Skip to content
2000
Volume 26, Issue 4
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Background

The kojyl 3-aminopropylphosphonic acid (KAP) was synthesized by kojic acid (KA) with a 3-aminopropylphosphonic acid. Which is more stable than KA and showed better skin penetration and anti-pigmentation efficacy in melanocytes. However, up till now, there have been no studies aimed at incorporating KAP into an emulsion system and evaluating its effectiveness.

Objective

We develop a novel skin-lightening agent using KAP as the active ingredient and a low-cytotoxic nanoemulsion as the delivery system in this study.

Methods

The sorbitan monooleate and polysorbate surfactants with polyethylene glycol (PEG) co-surfactant were used to generate a nanoemulsion system.

Results

The transparency and particle size stability over various storage times indicate that the formulated nanoemulsions are suitable for long-term storage. Besides, results demonstrate that the anti-pigmentation function of KA and KAP-containing nanoemulsions (NE-KA and NE-KAP) evidently outperformed that of the non-packed KA and KAP group. Despite having the lowest concentration among other treatments, NE-KAP was able to reduce melanin content to approximately 80% of the blank.

Conclusion

Our findings suggest that this newly developed nanoemulsion containing KAP could potentially serve as a sustainable alternative to hydroquinone for treating dermal hyperpigmentation disorders in future applications.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010310230240615112928
2024-07-05
2025-03-29
Loading full text...

Full text loading...

