Skip to content
2000
Volume 26, Issue 4
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Background

In the current study, a comparative phytochemical analysis was carried out to explore the phenolic and flavonoid contents in the aerial parts of L and Retz growing in cultivated, reclaimed, and desert habitats.

Methods

High-performance liquid chromatography (HPLC) was used to detect Vicia methanolic extracts' individual phenolic and flavonoid constituents. The first-time synthesis of cadmium oxide nanoparticles (CdO NPs) using the aqueous extract of has been developed using a green approach. Also, the cytotoxicity of extract and CdO NPs was examined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay for unveiling them as anti-HAV and anti-AdV.

Results

Our results indicated that in the case of desert habitat, the contents of total phenolics (76.37 mg/g) and total flavonoids (65.23 mg/g) of were higher than those of (67.35 mg/g and 47.34 mg/g, respectively) and the contents of these secondary metabolites were even increased in collected from reclaimed land (phenolics: 119.77 mg/g, flavonoids: 88.61 mg/g). Also, surpassed in the contents of some individual HPLC constituents, and hence, was used to synthesize the green CdO NPs and subsequent antiviral tests. The average size of CdO NPs was determined to be 24.28 nm, and the transmission electron microscopy (TEM) images of CdO NPs clearly showed their spherical form and varying particle sizes, with different diameters in the range of 19–29 nm. MTT assay was positive to the exposure of CdO NPs in the normal cell line, proposing that CdO NPs can reduce cell viability. extract showed promising antiviral activity against Hepatitis A virus (HAV) and Adenovirus (AdV) with SI of 16.40 and 10.54. On the other hand, CdO NPs had poor antiviral activity against HAV with an SI of 4.74 and moderate antiviral activity against AdV with an SI of 10.54.

Conclusion

is now considered a new, valuable natural resource for phenolics and flavonoids, especially when grown in reclaimed soil. The green CdO NPs based on extract showed a promising antiviral effect against HAV and AdV.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010305452240427044346
2024-05-16
2025-03-29
Loading full text...

Full text loading...

References

  1. HaneltP. MettinD. Biosystematics of the Genus VICIA L. (Leguminosae).Annu. Rev. Ecol. Syst.198920119922310.1146/annurev.es.20.110189.001215
    [Google Scholar]
  2. IberiteM. AbbateG. IamonicoD. Vicia incisa (Fabaceae): Taxonomical and chorological notes.Ann. Bot.2017757
    [Google Scholar]
  3. SalehiB. Abu-ReidahI.M. SharopovF. KarazhanN. Sharifi-RadJ. AkramM. DaniyalM. KhanF.S. AbbaassW. ZainabR. CarboneK. FahmyN.M. Al-SayedE. El-ShazlyM. LucariniM. DurazzoA. SantiniA. MartorellM. PezzaniR. Vicia plan ts—A comprehensive review on chemical composition and phytopharmacology.Phytother. Res.202135279080910.1002/ptr.686332930444
    [Google Scholar]
  4. GülerB. ManavE. UğurluE. Medicinal plants used by traditional healers in Bozüyük (Bilecik–Turkey).J. Ethnopharmacol.2015173394710.1016/j.jep.2015.07.00726188219
    [Google Scholar]
