Skip to content
2000
Volume 26, Issue 4
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Background

The study aimed to assess the antioxidant and wound healing properties of essential oil (UDEO) through a comprehensive evaluation involving analyses. The phytochemistry of UDEO was also investigated to identify trace compounds crucial.

Methods

Various injection methods of the multimode inlet (MMI) in chromatography were investigated to attain lower instrumental detection limits. Subsequently, studies were employed to delve deeper into the potential biological activities of the identified compounds. Standard antioxidative tests, encompassing ABTS•+ and TAC, were performed. tests centered on wound healing were implemented using rat models. The rats were randomly allocated to four groups: saline solution, vaseline vehicle, cytol centella, and 5% UDEO ointment. Wound healing progress was evaluated through a chromatic study.

Results

Gas chromatography combined with triple quadrupole mass spectrometry (GC-MS/MS) analysis revealed the presence of 97 thermolabile compounds in UDEO. Subsequent studies unveiled the potential of identified compounds to inhibit COX-2, TNF-α, and IL-6, suggesting a possible enhancement of anti-inflammatory responses and healing processes. tests elucidated the notable antioxidant capacity of UDEO, a finding reinforced by wound healing data, revealing a substantial closure rate of 89% following the topical application of UDEO. Notably, fibrinogen and C-reactive protein (CRP) levels were significantly reduced, indicating minimized oxidative stress damage compared to control. Additionally, UDEO exhibited an increase in antioxidant enzyme activities compared to control.

Conclusion

The study concludes that UDEO possesses significant antioxidant and wound-healing properties, supported by its rich phytochemical composition. The findings suggest its potential application in therapeutic interventions for oxidative stress and inflammatory conditions.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010304346240619061848
2024-07-05
2025-03-29
Loading full text...

Full text loading...

References

  1. MakhuveleR. NaiduK. GbashiS. ThipeV.C. AdeboO.A. NjobehP.B. The use of plant extracts and their phytochemicals for control of toxigenic fungi and mycotoxins.Heliyon2020610e0529110.1016/j.heliyon.2020.e0529133134582
    [Google Scholar]
  2. MohammadiM. BoghratiZ. EmamiS.A. AkaberiM. Pomegranate: A review of the heavenly healer’s past, present, and future.Iran. J. Basic Med. Sci.202326111245126437886004
    [Google Scholar]
  3. ChiraA. RekikI. RahmouniF. Ben AmorI. GargouriB. KallelC. JamoussiK. AlloucheN. El FekiA. KadmiY. SaoudiM. Phytochemical composition of Urtica dioica essential oil with antioxidant and anti-inflammatory properties: In vitro and in vivo studies.Curr. Pharm. Biotechnol.20222336043715
    [Google Scholar]
  4. VelnarT. BaileyT. SmrkoljV. The wound healing process: An overview of the cellular and molecular mechanisms.J. Int. Med. Res.20093751528154210.1177/14732300090370053119930861
    [Google Scholar]
  5. AliyevE. SakallıoǧluU. ErenZ. AçıkgözG. The effect of polylactide membranes on the levels of reactive oxygen species in periodontal flaps during wound healing.Biomaterials200425194633463710.1016/j.biomaterials.2003.12.00415120509
    [Google Scholar]
