Skip to content
2000
Volume 26, Issue 4
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Background and Aims

Chlorpyrifos (CPF), which is classified as an Organophosphorus Pesticide (OP), has been identified as a toxic agent for the reproductive system due to its capacity to induce oxidative stress and inflammation. Curcumin (CUR) has been reported as a natural antioxidant and anti-inflammatory agent that could combat toxicity in various tissues. This study aims to examine the protective effects of CUR and its nanoformulation against reproductive impairment induced by CPF.

Methods

Forty-eight female Wistar albino rats were randomly allocated to six groups (n=8): control (0.5 mL of corn oil, the solvent for CPF), CPF (10 mg/kg), CPF + CUR 100 mg/kg/day, CPF + CUR 300 mg/kg/day, CPF + nano-micelle curcumin (NMC) 2.5 mg/kg/day, and CPF + NMC 5 mg/kg/day. The experimental treatment was performed for 30 days. Then, brain, ovary and uterus tissues were collected for measuring oxidative stress and inflammatory indices.

Results

MDA, NO, IL-6, and TNF-α concentrations significantly increased in the brain, ovary and uterus of the CPF group the control group (p < 0.001). The levels of GSH and SOD in the uterus, ovaries, and brain exhibited a significant decrease in the CPF group compared to the control group (p < 0.05). However, CUR (300 mg/kg) and NMC (5 mg/kg) significantly decreased MDA, NO, TNF-α, and Il-6 and increased SOD and GSH levels in the uterus, ovaries and brain of the CPF-exposed animals the CPF-exposed non-treated animals (p < 0.001).

Conclusion

Our findings indicated that CUR and NMC could be effective in alleviating CPF-induced reproductive toxicity.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010297408240319073735
2024-03-29
2025-03-29
Loading full text...

Full text loading...