  5. SpanouC. BourouG. DervishiA. AligiannisN. AngelisA. KomiotisD. SkaltsounisA.L. KouretasD. Antioxidant and chemopreventive properties of polyphenolic compounds derived from Greek legume plant extracts.J. Agric. Food Chem.200856166967697610.1021/jf800842p18636687
    [Google Scholar]
  6. ChenW. WangY. LvX. YuG. WangQ. LiH. WangJ. ZhangX. LiuQ. Physicochemical, structural and functional properties of protein isolates and major protein fractions from common vetch (Vicia sativa L.).Int. J. Biol. Macromol.202221648749710.1016/j.ijbiomac.2022.07.03035810850
    [Google Scholar]
  7. SunY. LiJ. XingJ. YuX. LuY. XuW. ZhaoN. LiuZ. GuoZ. Evaluation of salt tolerance in common vetch (Vicia sativa L.) germplasms and the physiological responses to salt stress.J. Plant Physiol.202227815381110.1016/j.jplph.2022.15381136126616
    [Google Scholar]
  8. AbbasiA.M. ShahM.H. LiT. FuX. GuoX. LiuR.H. Ethnomedicinal values, phenolic contents and antioxidant properties of wild culinary vegetables.J. Ethnopharmacol.201516233334510.1016/j.jep.2014.12.05125571845
    [Google Scholar]
  9. HollingsE. StaceC.A. Karyotype variation and evolution in the Vicia sativ A aggregate.New Phytol.197473119520810.1111/j.1469‑8137.1974.tb04619.x
    [Google Scholar]
  10. AmnaR. SobiaK. TariqM. Phytochemical investigation of medicinally important plants of the Pothohar region of Pakistan.J. Tradit. Chin. Med.202040588389033000591
    [Google Scholar]
  11. AbbasM.S. MahmoudA.E. MohamedH.S. CieślakA. Szumacher-StrabelM. Impact of some forage species derived from Egyptian rangelands on rumen fluid parameters and methane production: In vitro.Pak. J. Zool.2023553104110.17582/journal.pjz/20210608200641
    [Google Scholar]
  12. El-HalawanyA.M. OsmanS.M. AbdallahH.M. Cytotoxic constituents from Vicia monantha subsp. monantha seeds.Nat. Prod. Res.201933121783178610.1080/14786419.2018.143463829411647
    [Google Scholar]
  13. ZouB.S. VolkovV.V. WangZ.L. Optical properties of amorphous ZnO, CdO, and PbO nanoclusters in solution.Chem. Mater.199911113037304310.1021/cm9810990
    [Google Scholar]
  14. BalamuruganS. BaluA.R. UsharaniK. SuganyaM. AnithaS. PrabhaD. IlangovanS. Synthesis of CdO nanopowders by a simple soft chemical method and evaluation of their antimicrobial activities. Pacific Science Review A.Natural Science and Engineering201618322823210.1016/j.psra.2016.10.003
    [Google Scholar]
  15. AhmadJ. MajidK. Enhanced visible light driven photocatalytic activity of CdO–graphene oxide heterostructures for the degradation of organic pollutants.New J. Chem.20184253246325910.1039/C7NJ03617E
    [Google Scholar]
  16. LuH.B. LiaoL. LiH. TianY. WangD.F. LiJ.C. FuQ. ZhuB.P. WuY. Fabrication of CdO nanotubes via simple thermal evaporation.Mater. Lett.200862243928393010.1016/j.matlet.2008.05.010
    [Google Scholar]
  17. TadjarodiA. ImaniM. A novel nanostructure of cadmium oxide synthesized by mechanochemical method.Mater. Res. Bull.201146111949195410.1016/j.materresbull.2011.07.016
    [Google Scholar]
  18. GulinoA. CompagniniG. ScalisiA.A. Large third-order nonlinear optical properties of cadmium oxide thin films.Chem. Mater.200315173332333610.1021/cm031075f
    [Google Scholar]
  19. MiledI.B. JlassiM. StaI. DhaouadiM. HajjiM. MousdisG. KompitsasM. EzzaouiaH. Structural, optical, and electrical properties of cadmium oxide thin films prepared by sol–gel spin-coating method.J. Sol-Gel Sci. Technol.201783225926710.1007/s10971‑017‑4412‑1
