D.E. Emerging nonpharmacologic interventions to treat diabetic peripheral neuropathy. Antioxid. Redox Signal. 2023 38 13-15 989 1000 10.1089/ars.2022.0158 36503268
    [Google Scholar]
  116. Wyatt C.R. The effects of dietary and lifestyle management on diabetic neuropathy. Thesis, Liberty University 2023
    [Google Scholar]
  117. D’Egidio F. Lombardozzi G. Kacem Ben Haj M’Barek H.E. Mastroiacovo G. Alfonsetti M. Cimini A. The influence of dietary supplementations on neuropathic pain. Life (Basel) 2022 12 8 1125 10.3390/life12081125 36013304
    [Google Scholar]
  118. Smith S. Normahani P. Lane T. Hohenschurz-Schmidt D. Oliver N. Davies A.H. Prevention and management strategies for diabetic neuropathy. Life (Basel) 2022 12 8 1185 10.3390/life12081185 36013364
    [Google Scholar]
  119. Sudhan P. Subbiah B. Rajagopalan N. Sukumaran R. Janaki G. Ananthan B. Effect of yoga therapy on neurological characteristics in diabetic peripheral neuropathy: Neuro health perspective. J. ReAttach Therapy Develop. Diversit. 2023 6 10s(2) 1071 1078
    [Google Scholar]
  120. Sudhan P Subbiah B Sukumaran R Janaki G Nagesh P Kalpana L. Efficacy of yoga therapy on psychological variables in male persons with diabetic peripheral neuropathy (DPN) Int. J. Life Sci. Pharma Res. 2023 13 1 L230 L244
    [Google Scholar]
  121. Syuhada Anggadiredja K Kurniati NF Akrom The Potential of Nigella sativa oil on clinical output improvement of diabetic neuropathy. J. Appl. Pharm. Sci. 13 9 2023 9 17 10.7324/JAPS.2023.141927
    [Google Scholar]
  122. Sugandh F.N.U. Chandio M. Raveena F.N.U. Kumar L. Karishma F.N.U. Khuwaja S. Memon U.A. Bai K. Kashif M. Varrassi G. Khatri M. Kumar S. Advances in the management of diabetes mellitus: A focus on personalized medicine. Cureus 2023 15 8 e43697 10.7759/cureus.43697 37724233
    [Google Scholar]
  123. Simonato M. Bennett J. Boulis N.M. Castro M.G. Fink D.J. Goins W.F. Gray S.J. Lowenstein P.R. Vandenberghe L.H. Wilson T.J. Wolfe J.H. Glorioso J.C. Progress in gene therapy for neurological disorders. Nat. Rev. Neurol. 2013 9 5 277 291 10.1038/nrneurol.2013.56 23609618
    [Google Scholar]
  124. Elsabahy M. Nazarali A. Foldvari M. Non-viral nucleic acid delivery: Key challenges and future directions. Curr. Drug Deliv. 2011 8 3 235 244 10.2174/156720111795256174 21291381
    [Google Scholar]
  125. den Hollander A.I. Black A. Bennett J. Cremers F.P.M. Lighting a candle in the dark: advances in genetics and gene therapy of recessive retinal dystrophies. J. Clin. Invest. 2010 120 9 3042 3053 10.1172/JCI42258 20811160
    [Google Scholar]
  126. Farrar G.J. Millington-Ward S. Chadderton N. Humphries P. Kenna P.F. Gene-based therapies for dominantly inherited retinopathies. Gene Ther. 2012 19 2 137 144 10.1038/gt.2011.172 22089493
    [Google Scholar]
  127. Isner J.M. Ropper A. Hirst K. VEGF gene transfer for diabetic neuropathy. Hum. Gene Ther. 2001 12 12 1593 1594 11529248
    [Google Scholar]
  128. Sahenk Z. Nagaraja H.N. McCracken B.S. King W.M. Freimer M.L. Cedarbaum J.M. Mendell J.R. NT-3 promotes nerve regeneration and sensory improvement in CMT1A mouse models and in patients. Neurology 2005 65 5 681 689 10.1212/01.WNL.0000171978.70849.c5 16157899
    [Google Scholar]
  129. Akter S. Choubey M. Mohib M.M. Arbee S. Sagor M.A.T. Mohiuddin M.S. Stem cell therapy in diabetic polyneuropathy: Recent advancements and future directions. Brain Sci. 2023 13 2 255 10.3390/brainsci13020255 36831798
    [Google Scholar]
  130. Procházka V. Gumulec J. Chmelová J. Klement P. Klement G.L. Jonszta T. Czerný D. Krajca J. Autologous bone marrow stem cell transplantation in patients with end-stage chronical critical limb ischemia and diabetic foot. Vnitr. Lek. 2009 55 3 173 178 19378841
    [Google Scholar]
  131. Cuende N. Rico L. Herrera C. Concise review: Bone marrow mononuclear cells for the treatment of ischemic syndromes: Medicinal product or cell transplantation? Stem Cells Transl. Med. 2012 1 5 403 408 10.5966/sctm.2011‑0064 23197819
    [Google Scholar]
