Skip to content
2000
Volume 26, Issue 4
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Background

Microbial L-asparaginase (L-ASNase, EC 3.5.1.1) is a pivotal biopharmaceutical drug-protein that catalyzes the hydrolysis of the non-essential amino acid L-asparagine (L-Asn) into L-aspartic acid (L-Asp) and ammonia, resulting in deplenishing the cellular L-Asn pool, which leads to the ultimate death of the L-asparagine synthetase (L-ASNS) deficient cancerous cells.

Objective

This study aimed to investigate the impact of conjugating low molecular weight polyethylene glycol to recombinant L-ASNase by examining the pharmacokinetic properties, affinity towards the substrate, and enzyme stability prior to and following the reaction.

Methods

The recombinant L-ASNase was affinity purified and then PEGylated by attaching polyethylene glycol (MW= 330 Da) site-specifically to the protein's N-terminus end. After which, the PEGylated L-ASNase was examined by SDS-PAGE (15%), FTIR, and UV/Vis spectrophotometry and subsequently biochemically characterized.

Results

The and Vmax values of free rL-ASNase were determined to be 0.318 ±1.76 mM and 2915 μmol min-1and following the PEGylation, they were found to be 0.396 ±1.736 mM and 3193 μmol min-1, respectively. Polyethylene glycol (330 Da) has markedly enhanced L-ASNase thermostability at 37, 45, 50, and 55°C, as opposed to the free enzyme, which retained 19.5% after 1 h of incubation at 37°C. The PEGylated L-ASNase was found to be stable upon incubation with human serum for 28 h, in contrast to the sharp decline in the residual bioactivity of the free rL-ASNase after 4 h incubation. Accordingly, an study was used for validation, and it demonstrated that PEGylated rL-ASNase exhibited longer bioactivity for 24 h, while the free form's activity vanished entirely from the rats' blood sera after 8 h. Molecular dynamics simulation indicated that PEG (330 Da) has affected the hydrodynamic volume of L-ASNase and increased its structural stability. Docking analysis has explored the position of PEG with respect to binding sites and predicted a similar binding affinity to that of the free enzyme.

Conclusion

For the first time, recombinant L-ASNase was modified by covalently attaching PEG (330 Da). The resultant novel proposed PEGylated rL-ASNase with remarkably increased stability and prolonged half-life duration, could be considered an alternative to mitigate the high molecular weight of PEGylation's drawbacks.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010309260240624072408
2024-07-11
2025-03-29
Loading full text...

Full text loading...