    [Google Scholar]
  20. Al-HakkaniM.F. GoudaG.A. HassanS.H.A. A review of green methods for phyto-fabrication of hematite (α-Fe2O3) nanoparticles and their characterization, properties, and applications.Heliyon202171e0580610.1016/j.heliyon.2020.e0580633490660
    [Google Scholar]
  21. HosnyS. El-BakiR.F.A. El-WahabZ.H.A. GoudaG.A. SaddikM.S. AljuhaniA. Abu-DiefA.M. Development of novel nano-sized imine complexes using Coriandrum sativum extract: Structural elucidation, non-isothermal kinetic study, theoretical investigation and pharmaceutical applications.Int. J. Mol. Sci.202324181425910.3390/ijms24181425937762562
    [Google Scholar]
  22. HosnyS. GoudaG.A. Abu-El-WafaS.M. Novel nano copper complexes of a new Schiff base: green synthesis, a new series of solid Cr (II), Co (II), Cu (II), Pd (II) and Cd (II) chelates, characterization, DFT, DNA, antitumor and molecular docking studies.Appl. Organomet. Chem.2022365e662710.1002/aoc.6627
    [Google Scholar]
  23. NagabhushanaH. BasavarajR.B. Daruka PrasadB. SharmaS.C. PremkumarH.B. Udayabhanu; Vijayakumar, G.R. Facile EGCG assisted green synthesis of raspberry shaped CdO nanoparticles.J. Alloys Compd.201666923223910.1016/j.jallcom.2016.01.201
    [Google Scholar]
  24. PagarK. ChavanK. KasavS. BasnetP. RahdarA. KatariaN. OzaR. AbhaleY. RavindranB. PardeshiO. PawarS. PagarB. GhotekarS. Bio-inspired synthesis of CdO nanoparticles using Citrus limetta peel extract and their diverse biomedical applications.J. Drug Deliv. Sci. Technol.20238210437310.1016/j.jddst.2023.104373
    [Google Scholar]
  25. SomasundaramG. RajanJ. Effectual role of abelmoschus esculentus (Okra) extract on morphology, microbial and photocatalytic activities of CdO Tetrahedral Clogs.J. Inorg. Organomet. Polym. Mater.201828115216710.1007/s10904‑017‑0695‑5
    [Google Scholar]
  26. HassanienR. HuseinD.Z. KhamisM. Novel green route to synthesize cadmium oxide@graphene nanocomposite: Optical properties and antimicrobial activity.Mater. Res. Express20196808509410.1088/2053‑1591/ab23ac
    [Google Scholar]
  27. ThemaF.T. BeukesP. Gurib-FakimA. MaazaM. Green synthesis of Monteponite CdO nanoparticles by Agathosma betulina natural extract.J. Alloys Compd.20156461043104810.1016/j.jallcom.2015.05.279
    [Google Scholar]
  28. ElbahrawyA. AtallaH. AlboraieM. AlwassiefA. MadianA. El FayoumieM. TabllA.A. AlyH.H. Recent advances in protective vaccines against hepatitis viruses: A narrative review.Viruses202315121410.3390/v1501021436680254
    [Google Scholar]
  29. BarbieriR. CoppoE. MarcheseA. DagliaM. Sobarzo-SánchezE. NabaviS.F. NabaviS.M. Phytochemicals for human disease: An update on plant-derived compounds antibacterial activity.Microbiol. Res.2017196446810.1016/j.micres.2016.12.00328164790
    [Google Scholar]
  30. LinY.L. JuanI.M. ChenY.L. LiangY.C. LinJ.K. Composition of polyphenols in fresh tea leaves and associations of their oxygen-radical-absorbing capacity with antiproliferative actions in fibroblast cells.J. Agric. Food Chem.19964461387139410.1021/jf950652k
    [Google Scholar]