  132. Ushio-Fukai M. Rehman J. Redox and metabolic regulation of stem/progenitor cells and their niche. Antioxid. Redox Signal. 2014 21 11 1587 1590 10.1089/ars.2014.5931 25133592
    [Google Scholar]
  133. Wal P. Aziz N. Prajapati H. Soni S. Wal A. current landscape of various techniques and methods of gene therapy through CRISPR Cas9 along with its pharmacological and interventional therapies in the treatment of type 2 diabetes mellitus. Curr. Diabetes Rev. 2023 37867274
    [Google Scholar]
  134. Pittenger M.F. Mackay A.M. Beck S.C. Jaiswal R.K. Douglas R. Mosca J.D. Moorman M.A. Simonetti D.W. Craig S. Marshak D.R. Multilineage potential of adult human mesenchymal stem cells. Science 1999 284 5411 143 147 10.1126/science.284.5411.143 10102814
    [Google Scholar]
  135. Kinnaird T. Stabile E. Burnett M.S. Shou M. Lee C.W. Barr S. Fuchs S. Epstein S.E. Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation 2004 109 12 1543 1549 10.1161/01.CIR.0000124062.31102.57 15023891
    [Google Scholar]
  136. Jeong J.O. Han J.W. Kim J.M. Cho H.J. Park C. Lee N. Kim D.W. Yoon Y.S. Malignant tumor formation after transplantation of short-term cultured bone marrow mesenchymal stem cells in experimental myocardial infarction and diabetic neuropathy. Circ. Res. 2011 108 11 1340 1347 10.1161/CIRCRESAHA.110.239848 21493893
    [Google Scholar]
  137. Park T.S. Bhutto I. Zimmerlin L. Huo J.S. Nagaria P. Miller D. Zambidis E.T. Vascular progenitors from cord blood-derived iPSC possess augmented capacity for regenerating ischemic retinal vasculature. Circulation 2014 129 359 372 10.1161/CIRCULATIONAHA.113.003000 24163065
    [Google Scholar]
  138. Okawa T. Kamiya H. Himeno T. Kato J. Seino Y. Fujiya A. Kondo M. Tsunekawa S. Naruse K. Hamada Y. Ozaki N. Cheng Z. Kito T. Suzuki H. Ito S. Oiso Y. Nakamura J. Isobe K.I. Transplantation of neural crest-like cells derived from induced pluripotent stem cells improves diabetic polyneuropathy in mice. Cell Transplant. 2013 22 10 1767 1783 10.3727/096368912X657710 23051637
    [Google Scholar]
  139. Timmermans F. Plum J. Yöder M.C. Ingram D.A. Vandekerckhove B. Case J. Endothelial progenitor cells: Identity defined? J. Cell. Mol. Med. 2009 13 1 87 102 10.1111/j.1582‑4934.2008.00598.x 19067770
    [Google Scholar]
  140. Shi Q. Rafii S. Wu M.H.D. Wijelath E.S. Yu C. Ishida A. Fujita Y. Kothari S. Mohle R. Sauvage L.R. Moore M.A.S. Storb R.F. Hammond W.P. Evidence for circulating bone marrow-derived endothelial cells. Blood 1998 92 2 362 367 10.1182/blood.V92.2.362 9657732
    [Google Scholar]
  141. Basile D.P. Yoder M.C. Circulating and tissue resident endothelial progenitor cells. J. Cell. Physiol. 2014 229 1 10 16 23794280
    [Google Scholar]
  142. O’Neill T.J. IV Wamhoff B.R. Owens G.K. Skalak T.C. Mobilization of bone marrow-derived cells enhances the angiogenic response to hypoxia without transdifferentiation into endothelial cells. Circ. Res. 2005 97 10 1027 1035 10.1161/01.RES.0000189259.69645.25 16210550
    [Google Scholar]
  143. Belvisi M.G. Dubuis E. Birrell M.A. Transient receptor potential A1 channels: Insights into cough and airway inflammatory disease. Chest 2011 140 4 1040 1047 10.1378/chest.10‑3327 21972382
    [Google Scholar]
  144. Baskaran P. Krishnan V. Ren J. Thyagarajan B. Capsaicin induces browning of white adipose tissue and counters obesity by activating TRPV1 channel‐dependent mechanisms. Br. J. Pharmacol. 2016 173 15 2369 2389 10.1111/bph.13514 27174467
    [Google Scholar]
  145. Chung M.K. Campbell J. Use of capsaicin to treat pain: Mechanistic and therapeutic considerations. Pharmaceuticals (Basel) 2016 9 4 66 10.3390/ph9040066 27809268
    [Google Scholar]
  146. Wu N. Nishioka W.K. Derecki N.C. Maher M.P. High-throughput-compatible assays using a genetically-encoded calcium indicator. Sci. Rep. 2019 9 1 12692 10.1038/s41598‑019‑49070‑8 31481721
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010316518240924071259
Loading
/content/journals/cpb/10.2174/0113892010316518240924071259
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test