References

  1. SearleT. Al-NiaimiF. AliF.R. The top 10 cosmeceuticals for facial hyperpigmentation.Dermatol. Ther.2020336e1409510.1111/dth.1409532720446
    [Google Scholar]
  2. SaeediM. EslamifarM. KhezriK. Kojic acid applications in cosmetic and pharmaceutical preparations.Biomed. Pharmacother.201911058259310.1016/j.biopha.2018.12.00630537675
    [Google Scholar]
  3. KitagakiH. Medical application of substances derived from non-pathogenic fungi Aspergillus oryzae and A. luchuensis-Containing Koji.J. Fungi20217424310.3390/jof704024333804991
    [Google Scholar]
  4. BattainiG. MonzaniE. CasellaL. SantagostiniL. PagliarinR. Inhibition of the catecholase activity of biomimetic dinuclear copper complexes by kojic acid.J. Biol. Inorg. Chem.20005226226810.1007/s00775005037010819471
    [Google Scholar]
  5. SinghB.K. ParkS.H. LeeH.B. GooY.A. KimH.S. ChoS.H. LeeJ.H. AhnG.W. KimJ.P. KangS.M. KimE.K. Kojic acid peptide: A new compound with anti-tyrosinase potential.Ann. Dermatol.201628555556110.5021/ad.2016.28.5.55527746633
    [Google Scholar]
  6. CardosoR. ValenteR. Souza da CostaC.H. da S Gonçalves Vianez, J.L., Jr; Santana da Costa, K.; de Molfetta, F.A.; Nahum Alves, C. Analysis of kojic acid derivatives as competitive inhibitors of tyrosinase: A molecular modeling approach.Molecules202126102610.3390/molecules2610287534066283
    [Google Scholar]
  7. LiT.X. LiangJ.X. LiuL.L. ShiF.C. JiaX.W. LiM.H. XuC.P. Novel kojic acid derivatives with anti-inflammatory effects from Aspergillus versicolor.Fitoterapia202115410502710.1016/j.fitote.2021.10502734492330
    [Google Scholar]
  8. SolanoF. BrigantiS. PicardoM. GhanemG. Hypopigmenting agents: An updated review on biological, chemical and clinical aspects.Pigment Cell Res.200619655057110.1111/j.1600‑0749.2006.00334.x17083484
    [Google Scholar]
  9. KimD.H. HwangJ.S. BaekH.S. KimK.J. LeeB.G. ChangI. KangH.H. LeeO.S. Development of 5-[(3-aminopropyl)] phosphinooxy]-2-(hydroxymethyl)-4H-pyran-4-one as a novel whitening agent.Chem. Pharm. Bull.200351211311610.1248/cpb.51.11312576642
    [Google Scholar]
  10. SuhailN. AlzahraniA.K. BashaW.J. Microemulsions: Unique properties, pharmacological applications, and targeted drug delivery.Front. Nanotechnol.20213754889
    [Google Scholar]
  11. NikolaevB. YakovlevaL. FedorovV. LiH. GaoH. ShevtsovM. Nano- and microemulsions in biomedicine: From theory to practice.Pharmaceutics2023157198910.3390/pharmaceutics1507198937514175
    [Google Scholar]
  12. CallenderS.P. MathewsJ.A. KobernykK. WettigS.D. Microemulsion utility in pharmaceuticals: Implications for multi-drug delivery.Int. J. Pharm.20175261-242544210.1016/j.ijpharm.2017.05.00528495500
    [Google Scholar]
  13. ChangN.F. TsaiF.J. ZhengY.M. HuangW.H. LinC.C. Using a cellular system to directly assess the effects of cosmetic microemulsion encapsulated deoxyarbutin.Int. J. Mol. Sci.202122231311010.3390/ijms22231311034884914
    [Google Scholar]
  14. WuP.S. LeeY.C. KuoY.C. Development of octyl methoxy cinnamates (OMC)/silicon dioxide (SiO(2)) nanoparticles by sol-gel emulsion method.Nanomaterials201720177
    [Google Scholar]
  15. PatelS.K. ZhangY. PollockJ.A. JanjicJ.M. Cyclooxgenase-2 inhibiting perfluoropoly (ethylene glycol) ether theranostic nanoemulsions- in vitro study.PLoS One201382e5580210.1371/journal.pone.005580223409048
    [Google Scholar]
  16. LinY.J. ChenA.N. YinX.J. LiC. LinC.C. Human microfibrillar-associated protein 4 (MFAP4) gene promoter: A TATA-less promoter that is regulated by retinol and coenzyme Q10 in human fibroblast cells.Int. J. Mol. Sci.20202121839210.3390/ijms2121839233182307
    [Google Scholar]
  17. LinC.C. YangC.H. LinY.J. ChiuY.W. ChenC.Y. Establishment of a melanogenesis regulation assay system using a fluorescent protein reporter combined with the promoters for the melanogenesis-related genes in human melanoma cells.Enzyme Microb. Technol.2015681910.1016/j.enzmictec.2014.09.00825435499
    [Google Scholar]
  18. JadhavC. KateV. PayghanS.A. Investigation of effect of non-ionic surfactant on preparation of griseofulvin non-aqueous nanoemulsion.J. Nanostructure Chem.20155110711310.1007/s40097‑014‑0141‑y
    [Google Scholar]
  19. RenS. MuH. AlchaerF. ChtatouA. MüllertzA. Optimization of self nanoemulsifying drug delivery system for poorly water-soluble drug using response surface methodology.Drug Dev. Ind. Pharm.201339579980610.3109/03639045.2012.71063422871082
    [Google Scholar]
  20. SilvaA.E. BarrattG. ChéronM. EgitoE.S.T. Development of oil-in-water microemulsions for the oral delivery of amphotericin B.Int. J. Pharm.2013454264164810.1016/j.ijpharm.2013.05.04423726904
    [Google Scholar]
  21. SalehA. KhalifaM. ShawkyS. Bani-AliA. EassaH. Zolmitriptan intranasal spanlastics for enhanced migraine treatment; formulation parameters optimized via quality by design approach.Sci. Pharm.20218922410.3390/scipharm89020024
    [Google Scholar]
  22. WuP.S. LinC.H. KuoY.C. LinC-C. Preparation and characterization of organic/inorganic composite UV filter microcapsules by sol-gel method.Adv. Mater. Sci. Eng.202120211910.1155/2021/8580992
    [Google Scholar]
  23. BotheA. ZouniA. MühF. Refined definition of the critical micelle concentration and application to alkyl maltosides used in membrane protein research.RSC Advances202313149387940110.1039/D2RA07440K36968053
    [Google Scholar]
  24. SoutoE.B. CanoA. Martins-GomesC. CoutinhoT.E. ZielińskaA. SilvaA.M. Microemulsions and nanoemulsions in skin drug delivery.Bioengineering20229415810.3390/bioengineering904015835447718
    [Google Scholar]
  25. LajisA.F.B. HamidM. AriffA.B. Depigmenting effect of Kojic acid esters in hyperpigmented B16F1 melanoma cells.J. Biomed. Biotechnol.201220121910.1155/2012/95245223091364
    [Google Scholar]
  26. ZillesJ.C. dos SantosF.L. Kulkamp-GuerreiroI.C. ContriR.V. Biological activities and safety data of kojic acid and its derivatives: A review.Exp. Dermatol.202231101500152110.1111/exd.1466235960194
    [Google Scholar]
  27. de Lourdes Pérez-GonzálezM.L. González-de la RosaC.H. Pérez-HernándezG. BeltránH.I. Nanostructured oleic acid/polysorbate 80 emulsions with diminished toxicity in NL-20 cell line: Insights of potential drug carriers.Colloids Surf. B Biointerfaces202018711075810.1016/j.colsurfb.2019.11075831932123
    [Google Scholar]
  28. DesaiH.H. BuP. ShahA.V. ChengX. SerajuddinA.T.M. Evaluation of cytotoxicity of self-emulsifying formulations containing long-chain lipids using Caco-2 Cell Model: Superior safety profile compared to medium-chain lipids.J. Pharm. Sci.202010951752176410.1016/j.xphs.2020.01.03132035926
    [Google Scholar]
  29. NajafiZ. Zandi HaramabadiM. ChehardoliG. EbadiA. IrajiA. Design, synthesis, and molecular dynamics simulation studies of some novel kojic acid fused 2-amino-3-cyano-4H-pyran derivatives as tyrosinase inhibitors.BMC Chem.20241814110.1186/s13065‑024‑01134‑138388934
    [Google Scholar]
  30. SaeediM. Morteza-SemnaniK. AkbariJ. RahimniaS.M. AhmadiF. ChoubdariH. LotfiA. HashemiS.M.H. Development of kojic acid loaded collagen-chitosan nanoparticle as skin lightener product: In vitro and in vivo assessment.J. Biomater. Sci. Polym. Ed.2024351638410.1080/09205063.2023.226831637804323
    [Google Scholar]
  31. Lokman HakimN.Y.D. KangN. H. Kojic acid and kojic acid ester: Review on nanotechnology-based approach for enhancing the delivery efficacy.Recent Adv. Drug Deliv. Formul.2023
    [Google Scholar]
  32. ZillesJ.C. DuarteL.P. RuaroT.C. ZimmerA.R. Kulkamp-GuerreiroI.C. ContriR.V. Nanoemulsion containing kojic dipalmitate and rosehip oil: A promising formulation to treat melasma.Pharmaceutics202315246810.3390/pharmaceutics1502046836839792
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010310230240615112928
Loading
/content/journals/cpb/10.2174/0113892010310230240615112928
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test