  31. ElshazlyE.H. NasrA. ElnosaryM.E. GoudaG.A. MohamedH. SongY. Identifying the anti-MERS-CoV and anti-HcoV-229E potential drugs from the Ginkgo biloba leaves extract and its eco-friendly synthesis of silver nanoparticles.Molecules2023283137510.3390/molecules2803137536771041
    [Google Scholar]
  32. ZeinEldin R.A.; Ahmed, M.M.; Hassanein, W.S.; Elshafey, N.; Sofy, A.R.; Hamedo, H.A.; Elnosary, M.E. Diversity and distribution characteristics of viruses from soda lakes.Genes202314232310.3390/genes1402032336833250
    [Google Scholar]
  33. ElnosaryM.E. AboelmagdH.A. HabakaM.A. SalemS.R. El-NaggarM.E. Synthesis of bee venom loaded chitosan nanoparticles for anti-MERS-COV and multi-drug resistance bacteria.Int. J. Biol. Macromol.202322487188010.1016/j.ijbiomac.2022.10.17336283561
    [Google Scholar]
  34. ElnosaryM. AboelmagdH. SofyM.R. SofyA. Antiviral and antibacterial properties of synthesis silver nanoparticles with nigella arvensis aqueous extract.Egypt. J. Chem.2023667209
    [Google Scholar]
  35. SelimS. AlbqmiM. AlanaziA. AlruwailiY. Al-SaneaM.M. AlnusaireT.S. AlmuhayawiM.S. Al JaouniS.K. HusseinS. WarradM. AbdElgawad, H.; Elshafey, N.; Elnosary, M.E. Antiviral activities of olive oil apigenin and taxifolin against SARS-CoV-2 RNA-dependent RNA polymerase (RdRP): In silico, pharmacokinetic, ADMET, and in-vitro approaches.Cogent Food Agric.202391223682810.1080/23311932.2023.2236828
    [Google Scholar]
  36. ThomfordN. SenthebaneD. RoweA. MunroD. SeeleP. MaroyiA. DzoboK. Natural products for drug discovery in the 21st century: Innovations for novel drug discovery.Int. J. Mol. Sci.2018196157810.3390/ijms1906157829799486
    [Google Scholar]
  37. JassimS.A.A. NajiM.A. Novel antiviral agents: A medicinal plant perspective.J. Appl. Microbiol.200395341242710.1046/j.1365‑2672.2003.02026.x12911688
    [Google Scholar]
  38. DenaroM. SmeriglioA. BarrecaD. De FrancescoC. OcchiutoC. MilanoG. TrombettaD. Antiviral activity of plants and their isolated bioactive compounds: An update.Phytother. Res.202034474276810.1002/ptr.657531858645
    [Google Scholar]
  39. BergerJ.D. RobertsonL.D. CocksP.S. Agricultural potential of Mediterranean grain and forage legumes: 2) Anti-nutritional factor concentrations in the genus Vicia.Genet. Resour. Crop Evol.200350220121210.1023/A:1022954232533
    [Google Scholar]
  40. CastillónE.E. ArévaloJ.R. QuintanillaJ.Á.V. RodríguezM.M.S. Encina-DomínguezJ.A. RodríguezH.G. AyalaC.M.C. Classification and ordination of main plant communities along an altitudinal gradient in the arid and temperate climates of northeastern Mexico.Naturwissenschaften20151029-105910.1007/s00114‑015‑1306‑326362779
    [Google Scholar]
  41. Fuller-RowellT.J. CodrescuM.V. MoffettR.J. QueganS. Response of the thermosphere and ionosphere to geomagnetic storms.J. Geophys. Res.199499A33893391410.1029/93JA02015
    [Google Scholar]
  42. PiperC.S. Soil and plant analysis.LWW1945
    [Google Scholar]
  43. SeA. Chemical analysis of ecological materials.Analysis of vegetation and other organic materials.Blackwell Science Inc1989
    [Google Scholar]
  44. JohnsonC.M. NishitaH. Microestimation of sulfur in plant materials, soils, and irrigation waters.Anal. Chem.195224473674210.1021/ac60064a032
    [Google Scholar]
  45. HouX. JonesB.T. John Wiley & Sons Chichester.UK2000
    [Google Scholar]