  6. IbrahimN. WongS. MohamedI. MohamedN. ChinK.Y. Ima-NirwanaS. ShuidA. Wound healing properties of selected natural products.Int. J. Environ. Res. Public Health20181511236010.3390/ijerph1511236030366427
    [Google Scholar]
  7. DonnoD. MellanoM.G. GambaG. RiondatoI. BeccaroG.L. Analytical strategies for fingerprinting of antioxidants, nutritional substances, and bioactive compounds in foodstuffs based on high performance liquid chromatography–mass spectrometry: An overview.Foods2020912173410.3390/foods912173433255692
    [Google Scholar]
  8. LelevicA. SouchonV. GeantetC. LorentzC. MoreaudM. Quantitative performance of forward fill/flush differential flow modulation for comprehensive two-dimensional gas chromatography.J. Chromatogr. A2020162646134210.1016/j.chroma.2020.46134232797823
    [Google Scholar]
  9. ApakR. ÖzyürekM. GüçlüK. ÇapanoğluE. Antioxidant activity/capacity measurement. 1. Classification, physicochemical principles, mechanisms, and electron transfer (ET)-based assays.J. Agric. Food Chem.2016645997102710.1021/acs.jafc.5b0473926728425
    [Google Scholar]
  10. MoriasiG.A. IreriA.M. NelsonE.M. NgugiM.P. In vivo anti-inflammatory, anti-nociceptive, and in vitro antioxidant efficacy, and acute oral toxicity effects of the aqueous and methanolic stem bark extracts of Lonchocarpus eriocalyx (Harms.).Heliyon202175e0714510.1016/j.heliyon.2021.e0714534136700
    [Google Scholar]
  11. ArunachalamK. DamazoA.S. MachoA. MatchadoM.S. PavanE. FigueiredoF.F. OliveiraD.M. DuckworthC.A. ThangarajP. LeontiM. MartinsD.T.O. Canthin-6-one ameliorates TNBS-induced colitis in rats by modulating inflammation and oxidative stress. An in vivo and in silico approach.Biochem. Pharmacol.202118611449010.1016/j.bcp.2021.11449033647259
    [Google Scholar]
  12. BadraouiR. SaoudiM. HamadouW.S. ElkahouiS. SiddiquiA.J. AlamJ.M. JamalA. AdnanM. SuliemenA.M.E. AlreshidiM.M. YadavD.K. NaïliH. Ben-NasrH. Antiviral effects of Artemisinin and its derivatives against SARS-CoV-2 main protease: Computational evidences and interactions with ACE2 allelic variants.Pharmaceuticals202215212910.3390/ph15020129
    [Google Scholar]
  13. AkachaA. BadraouiR. RebaiT. ZourguiL. Effect of Opuntia ficus indica extract on methotrexate-induced testicular injury: A biochemical, docking and histological study.J. Biomol. Struct. Dyn.202240104341435110.1080/07391102.2020.1856187
    [Google Scholar]
  14. RahmouniF. HamdaouiL. SaoudiM. BadraouiR. RebaiT. Antioxidant and antiproliferative effects of Teucrium polium extract: Computational and in vivo study in rats.Toxicol. Mech. Methods202434549550610.1080/15376516.2023.230167038166540
    [Google Scholar]
  15. JedliO. Ben-NasrH. ZammelN. RebaiT. SaoudiM. ElkahouiS. JamalA. Attenuation of ovalbumin-induced inflammation and lung oxidative injury in asthmatic rats by Zingiber officinale extract: Combined in silico and in vivo study on antioxidant.3 Biotech202212912110.1007/s13205‑022‑03249‑5
    [Google Scholar]
  16. OzgenM. ReeseR. TulioA. MillerR. ScheerensJ. Modified 2,2-Azino-bis-3- ethylbenzothiazoline-6-sulfonic acid (ABTS) method to measure antioxidant capacity of selected small fruits and comparison to ferric reducing antioxidant power (FRAP) and 2,2 0 -diphenyl-1-picrylhydrazyl (DPPH).Methods. J. Agric. Food Chem.2006541151115710.1021/jf051960d16478230
    [Google Scholar]
  17. PrietoP. PinedaM. AguilarM. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E.Anal. Biochem.1999269233734110.1006/abio.1999.401910222007