References

  1. Van TrimpontM. PeetersE. De VisserY. SchalkA.M. MondelaersV. De MoerlooseB. LavieA. LammensT. GoossensS. Van VlierbergheP. Novel insights on the use of L-asparaginase as an efficient and safe anti-cancer therapy.Cancers (Basel)202214490210.3390/cancers1404090235205650
    [Google Scholar]
  2. DarvishiF. JahanafroozZ. MokhtarzadehA. Microbial L-asparaginase as a promising enzyme for treatment of various cancers.Appl. Microbiol. Biotechnol.2022106175335534710.1007/s00253‑022‑12086‑835871694
    [Google Scholar]
  3. WangY. XuW. WuH. ZhangW. GuangC. MuW. Microbial production, molecular modification, and practical application of L-asparaginase: A review.Int. J. Biol. Macromol.202118697598310.1016/j.ijbiomac.2021.07.10734293360
    [Google Scholar]
  4. ChandS. MahajanR.V. PrasadJ.P. SahooD.K. MihooliyaK.N. DharM.S. SharmaG. A comprehensive review on microbial L -asparaginase: Bioprocessing, characterization, and industrial applications.Biotechnol. Appl. Biochem.202067461964710.1002/bab.188831954377
    [Google Scholar]
  5. JhaS.K. PasrijaD. SinhaR. SinghH. KumarV. SharanN. VidyarthiA. Microbial L-Asparaginase: A review on current scenario and future prospects.IJPSR2012201230763090
    [Google Scholar]
  6. ShishparenokA.N. GladilinaY.A. ZhdanovD.D. Engineering and expression strategies for optimization of l-asparaginase development and production.Int. J. Mol. Sci.202324201522010.3390/ijms24201522037894901
    [Google Scholar]
  7. CastroD. MarquesA.S.C. AlmeidaM.R. de PaivaG.B. BentoH.B.S. PedrolliD.B. FreireM.G. TavaresA.P.M. Santos-EbinumaV.C. L-asparaginase production review: Bioprocess design and biochemical characteristics.Appl. Microbiol. Biotechnol.2021105114515453410.1007/s00253‑021‑11359‑y34059941
    [Google Scholar]
  8. JiangJ. BatraS. ZhangJ. Asparagine: A metabolite to be targeted in cancers.Metabolites202111640210.3390/metabo1106040234205460
    [Google Scholar]
  9. KislyakI.A. PokrovskayaM.V. ZhanturinaD.Y. PokrovskyV.S. The use of L-asparaginase for the treatment of solid tumors: Data from experimental studies and clinical trials.Russian J. Oncol2023281799410.17816/onco562802
    [Google Scholar]
  10. ApfelV. BegueD. Cordo’V. HolzerL. MartinuzziL. BuhlesA. KerrG. BarbosaI. NaumannU. PiquetM. RuddyD. WeissA. FerrettiS. AlmeidaR. BonenfantD. TordellaL. GalliG.G. Therapeutic assessment of targeting ASNS combined with L -Asparaginase treatment in solid tumors and investigation of resistance mechanisms.ACS Pharmacol. Transl. Sci.20214132733710.1021/acsptsci.0c0019633615182
    [Google Scholar]
  11. KislyakI.A. PokrovskyV.S. Biochemical markers of tumor cell sensitivity to L-asparaginase.Biochem. Suppl. Ser. B: Biomed. Chem.202317311112510.1134/S1990750823600541
    [Google Scholar]
  12. SchnuchelA. RadckeC. TheobaldL. DoedingS. Quality comparison of a state-of-the-art preparation of a recombinant L-asparaginase derived from Escherichia coli with an alternative asparaginase product.PLoS One2023186e028594810.1371/journal.pone.028594837319282
    [Google Scholar]
  13. TsegayeK. TsehaiB.A. GetieB. Desirable L-asparaginases for treating cancer and current research trends.Front. Microbiol.202415126928210.3389/fmicb.2024.1269282
    [Google Scholar]
  14. MirandaJ. LefinN. BeltranJ.F. BelénL.H. TsipaA. FariasJ.G. ZamoranoM. Enzyme engineering strategies for the bioenhancement of l-Asparaginase used as a biopharmaceutical.BioDrugs202337679381110.1007/s40259‑023‑00622‑537698749
    [Google Scholar]
  15. TripathyR.K. AnakhaJ. PandeA.H. Towards development of biobetter: L-asparaginase a case study.Biochim. Biophys. Acta202318581130499