  46. AssociationA.P.H. Standard methods for the examination of water and wastewater.American Public Health Association1926
    [Google Scholar]
  47. SingletonV.L. OrthoferR. Lamuela-RaventósR.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent.Methods Enzymol.199929915217810.1016/S0076‑6879(99)99017‑1
    [Google Scholar]
  48. ChangC.C. YangM.H. WenH.M. ChernJ.C. Estimation of total flavonoid content in propolis by two complementary colometric methods.Yao Wu Shi Pin Fen Xi202010310.38212/2224‑6614.2748
    [Google Scholar]
  49. Al-HakkaniM.F. GoudaG.A. HassanS.H. FarghalyO.A. MohamedM.M. Fully investigation of RP-HPLC analytical method validation parameters for determination of Cefixime traces in the different pharmaceutical dosage forms and urine analysis.Acta Pharm. Sci.2021591131149
    [Google Scholar]
  50. KuntićV. PejićN. IvkovićB. VujićZ. IlićK. MićićS. VukojevićV. Isocratic RP-HPLC method for rutin determination in solid oral dosage forms.J. Pharm. Biomed. Anal.200743271872110.1016/j.jpba.2006.07.01916920326
    [Google Scholar]
  51. VichaiV. KirtikaraK. Sulforhodamine B colorimetric assay for cytotoxicity screening.Nat. Protoc.2006131112111610.1038/nprot.2006.17917406391
    [Google Scholar]
  52. KhirallaA. SpinaR. VarbanovM. PhilippotS. LemiereP. Slezack-DeschaumesS. AndréP. MohamedI. YagiS.M. Laurain-MattarD. Evaluation of antiviral, antibacterial and antiproliferative activities of the endophytic fungus Curvularia papendorfii, and isolation of a new polyhydroxyacid.Microorganisms202089135310.3390/microorganisms809135332899776
    [Google Scholar]
  53. ElshazlyE.H. MohamedA.K.S.H. AboelmagdH.A. GoudaG.A. AbdallahM.H. EwaisE.A. AssiriM.A. AliG.A.M. Phytotoxicity and antimicrobial activity of green synthesized silver nanoparticles using Nigella sativa seeds on wheat seedlings.J. Chem.202220221910.1155/2022/9609559
    [Google Scholar]
  54. PauwelsR. BalzariniJ. BabaM. SnoeckR. ScholsD. HerdewijnP. DesmyterJ. De ClercqE. Rapid and automated tetrazolium-based colorimetric assay for the detection of anti-HIV compounds.J. Virol. Methods198820430932110.1016/0166‑0934(88)90134‑62460479
    [Google Scholar]
  55. IndrayantoG. PutraG.S. SuhudF. Validation of in-vitro bioassay methods: Application in herbal drug research.Profiles Drug Subst. Excip. Relat. Methodol.20214627330710.1016/bs.podrm.2020.07.00533461699
    [Google Scholar]
  56. ShuklaR. ChandelP. Plant ecology and soil science; S.Chand1994
    [Google Scholar]
  57. LeeK.J. LeeJ.R. KimH.J. RaveendarS. LeeG.A. JeonY.A. ParkE. MaK.H. LeeS.Y. ChungJ.W. Comparison of flavonoid contents and antioxidant activities of Vicia species.Plant Genet. Resour.201715211912610.1017/S147926211500043X
    [Google Scholar]
  58. ShirasawaK. KosugiS. SasakiK. GhelfiA. OkazakiK. ToyodaA. HirakawaH. IsobeS. Genome features of common vetch (VICIA SATIVA) in natural habitats.Plant Direct2021510e35210.1002/pld3.35234646975
    [Google Scholar]
  59. RhoadesJ. LovedayJ. Salinity in irrigated agriculture.Agronomy1990301089
    [Google Scholar]
  60. BhattacharyaA. BhattacharyaA. Mineral nutrition of plants under soil water deficit condition: A review.Soil Water Deficit and Physiological Issues in Plants2021287391
    [Google Scholar]