    [Google Scholar]
  18. BabaeiE. AsghariM.H. MehdikhaniF. MoloudizargariM. GhobadiE. PouyaS.R.H. The healing effects of herbal preparations from Sambucus ebulus and Urtica dioica in full-thickness wound models.Asian Pac. J. Trop. Biomed.20177542142710.1016/j.apjtb.2017.01.013
    [Google Scholar]
  19. MustoeT.A. PierceG.F. MorishimaC. DeuelT.F. Growth factor-induced acceleration of tissue repair through direct and inductive activities in a rabbit dermal ulcer model.J. Clin. Invest.199187269470310.1172/JCI1150481991853
    [Google Scholar]
  20. ClaussA. Gerinnungs phsiologische schnell methode zur Bestimmung des Fibrinogens.Acta Haematol.195717423724610.1159/00020523413434757
    [Google Scholar]
  21. LowryO. RosebroughN. FarrA.L. RandallR. Protein measurement with the Folin phenol reagent.J. Biol. Chem.1951193126527510.1016/S0021‑9258(19)52451‑614907713
    [Google Scholar]
  22. BuegeJ.A. AustS.D. Microsomal lipid peroxidation.Methods Enzymol.19785230231010.1016/S0076‑6879(78)52032‑6672633
    [Google Scholar]
  23. HalliwellB. WhitemanM. Measuring reactive species and oxidative damage in vivo and in cell culture: How should you do it and what do the results mean?Br. J. Pharmacol.2004142223125510.1038/sj.bjp.070577615155533
    [Google Scholar]
  24. WitkoV. NguyenA.T. Descamps-LatschaB. Microtiter plate assay for phagocyte‐derived Taurine‐chloramines.J. Clin. Lab. Anal.199261475310.1002/jcla.18600601101542083
    [Google Scholar]
  25. ReznickA.Z. PackerL. Oxidative damage to proteins: Spectrophotometric method for carbonyl assay.Methods Enzymol.199423335736310.1016/S0076‑6879(94)33041‑78015470
    [Google Scholar]
  26. AebiH. Catalase in vitro.Methods Enzymol.198410512112610.1016/S0076‑6879(84)05016‑36727660
    [Google Scholar]
  27. BeyerW.F.Jr FridovichI. Assaying for superoxide dismutase activity: Some large consequences of minor changes in conditions.Anal. Biochem.1987161255956610.1016/0003‑2697(87)90489‑13034103
    [Google Scholar]
  28. FlohéL. GünzlerW.A. Assays of glutathione peroxidase.Methods Enzymol.198410511412010.1016/S0076‑6879(84)05015‑16727659
    [Google Scholar]
  29. BadraouiR. AdnanM. BardakciF. AlreshidiM.M. Chloroquine and hydroxychloroquine interact differently with ACE2 domains reported to bind with the coronavirus spike protein: Mediation by ACE2 polymorphism.Molecules2021263673
    [Google Scholar]
  30. FinkelT. HolbrookN.J. Oxidants, oxidative stress and the biology of ageing.Nature2000408680923924710.1038/3504168711089981
    [Google Scholar]
  31. LooA.E.K. WongY.T. HoR. WasserM. DuT. NgW.T. HalliwellB. Effects of hydrogen peroxide on wound healing in mice in relation to oxidative damage.PLoS One2012711e4921510.1371/journal.pone.004921523152875
    [Google Scholar]
  32. MolloyT. WangY. MurrellG.A.C. The roles of growth factors in tendon and ligament healing.Sports Med.200333538139410.2165/00007256‑200333050‑0000412696985
    [Google Scholar]
  33. SaoudiM. BadraouiR. ChiraA. SaeedM. BoualiN. ElkahouiS. AlamJ.M. KallelC. El FekiA. The role of Allium subhirsutum L. in the attenuation of dermal wounds by modulating oxidative stress and inflammation in Wistar albino rats.Molecules202126164875
    [Google Scholar]
  34. RajanR. VikasK. AnuradhaS. NavneetK. KamalD. Phytocompounds of three medicinal plants (juniperus communis, urtica dioica and coleus forskohlii) of northwest himalayas increases the potency of antibacterial and antifungal antibiotics.Plant Arch.20202481489