    [Google Scholar]
  16. MonajatiM. TamaddonA.M. AbolmaaliS.S. YousefiG. JavanmardiS. BorandehS. HeidariR. AzarpiraN. DinarvandR. L-asparaginase immobilization in supramolecular nanogels of PEG-grafted poly HPMA and bis(α-cyclodextrin) to enhance pharmacokinetics and lower enzyme antigenicity.Colloids Surf. B Biointerfaces202322511323410.1016/j.colsurfb.2023.11323436934612
    [Google Scholar]
  17. MonajatiM. TamaddonA.M. AbolmaaliS.S. YousefiG. BorandehS. DinarvandR. Enhanced L-asparaginase stability through immobilization in supramolecular nanogels of PEG-grafted poly HPMA with bis(α-cyclodextrin).Biochem. Eng. J.202319110880210.1016/j.bej.2022.108802
    [Google Scholar]
  18. GarciaP.H.D. Costa-SilvaT.A. GómezM.M. ContesiniF.J. CanellaP.R.B.C. CarvalhoP.O. Anticancer asparaginases: Perspectives in using filamentous fungi as cell factories.Catalysts202313120010.3390/catal13010200
    [Google Scholar]
  19. BrumanoL.P. da SilvaF.V.S. Costa-SilvaT.A. ApolinárioA.C. SantosJ.H.P.M. KleingesindsE.K. MonteiroG. Rangel-YaguiC.O. BenyahiaB. JuniorA.P. Development of L-asparaginase biobetters: Current research status and review of the desirable quality profiles.Front. Bioeng. Biotechnol.2019621210.3389/fbioe.2018.0021230687702
    [Google Scholar]
  20. XuM. BiJ. LiangB. WangX. MoR. FengN. YanF. WangT. YangS. ZhaoY. XiaX. PEGylation prolongs the half-life of equine anti-SARS-CoV-2 Specific F(ab’)2.Int. J. Mol. Sci.2023244338710.3390/ijms2404338736834803
    [Google Scholar]
  21. PfisterD. MorbidelliM. Process for protein PEGylation.J. Control. Release201418013414910.1016/j.jconrel.2014.02.00224531008
    [Google Scholar]
  22. MaiserB. DismerF. HubbuchJ. Optimization of random PEGylation reactions by means of high throughput screening.Biotechnol. Bioeng.2014111110411410.1002/bit.2500023939788
    [Google Scholar]
  23. LopesA.M. Oliveira-NascimentoL. RibeiroA. TairumC.A.Jr BreyerC.A. OliveiraM.A. MonteiroG. Souza-MottaC.M. MagalhãesP.O. AvendañoJ.G.F. Cavaco-PauloA.M. MazzolaP.G. Rangel-YaguiC.O. SetteL.D. ConvertiA. PessoaA. Therapeutic L -asparaginase: Upstream, downstream and beyond.Crit. Rev. Biotechnol.2017371829910.3109/07388551.2015.112070526694875
    [Google Scholar]
  24. SellaturayP. NasserS. EwanP. Polyethylene glycol–induced systemic allergic reactions (Anaphylaxis).J. Allergy Clin. Immunol. Pract.20219267067510.1016/j.jaip.2020.09.02933011299
    [Google Scholar]
  25. ZhangF. LiuM. WanH. Discussion about several potential drawbacks of PEGylated therapeutic proteins.Biol. Pharm. Bull.201437333533910.1248/bpb.b13‑0066124334536
    [Google Scholar]
  26. SellaturayP. NasserS. IslamS. GurugamaP. EwanP.W. Polyethylene glycol (PEG) is a cause of anaphylaxis to the Pfizer/BioNTech mRNA COVID-19 vaccine.Clin. Exp. Allergy202151686186310.1111/cea.1387433825239
    [Google Scholar]
  27. MeneguettiG.P. SantosJ.H.P.M. ObrequeK.M.T. BarbosaC.M.V. MonteiroG. FarskyS.H.P. Marim de OliveiraA. AngeliC.B. PalmisanoG. VenturaS.P.M. Pessoa-JuniorA. de Oliveira Rangel-YaguiC. Novel site-specific PEGylated L-asparaginase.PLoS One2019142e021195110.1371/journal.pone.021195130753228
    [Google Scholar]
  28. GuptaV. BhavanasiS. QuadirM. SinghK. GhoshG. VasamreddyK. GhoshA. SiahaanT.J. BanerjeeS. BanerjeeS.K. Protein PEGylation for cancer therapy: Bench to bedside.J. Cell Commun. Signal.201913331933010.1007/s12079‑018‑0492‑030499020
    [Google Scholar]