  61. SaleemM. KarimM. QadirM.I. AhmedB. RafiqM. AhmadB. In vitro antibacterial activity and phytochemical analysis of hexane extract of Vicia sativa.Bangladesh J. Pharmacol.20149218910.3329/bjp.v9i2.17859
    [Google Scholar]
  62. MegíasC. Cortés-GiraldoI. Girón-CalleJ. AlaizM. VioqueJ. Characterization of Vicia (Fabaceae) seed water extracts with potential immunomodulatory and cell antiproliferative activities.J. Food Biochem.2018425e1257810.1111/jfbc.12578
    [Google Scholar]
  63. BoulosL. Flora of Egypt checklist.CairoChecklist All-Hadara Publishing2009
    [Google Scholar]
  64. EhrendorferF. Systematics of spermatophyta: Survey of extra‐European literature 1967–1968.Taxon197019458460710.2307/1218954
    [Google Scholar]
  65. MeesterR. RoyR. Continuum percolation.Cambridge University Press199610.1017/CBO9780511895357
    [Google Scholar]
  66. SeabraM. CarvalhoS. FreireJ. FerreiraR. MouratoM. CunhaL. CabralF. TeixeiraA. AumaitreA. Lupinus luteus, Vicia sativa and Lathyrus cicera as protein sources for piglets: Ileal and total tract apparent digestibility of amino acids and antigenic effects.Anim. Feed Sci. Technol.2001891-211610.1016/S0377‑8401(00)00230‑3
    [Google Scholar]
  67. Gamal-EldeenA.M. KawashtyS. IbrahimL. ShabanaM. El-NegoumyS. Evaluation of antioxidant, anti-inflammatory, and antinociceptive properties of aerial parts of Vicia sativa and its flavonoids.J. Nat. Rem.20044181
    [Google Scholar]
  68. PasrichaV. SatpathyG. GuptaR.K. Phytochemical & Antioxidant activity of underutilized legume Vicia faba seeds and formulation of its fortified biscuits.J. Pharmacogn. Phytochem.20143275
    [Google Scholar]
  69. ChoudharyD.K. MishraA. In vitro and in silico interaction of porcine α-amylase with Vicia faba crude seed extract and evaluation of antidiabetic activity.Bioengineered20178439340310.1080/21655979.2016.123510227791455
    [Google Scholar]
  70. AbozeidA. LiuJ. MaY. LiuY. GuoX. TangZ. Seed metabolite profiling of Vicia species from China via GC-MS.Nat. Prod. Res.201832151863186610.1080/14786419.2017.140539929156967
    [Google Scholar]
  71. Abu-ReidahI.M. Arráez-RománD. WaradI. Fernández-GutiérrezA. Segura-CarreteroA. UHPLC/MS 2 -based approach for the comprehensive metabolite profiling of bean (Vicia faba L.) by-products: A promising source of bioactive constituents.Food Res. Int.201793879610.1016/j.foodres.2017.01.01428290284
    [Google Scholar]
  72. ValenteI.M. CabritaA.R.J. MalushiN. OliveiraH.M. PapaL. RodriguesJ.A. FonsecaA.J.M. MaiaM.R.G. Unravelling the phytonutrients and antioxidant properties of European Vicia faba L. seeds.Food Res. Int.201911688889610.1016/j.foodres.2018.09.02530717020
    [Google Scholar]
  73. GhaderiS. GhorbaniJ. GholamiP. KarimzadehA. SalarianF. Effect of drought and salinity stresses on germination indices of vetch (Vicia villosa L.). J.Agroecol.201131121
    [Google Scholar]
  74. TreviñoJ. CaballeroR. GilJ. Studies on the use of carob (Vicia monantha Rehz.) as a fodder plant. Analysis of growth and yields.Pastos1980102138
    [Google Scholar]
  75. LiuY. WangY.M. ZhuW.Y. ZhangC.H. TangH. JiangJ.H. Conjugated polymer nanoparticles-based fluorescent biosensor for ultrasensitive detection of hydroquinone.Anal. Chim. Acta20181012606510.1016/j.aca.2018.01.02729475474
    [Google Scholar]