References

  1. HitesR.A. The rise and fall of chlorpyrifos in the United States.Environ. Sci. Technol.20215531354135810.1021/acs.est.0c0657933486957
    [Google Scholar]
  2. WołejkoE. ŁozowickaB. Jabłońska-TrypućA. PietruszyńskaM. WydroU. Chlorpyrifos occurrence and toxicological risk assessment: A review.Int. J. Environ. Res. Public Health202219191220910.3390/ijerph19191220936231509
    [Google Scholar]
  3. JohnE.M. ShaikeJ.M. Chlorpyrifos: Pollution and remediation.Environ. Chem. Lett.201513326929110.1007/s10311‑015‑0513‑7
    [Google Scholar]
  4. TestaiE. BurattiF.M. Di ConsiglioE. Chlorpyrifos.Hayes’ Handbook of Pesticide Toxicology.Elsevier201015051526
    [Google Scholar]
  5. FarkhondehT. MehrpourO. SadeghiM. AschnerM. AramjooH. RoshanravanB. SamarghandianS. A systematic review on the metabolic effects of chlorpyrifos.Rev. Environ. Health202237113715110.1515/reveh‑2020‑015033962508
    [Google Scholar]
  6. LasagnaM. VenturaC. HielposM.S. MardirosianM.N. MartínG. MiretN. RandiA. NúñezM. CoccaC. Endocrine disruptor chlorpyrifos promotes migration, invasion, and stemness phenotype in 3D cultures of breast cancer cells and induces a wide range of pathways involved in cancer progression.Environ. Res.2022204Pt A11198910.1016/j.envres.2021.11198934506784
    [Google Scholar]
  7. Rodríguez-FuentesG. Rubio-EscalanteF.J. Noreña-BarrosoE. Escalante-HerreraK.S. SchlenkD. Impacts of oxidative stress on acetylcholinesterase transcription, and activity in embryos of zebrafish (Danio rerio) following Chlorpyrifos exposure.Comp. Biochem. Physiol. C Toxicol. Pharmacol.2015172-173192510.1016/j.cbpc.2015.04.00325937383
    [Google Scholar]
  8. LushchakV.I. Free radicals, reactive oxygen species, oxidative stress and its classification.Chem. Biol. Interact.201422416417510.1016/j.cbi.2014.10.01625452175
    [Google Scholar]
  9. SilvestreF. Signaling pathways of oxidative stress in aquatic organisms exposed to xenobiotics.J. Exp. Zool. A Ecol. Integr. Physiol.2020333643644810.1002/jez.235632216128
    [Google Scholar]
  10. AbolajiA.O. OjoM. AfolabiT.T. ArowoogunM.D. NwawolorD. FarombiE.O. Protective properties of 6-gingerol-rich fraction from Zingiber officinale (Ginger) on chlorpyrifos-induced oxidative damage and inflammation in the brain, ovary and uterus of rats.Chem. Biol. Interact.2017270152310.1016/j.cbi.2017.03.01728373059
    [Google Scholar]
  11. NishiK. HundalS.S. Chlorpyrifos induced toxicity in reproductive organs of female Wistar rats.Food Chem. Toxicol.20136273273810.1016/j.fct.2013.10.00624140463
    [Google Scholar]
  12. ChenD. ZhangZ. YaoH. CaoY. XingH. XuS. Pro- and anti-inflammatory cytokine expression in immune organs of the common carp exposed to atrazine and chlorpyrifos.Pestic. Biochem. Physiol.201411481510.1016/j.pestbp.2014.07.01125175644
    [Google Scholar]
  13. HiraniA. Chlorpyrifos induces pro‐inflammatory environment in discrete regions of mouse brain.Wiley Online Library200710.1096/fasebj.21.6.A988‑b
    [Google Scholar]
  14. AliE.M. SohaH. MohamedT.M. Nitric oxide synthase and oxidative stress: Regulation of nitric oxide synthase.Oxidative stress-molecular mechanisms and biological effects.InTech20126172
    [Google Scholar]
  15. AicardoA. Biochemistry of nitric oxide and peroxynitrite: sources, targets and biological implications.Biochemistry of Oxidative Stress. Advances in Biochemistry in Health and DiseaseSpringer, Cham.201616497710.1007/978‑3‑319‑45865‑6_5
    [Google Scholar]
  16. PacherP. BeckmanJ.S. LiaudetL. Nitric oxide and peroxynitrite in health and disease.Physiol. Rev.200787131542410.1152/physrev.00029.200617237348
    [Google Scholar]
  17. JuanC.A. Pérez de la LastraJ.M. PlouF.J. Pérez-LebeñaE. The chemistry of reactive oxygen species (ROS) revisited: Outlining their role in biological macromolecules (DNA, lipids and proteins) and induced pathologies.Int. J. Mol. Sci.2021229464210.3390/ijms2209464233924958
    [Google Scholar]
  18. KarakP. Biological activities of flavonoids: An overview.Int. J. Pharm. Sci. Res.201910415671574
    [Google Scholar]
  19. IsmailN.I. OthmanI. AbasF. H. LajisN. Naidu, R. The curcumin analogue, MS13 (1, 5-Bis (4-hydroxy-3-methoxyphenyl)-1, 4-pentadiene-3-one), inhibits cell proliferation and induces apoptosis in primary and metastatic human colon cancer cells.Molecules20202517379810.3390/molecules2517379832825505