  29. MuQ. HuT. YuJ. Molecular insight into the steric shielding effect of PEG on the conjugated staphylokinase: Biochemical characterization and molecular dynamics simulation.PLoS One201387e6855910.1371/journal.pone.006855923874671
    [Google Scholar]
  30. SousaS.F. PeresJ. CoelhoM. VieiraT.F. Analyzing PEGylation through molecular dynamics simulations.ChemistrySelect20183298415842710.1002/slct.201800855
    [Google Scholar]
  31. SambrookT. FritschJ. ManiatisT. Molecular cloning: A laboratory manual.4th edNew York, United StatesCold Spring Harbor Laboratory Press19891
    [Google Scholar]
  32. SaeedH. HemidaA. Abdel-FattahM. EldokshA. ShalabyM. NematallaH. El-NikhelyN. ElkewediM. Pseudomonas aeruginosa recombinant L-asparaginase: Large scale production, purification, and cytotoxicity on THP-1, MDA-MB-231, A549, Caco2 and HCT-116 cell lines.Protein Expr. Purif.202118110582010.1016/j.pep.2021.10582033440252
    [Google Scholar]
  33. BradfordM.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.Anal. Biochem.1976721-224825410.1016/0003‑2697(76)90527‑3942051
    [Google Scholar]
  34. LaemmliU.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Nature1970227525968068510.1038/227680a05432063
    [Google Scholar]
  35. KurfürstM.M. Detection and molecular weight determination of polyethylene glycol-modified hirudin by staining after sodium dodecyl sulfate-polyacrylamide gel electrophoresis.Anal. Biochem.1992200224424810.1016/0003‑2697(92)90460‑O1378701
    [Google Scholar]
  36. GuexN. PeitschM.C. SchwedeT. Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: A historical perspective.Electrophoresis200930S1Suppl. 1S162S17310.1002/elps.20090014019517507
    [Google Scholar]
  37. WaterhouseA. BertoniM. BienertS. StuderG. TaurielloG. GumiennyR. HeerF.T. de BeerT.A.P. RempferC. BordoliL. LeporeR. SchwedeT. SWISS-MODEL: Homology modelling of protein structures and complexes.Nucleic Acids Res.201846W1W296W30310.1093/nar/gky42729788355
    [Google Scholar]
  38. JohanssonM.U. ZoeteV. MichielinO. GuexN. Defining and searching for structural motifs using DeepView/Swiss-PdbViewer.BMC Bioinformatics201213117310.1186/1471‑2105‑13‑17322823337
    [Google Scholar]
  39. OostenbrinkC. VillaA. MarkA.E. Van GunsterenW.F. A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force-field parameter sets 53A5 and 53A6.J. Comput. Chem.200425131656167610.1002/jcc.2009015264259
    [Google Scholar]
  40. BjelkmarP. LarssonP. CuendetM.A. HessB. LindahlE. Implementation of the CHARMM force field in GROMACS: Analysis of protein stability effects from correction maps, virtual interaction sites, and water models.J. Chem. Theory Comput.20106245946610.1021/ct900549r26617301
    [Google Scholar]
  41. QiuL. BuieC. ReayA. VaughnM.W. ChengK.H. Molecular dynamics simulations reveal the protective role of cholesterol in β-amyloid protein-induced membrane disruptions in neuronal membrane mimics.J. Phys. Chem. B2011115329795981210.1021/jp201284221740063
    [Google Scholar]
  42. DallakyanS. OlsonA.J. Small-molecule library screening by docking with PyRx.Methods Mol. Biol.2015126324325010.1007/978‑1‑4939‑2269‑7_1925618350
    [Google Scholar]
  43. MilčićN. StepanićV. CrnolatacI. Findrik BlaževićZ. BrkljačaZ. Majerić ElenkovM. Inhibitory effect of DMSO on halohydrin dehalogenase: Experimental and computational insights into the influence of an organic co-solvent on the structural and catalytic properties of a biocatalyst.Chemistry20222856e20220192310.1002/chem.20220192335997008
    [Google Scholar]
  44. Christopher CraftsI.A. BaileyB. PlanteM. Analytical methods to characterize and quantify PEG and PEGylated biopharmaceuticals.2012Available From: https://assets.thermofisher.com/TFS-Assets/CMD/posters/pn-70052pegylatedbiopharmaceuticals-pittcon2012-pn70052-en.pdf