  76. ThovhogiN. ParkE. ManikandanE. MaazaM. Gurib-FakimA. Physical properties of CdO nanoparticles synthesized by green chemistry via Hibiscus Sabdariffa flower extract.J. Alloys Compd.201665531432010.1016/j.jallcom.2015.09.063
    [Google Scholar]
  77. KhamisM. GoudaG.A. NagiubA.M. Green synthesis of zinc oxide nanoparticles: Characterization, organic dye degradation and evaluation of their antibacterial activity. Al-Azhar Bull.Sci.20233427
    [Google Scholar]
  78. KhamisM. GoudaG.A. NagiubA.M. Biosynthesis approach of zinc oxide nanoparticles for aqueous phosphorous removal: physicochemical properties and antibacterial activities.BMC Chem.20231719910.1186/s13065‑023‑01012‑237587477
    [Google Scholar]
  79. KhamisM. GoudaG. NagiubA. Biosynthesis and antibacterial evaluation of zinc oxide nanoparticles from Onion extract (Allium cepa).Bulletin of Pharmaceutical Sciences Assiut University202346295596710.21608/bfsa.2023.327726
    [Google Scholar]
  80. Al-HadaN.M. SaionE.B. ShaariA.H. KamarudinM.A. FlaifelM.H. AhmadS.H. GeneA. A facile thermal-treatment route to synthesize the semiconductor CdO nanoparticles and effect of calcination.Mater. Sci. Semicond. Process.20142646046610.1016/j.mssp.2014.05.032
    [Google Scholar]
  81. SayedN.S.M. AhmedA.S.A. AbdallahM.H. GoudaG.A. ZnO@ activated carbon derived from wood sawdust as adsorbent for removal of methyl red and methyl orange from aqueous solutions.Sci. Rep.2024141538410.1038/s41598‑024‑55158‑738443380
    [Google Scholar]
  82. ThomasP. SreekanthP. PhilipR. AbrahamK.E. Morphology dependent nanosecond and ultrafast optical power limiting of CdO nanomorphotypes.RSC Advances2015544350173502510.1039/C5RA04282H
    [Google Scholar]
  83. Al-HakkaniM.F. GoudaG.A. HassanS.H.A. SaddikM.S. El-MokhtarM.A. IbrahimM.A. MohamedM.M.A. NagiubA.M. Cefotaxime removal enhancement via bio-nanophotocatalyst α-Fe2O3 using photocatalytic degradation technique and its echo-biomedical applications.Sci. Rep.20221211188110.1038/s41598‑022‑14922‑335831423
    [Google Scholar]
  84. HassanE. GahlanA.A. GoudaG.A. Biosynthesis approach of copper nanoparticles, physicochemical characterization, cefixime wastewater treatment, and antibacterial activities.BMC Chem.20231717110.1186/s13065‑023‑00982‑737424027
    [Google Scholar]
  85. Al-HakkaniM.F. GoudaG.A. HassanS.H.A. NagiubA.M. Echinacea purpurea mediated hematite nanoparticles (α-HNPs) biofabrication, characterization, physicochemical properties, and its in-vitro biocompatibility evaluation.Surf. Interfaces20212410111310.1016/j.surfin.2021.101113
    [Google Scholar]
  86. HusseinH.A.M. ThabetA.A.A. MohamedT.I.A. ElnosaryM.E. SobhyA. El-AdlyA.M. WardanyA.A. BakhietE.K. AfifiM.M. AbdulraoufU.M. FathyS.M. SayedN.G. ZahranA.M. Phenotypical changes of hematopoietic stem and progenitor cells in COVID-19 patients: Correlation with disease status.Cent. Eur. J. Immunol.20234829711010.5114/ceji.2023.12998137692025
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010305452240427044346
Loading
/content/journals/cpb/10.2174/0113892010305452240427044346
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): AdV; antiviral activity; Cd ONPs; flavonoids; HAV; HPLC; phenolic compounds; Vicia monantha; Vicia sativa
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test