    [Google Scholar]
  35. KrishnaiahD. SarbatlyR. NithyanandamR. A review of the antioxidant potential of medicinal plant species.Food Bioprod. Process.201189321723310.1016/j.fbp.2010.04.008
    [Google Scholar]
  36. KalitaB. GuptaD. DasA. HuiP. TagH. Gas chromatography-mass spectrometry of methanol extract of Urtica dioica L. from arunachal pradesh, India.J Clin Tri Cas Rep20181152000111
    [Google Scholar]
  37. RamtinM. MassihaA. MajidR. IssazadehK. AssmarM. ZarrabiS. In vitro antimicrobial activity of Iris pseudacorus and Urtica dioica.J. Res. Med. Sci.20141633539
    [Google Scholar]
  38. KeskinI. GunalY. AylaS. KolbasiB. SakulA. KilicU. GokO. KorogluK. OzbekH. Effects of Foeniculum vulgare essential oil compounds, fenchone and limonene, on experimental wound healing.Biotech. Histochem.201792427428210.1080/10520295.2017.130688228426256
    [Google Scholar]
  39. Ribeiro Barros CardosoC. Aparecida SouzaM. Amália Vieira FerroE. FavoretoS.Jr Deolina Oliveira PenaJ. Influence of topical administration of n‐3 and n‐6 essential and n‐9 nonessential fatty acids on the healing of cutaneous wounds.Wound Repair Regen.200412223524310.1111/j.1067‑1927.2004.012216.x15086775
    [Google Scholar]
  40. YangW. ChenX. LiY. GuoS. WangZ. YuX. Advances in pharmacological activities of terpenoids.Nat. Prod. Commun.20201531934578X20903555.10.1177/1934578X20903555
    [Google Scholar]
  41. ChamanzaR. DarvilleN. van HeerdenM. De JongheS. Comparison of the local tolerability to 5 long-acting drug nanosuspensions with different stabilizing excipients, following a single intramuscular administration in the rat.Toxicol. Pathol.20184618510010.1177/019262331773729529096596
    [Google Scholar]
  42. RangarajA. HardingK. LeaperD. Role of collagen in wound managementWounds uk.201175463
    [Google Scholar]
  43. SoniS. NamdeoS. AgrawalP. HaiderT. SoniV. Novel modalities of delivering herbal medicines for wound healing: A review.Dermatol. Rev.20234519421010.1002/der2.167
    [Google Scholar]
  44. KasouniA.I. ChatzimitakosT.G. StalikasC.D. TrangasT. Papoudou-BaiA. TroganisA.N. The unexplored wound healing activity of Urtica dioica L. extract: An in vitro and in vivo study.Molecules20212620624810.3390/molecules2620624834684829
    [Google Scholar]
  45. ShivhareY. SingourP.K. PatilU.K. PawarR.S. Wound healing potential of methanolic extract of Trichosanthes dioica Roxb (fruits) in rats.J. Ethnopharmacol.2010127361461910.1016/j.jep.2009.12.01520006696
    [Google Scholar]
  46. SaidA. WahidF. BashirK. RasheedH.M. KhanT. HussainZ. SirajS. Sauromatum guttatum extract promotes wound healing and tissue regeneration in a burn mouse model via up-regulation of growth factors.Pharm. Biol.201957173674310.1080/13880209.2019.167626631652081
    [Google Scholar]
  47. MengieT. MequanenteS. NigussieD. LegesseB. MakonnenE. Investigation of wound healing and anti-inflammatory activities of solvent fractions of 80% methanol leaf extract of Achyranthes aspera L.(Amaranthaceae) in rats.J. Inflamm. Res.2021141775178710.2147/JIR.S29824433981155
    [Google Scholar]
  48. AbejeB.A. BekeleT. GetahunK.A. AsrieA.B. Evaluation of wound healing activity of 80% hydromethanolic crude extract and solvent fractions of the leaves of Urtica simensis in mice.J. Exp. Pharmacol.20221422124110.2147/JEP.S36367635875331
    [Google Scholar]