  45. FerradoJ.B. PerezA.A. MenegonM. VaillardV.A. GasserF. BaravalleM.E. OrtegaH.H. VaillardS.E. SantiagoL.G. PEGylation of genistein-loaded bovine serum albumin nanoparticles and its effect on in vitro cell viability and genotoxicity properties.Colloids Surf. B Biointerfaces202322211308210.1016/j.colsurfb.2022.11308236542950
    [Google Scholar]
  46. SeoH. BaeH.D. PyunH. KimB.G. LeeS.I. SongJ.S. LeeK. BaeH. PyunB. KimS. LeeK. PEGylation improves the therapeutic potential of dimerized translationally controlled tumor protein blocking peptide in ovalbumin-induced mouse model of airway inflammation.Drug Deliv.20222912320232910.1080/10717544.2022.210051135850571
    [Google Scholar]
  47. AkbarzadehlalehP. MirzaeiM. Mashahdi-KeshtibanM. ShamsasenjanK. HeydariH. PEGylated human serum albumin: Review of PEGylation, purification and characterization methods.Adv. Pharm. Bull.20166330931710.15171/apb.2016.04327766215
    [Google Scholar]
  48. GurramS. SrivastavaG. BadveV. NandreV. GunduS. DoshiP. Pyridine borane as alternative reducing agent to sodium cyanoborohydride for the PEGylation of L-asparaginase.Appl. Biochem. Biotechnol.2022194282784710.1007/s12010‑021‑03657‑y34550501
    [Google Scholar]
  49. SkoogB. Determination of polyethylene glycols 4000 and 6000 in plasma protein preparations.Vox Sang.197937634534910.1111/j.1423‑0410.1979.tb02314.x44395
    [Google Scholar]
  50. UluA. Metal–organic frameworks (MOFs): A novel support platform for ASNase immobilization.J. Mater. Sci.202055146130614410.1007/s10853‑020‑04452‑6
    [Google Scholar]
  51. de LimaG.F. de SouzaA.G. RosaD.S. Effect of adsorption of polyethylene glycol (PEG), in aqueous media, to improve cellulose nanostructures stability.J. Mol. Liq.201826841542410.1016/j.molliq.2018.07.080
    [Google Scholar]
  52. DobryakovaN. ZhdanovD. KudryashovaE. Preparation methods and biocatalytic properties of covalent conjugates of rhodospirillum rubrum l-asparaginase.Pub. Health Toxicol.20222Suppl. 210.18332/pht/150224
    [Google Scholar]
  53. SavadkouhiN. SalehiP. SepehriH. DelphiL. RafatiH. Synthesis, characterization, and micelle formation of novel PEGylated derivatives of noscapine with anti-cancer activity.J. Mol. Liq.202236612025810.1016/j.molliq.2022.120258
    [Google Scholar]
  54. LiY. WangZ. ZhanY. WangS. TaoX. LiaoC. LuZ. Improved mechanical and dielectric performances of epoxy nanocomposites filled with aminated polyethylene glycol grafted graphene.Mater. Lett.201924614915210.1016/j.matlet.2019.03.071
    [Google Scholar]
  55. KaramanS. KaraipekliA. SarıA. BiçerA. Polyethylene glycol (PEG)/diatomite composite as a novel form-stable phase change material for thermal energy storage.Sol. Energy Mater. Sol. Cells20119571647165310.1016/j.solmat.2011.01.022
    [Google Scholar]
  56. OellerM. SormanniP. VendruscoloM. An open-source automated PEG precipitation assay to measure the relative solubility of proteins with low material requirement.Sci. Rep.20211112193210.1038/s41598‑021‑01126‑434753962
    [Google Scholar]
  57. González-ValdezJ. Rito-PalomaresM. BenavidesJ. Quantification of RNase A and its PEGylated conjugates on polymer-salt rich environments using UV spectrophotometry.Anal. Lett.201144580081410.1080/00032711003789959
    [Google Scholar]
  58. SantosJ.H.P.M. CarreteroG. VenturaS.P.M. ConvertiA. Rangel-YaguiC.O. PEGylation as an efficient tool to enhance cytochrome c thermostability: A kinetic and thermodynamic study.J. Mater. Chem. B Mater. Biol. Med.20197284432443910.1039/C9TB00590K