  49. TsalaD.E. AmadouD. HabtemariamS. Natural wound healing and bioactive natural products.J Phytopharmacol201343532560
    [Google Scholar]
  50. ZhaoB. LiuK. LiuX. LiQ. LiZ. XiJ. XieF. LiX. Plant‐derived flavonoids are a potential source of drugs for the treatment of liver fibrosis.Phytother. Res.2024ptr.819310.1002/ptr.819338613172
    [Google Scholar]
  51. ShedoevaA. LeavesleyD. UptonZ. FanC. Wound healing and the use of medicinal plants.Evid. Based Complement. Alternat. Med.201920192684108
    [Google Scholar]
  52. FengX. HaoJ. Identifying new pathways and targets for wound healing and therapeutics from natural sources.Curr. Drug Deliv.20211881064108410.2174/18755704MTEzkMTQC233430732
    [Google Scholar]
  53. SerraM.B. BarrosoW.A. SilvaN.N.D. SilvaS.D.N. BorgesA.C.R. AbreuI.C. BorgesM.O.D.R. From inflammation to current and alternative therapies involved in wound healing.In: Int J Inflam.20172017340621510.1155/2017/3406215
    [Google Scholar]
  54. RazikaL. ThaninaA.C. NadjibaC.M. NarimenB. MahdiD.M. KarimA. Antioxidant and wound healing potential of saponins extracted from the leaves of Algerian Urtica dioica L.PJPS201783
    [Google Scholar]
  55. MohammadiA. MansooriB. AghapourM. ShirjangS. The Urtica dioica extract enhances sensitivity of paclitaxel drug to MDA-MB-468 breast cancer cells.Biomed. Pharmacother.201683835842
    [Google Scholar]
  56. ZadeganS. NourmohammadiJ. VahidiB. HaghighipourN. An investigation into osteogenic differentiation effects of silk fibroin-nettle (Urtica dioica L.) nanofibers.Int. J. Biol. Macromol.201913379580310.1016/j.ijbiomac.2019.04.16531028813
    [Google Scholar]
  57. MssillouI. BakourM. SlighouaM. LaaroussiH. SaghrouchniH. Ez-Zahra AmratiF. LyoussiB. DerwichE. Investigation on wound healing effect of Mediterranean medicinal plants and some related phenolic compounds: A review.J. Ethnopharmacol.202229811566310.1016/j.jep.2022.11566336038091
    [Google Scholar]
  58. XuL. LiX. ChenH. LiH. ZhouQ. TongP. LiuX. Antibacterial and antioxidant properties of clove extract applied in the production of dry-cured duck.Lebensm. Wiss. Technol.202318511515310.1016/j.lwt.2023.115153
    [Google Scholar]
  59. ZouariB. Exploring the Urtica dioica leaves hemostatic and wound-healing potential.BioMed Res. Int.201720171047523
    [Google Scholar]
  60. GuldikenB. OzkanG. CatalkayaG. CeylanF.D. Ekin YalcinkayaI. CapanogluE. Phytochemicals of herbs and spices: Health versus toxicological effects.Food Chem. Toxicol.2018119374910.1016/j.fct.2018.05.05029802945
    [Google Scholar]
  61. GarnierA. ShahidiF. Spices and herbs as immune enhancers and anti-inflammatory agents: A review.J. Food Bioact.2021141410.31665/JFB.2021.14266
    [Google Scholar]
  62. VlčkoT. RathodN.B. KulawikP. OzogulY. OzogulF. The impact of aromatic plant-derived bioactive compounds on seafood quality and safety.Adv. Food Nutr. Res.202210227533910.1016/bs.afnr.2022.05.00236064295
    [Google Scholar]
  63. MateraR. LucchiE. ValgimigliL. Plant essential oils as healthy functional ingredients of nutraceuticals and diet supplements: A review.Molecules202328290110.3390/molecules2802090136677959
    [Google Scholar]
  64. Choodari GharehpapaghA. FarahpourM.R. JafariradS. The biological synthesis of gold/perlite nanocomposite using Urtica dioica extract and its chitosan-capped derivative for healing wounds infected with methicillin-resistant Staphylococcus aureus.Int. J. Biol. Macromol.202118344745610.1016/j.ijbiomac.2021.04.15033932414
    [Google Scholar]
  65. JyotiK. BaunthiyalM. SinghA. Characterization of silver nanoparticles synthesized using Urtica dioica Linn. leaves and their synergistic effects with antibiotics.J. Radiat. Res. Appl. Sci.20169321722710.1016/j.jrras.2015.10.002
    [Google Scholar]
  66. Modarresi-ChahardehiA. IbrahimD. Fariza-SulaimanS. MousaviL. Screening antimicrobial activity of various extracts of Urtica dioica.Rev. Biol. Trop.20126041567157610.15517/rbt.v60i4.207423342511
    [Google Scholar]
  67. ThilagavathiR. BegumS.S. VaratharajS.D. BalasubramaniamA. GeorgeJ.S. SelvamC. Recent insights into the hepatoprotective potential of medicinal plants and plant‐derived compounds.Phytother. Res.20233752102211810.1002/ptr.782137022281
    [Google Scholar]
  68. SharmaM. RathiR. KaurS. SinghI. Abd KadirE. ChahardehiA.M. LimV. Antiinflammatory activity of herbal bioactive-based formulations for topical administration.Recent Dev.Anti-Inflamm. Ther202324527710.1016/B978‑0‑323‑99988‑5.00015‑2
    [Google Scholar]
  69. AkbariB. Baghaei-YazdiN. BahmaieM. Mahdavi AbhariF. The role of plant‐derived natural antioxidants in reduction of oxidative stress.Biofactors202248361163310.1002/biof.183135229925
    [Google Scholar]
  70. PisoschiA.M. PopA. IordacheF. StancaL. PredoiG. SerbanA.I. Oxidative stress mitigation by antioxidants - An overview on their chemistry and influences on health status.Eur. J. Med. Chem.202120911289110.1016/j.ejmech.2020.11289133032084
    [Google Scholar]
  71. VictorP. SaradaD. RamkumarK.M. Pharmacological activation of Nrf2 promotes wound healing.Eur. J. Pharmacol.202088617339510.1016/j.ejphar.2020.17339532710954
    [Google Scholar]
  72. Demirci-ÇekiçS. ÖzkanG. AvanA.N. UzunboyS. ÇapanoğluE. ApakR. Biomarkers of oxidative stress and antioxidant defense.J. Pharm. Biomed. Anal.202220911447710.1016/j.jpba.2021.11447734920302
    [Google Scholar]
  73. JuanC.A. Pérez de la LastraJ.M. PlouF.J. Pérez-LebeñaE. The chemistry of reactive oxygen species (ROS) revisited: Outlining their role in biological micromolecules (DNA, lipids and proteins) and induced pathologies.Int. J. Mol. Sci.2021229464210.3390/ijms2209464233924958
    [Google Scholar]
  74. YangM. WangY. PatelG. XueQ. Singor NjatengG.S. CaiS. ChengG. KaiG. In vitro and in vivo anti-inflammatory effects of different extracts from Epigynum auritum through down-regulation of NF-κB and MAPK signaling pathways.J. Ethnopharmacol.202026111310510.1016/j.jep.2020.11310532590114
    [Google Scholar]
  75. KimH.N. KimJ.D. ParkS.B. SonH.J. ParkG.H. EoH.J. KimH.S. JeongJ.B. Anti-inflammatory activity of the extracts from Rodgersia podophylla leaves through activation of Nrf2/HO-1 pathway, and inhibition of NF-κB and MAPKs pathway in mouse macrophage cells.Inflamm. Res.202069223324410.1007/s00011‑019‑01311‑231907559
    [Google Scholar]
  76. SinghA. AnsariV.A. MahmoodT. AhsanF. WasimR. Neurodegeneration: microglia: Nf-kappab signaling pathways.Drug Res.202272949649910.1055/a‑1915‑486136055286
    [Google Scholar]
  77. HannoodeeS. NasuruddinD.N. Acute inflammatory response.StatPearls.Treasure Island, FLStatPearls Publishing2020
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010304346240619061848
Loading
/content/journals/cpb/10.2174/0113892010304346240619061848
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test