    [Google Scholar]
  59. ZumaL.K. GasaN.L. MakhobaX.H. PooeO.J. Protein PEGylation: Navigating recombinant protein stability, aggregation, and bioactivity.BioMed Res. Int.202220221710.1155/2022/892971535924267
    [Google Scholar]
  60. Rodríguez-MartínezJ.A. Rivera-RiveraI. SoláR.J. GriebenowK. Enzymatic activity and thermal stability of PEG-α-chymotrypsin conjugates.Biotechnol. Lett.200931688388710.1007/s10529‑009‑9947‑y19224136
    [Google Scholar]
  61. MorgensternJ. BaumannP. BrunnerC. HubbuchJ. Effect of PEG molecular weight and PEGylation degree on the physical stability of PEGylated lysozyme.Int. J. Pharm.20175191-240841710.1016/j.ijpharm.2017.01.04028130198
    [Google Scholar]
  62. HsiehY.P. LinS.C. Effect of PEGylation on the activity and stability of horseradish peroxidase and l-N-carbamoylase in aqueous phases.Process Biochem.20155091372137810.1016/j.procbio.2015.04.024
    [Google Scholar]
  63. CunhaJ.R. Effects of site-directed PEGylation on L-asparaginase thermostability.,Dissertação de Mestrado, Faculdade de Ciências Farmacêuticas202110.11606/D.9.2021.tde‑05082021‑101113
    [Google Scholar]
  64. RyuJ. YangS.J. SonB. LeeH. LeeJ. JooJ. ParkH.H. ParkT.H. Enhanced anti-cancer effect using MMP-responsive L-asparaginase fused with cell-penetrating 30Kc19 protein.Artif. Cells Nanomed. Biotechnol.202250127828510.1080/21691401.2022.212685136191335
    [Google Scholar]
  65. HeT. ZhangC. ColombaniT. BencherifS.A. PorterR.M. BajpayeeA.G. Intra-articular kinetics of a cartilage targeting cationic PEGylated protein for applications in drug delivery.Osteoarthritis Cartilage202331218719810.1016/j.joca.2022.09.01036241136
    [Google Scholar]
  66. Al ShoyaibA. ArchieS.R. KaramyanV.T. Intraperitoneal route of drug administration: Should it be used in experimental animal studies?Pharm. Res.20203711210.1007/s11095‑019‑2745‑x31873819
    [Google Scholar]
  67. BrindleD. HavenN. The route of absorption of intraperitoneally adminestrated compounds.J. Pharmacol. Exp. Ther.19711971562566
    [Google Scholar]
  68. DiehlK.H. HullR. MortonD. PfisterR. RabemampianinaY. SmithD. VidalJ.M. VorstenboschC.V.D. A good practice guide to the administration of substances and removal of blood, including routes and volumes.J. Appl. Toxicol.2001211152310.1002/jat.72711180276
    [Google Scholar]
  69. ArnittaliM. RissanouA.N. HarmandarisV. Structure of biomolecules through molecular dynamics simulations.Procedia Comput. Sci.2019156697810.1016/j.procs.2019.08.181
    [Google Scholar]
  70. RahmanM.M. SahaT. IslamK.J. SumanR.H. BiswasS. RahatE.U. HossenM.R. IslamR. HossainM.N. Al MamunA. KhanM. AliM.A. HalimM.A. Virtual screening, molecular dynamics, and structure–activity relationship studies to identify potent approved drugs for Covid-19 treatment.J. Biomol. Struct. Dyn.2020391611110.1080/07391102.2020.179497432692306
    [Google Scholar]
  71. YangC. LuD. LiuZ. How PEGylation enhances the stability and potency of insulin: A molecular dynamics simulation.Biochemistry201150132585259310.1021/bi101926u21332191
    [Google Scholar]
  72. MunasingheA. MathavanA. MathavanA. LinP. ColinaC.M. Molecular insight into the protein–polymer interactions in N-Terminal PEGylated bovine serum albumin.J. Phys. Chem. B2019123255196520510.1021/acs.jpcb.8b1226830939013
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010309260240624072408
Loading
/content/journals/cpb/10.2174/0113892010309260240624072408
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test