    [Google Scholar]
  20. FuY.S. ChenT.H. WengL. HuangL. LaiD. WengC.F. Pharmacological properties and underlying mechanisms of curcumin and prospects in medicinal potential.Biomed. Pharmacother.202114111188810.1016/j.biopha.2021.11188834237598
    [Google Scholar]
  21. SaifiB. HaftcheshmehS.M. FeligioniM. IzadpanahE. RahimiK. HassanzadehK. MohammadiA. SahebkarA. An overview of the therapeutic effects of curcumin in reproductive disorders with a focus on the antiinflammatory and immunomodulatory activities.Phytother. Res.202236280882310.1002/ptr.736035041229
    [Google Scholar]
  22. BhatiaP. SandersM.M. HansenM.F. Expression of receptor activator of nuclear factor-kappaB is inversely correlated with metastatic phenotype in breast carcinoma.Clin. Cancer Res.200511116216510.1158/1078‑0432.162.11.115671541
    [Google Scholar]
  23. DuttaS. SenguptaP. SlamaP. RoychoudhuryS. Oxidative stress, testicular inflammatory pathways, and male reproduction.Int. J. Mol. Sci.202122181004310.3390/ijms22181004334576205
    [Google Scholar]
  24. MeliR. MonnoloA. AnnunziataC. PirozziC. FerranteM.C. Oxidative stress and BPA toxicity: An antioxidant approach for male and female reproductive dysfunction.Antioxidants20209540510.3390/antiox905040532397641
    [Google Scholar]
  25. DuttaS. GorainB. ChoudhuryH. RoychoudhuryS. SenguptaP. Environmental and occupational exposure of metals and female reproductive health.Environ. Sci. Pollut. Res. Int.20222941620676209210.1007/s11356‑021‑16581‑934558053
    [Google Scholar]
  26. MaY. HeX. QiK. WangT. QiY. CuiL. WangF. SongM. Effects of environmental contaminants on fertility and reproductive health.J. Environ. Sci.20197721021710.1016/j.jes.2018.07.01530573085
    [Google Scholar]
  27. MansourS.A. MossaA.T.H. Lipid peroxidation and oxidative stress in rat erythrocytes induced by chlorpyrifos and the protective effect of zinc.Pestic. Biochem. Physiol.2009931343910.1016/j.pestbp.2008.09.004
    [Google Scholar]
  28. TuzmenN. CandanN. KayaE. DemiryasN. Biochemical effects of chlorpyrifos and deltamethrin on altered antioxidative defense mechanisms and lipid peroxidation in rat liver.Cell Biochem. Funct.200826111912410.1002/cbf.141117437321
    [Google Scholar]
  29. MathewsV.V. BinuP. Sauganth PaulM.V. AbhilashM. ManjuA. NairR.H. Hepatoprotective efficacy of curcumin against arsenic trioxide toxicity.Asian Pac. J. Trop. Biomed.201222S706S71110.1016/S2221‑1691(12)60300‑1
    [Google Scholar]
  30. El-BahrS.M. Effect of curcumin on hepatic antioxidant enzymes activities and gene expressions in rats intoxicated with aflatoxin B1.Phytother. Res.201529113414010.1002/ptr.523925639897
    [Google Scholar]
  31. KalpanaC. MenonV.P. Curcumin ameliorates oxidative stress during nicotine-induced lung toxicity in Wistar rats.Ital. J. Biochem.2004532828615646012
    [Google Scholar]
  32. BöttcherB. SeeberB. LeyendeckerG. WildtL. Impact of the opioid system on the reproductive axis.Fertil. Steril.2017108220721310.1016/j.fertnstert.2017.06.00928669481
    [Google Scholar]
  33. TerryA.V.Jr GearhartD.A. BeckW.D.Jr TruanJ.N. MiddlemoreM.L. WilliamsonL.N. BartlettM.G. PrendergastM.A. SicklesD.W. BuccafuscoJ.J. Chronic, intermittent exposure to chlorpyrifos in rats: Protracted effects on axonal transport, neurotrophin receptors, cholinergic markers, and information processing.J. Pharmacol. Exp. Ther.200732231117112810.1124/jpet.107.12562517548533
    [Google Scholar]
  34. AlipanahH. Kabi DoraghiH. SayadiM. NematollahiA. Soltani HekmatA. NejatiR. Subacute toxicity of chlorpyrifos on histopathological damages, antioxidant activity, and pro‐inflammatory cytokines in the rat model.Environ. Toxicol.202237488088810.1002/tox.2345134985812
    [Google Scholar]
  35. WeisG.C.C. AssmannC.E. MostardeiroV.B. AlvesA.O. da RosaJ.R. PillatM.M. de AndradeC.M. SchetingerM.R.C. MorschV.M.M. da CruzI.B.M. CostabeberI.H. Chlorpyrifos pesticide promotes oxidative stress and increases inflammatory states in BV-2 microglial cells: A role in neuroinflammation.Chemosphere202127813041710.1016/j.chemosphere.2021.13041733839396
    [Google Scholar]
  36. WeissG. GoldsmithL.T. TaylorR.N. BelletD. TaylorH.S. Inflammation in reproductive disorders.Reprod. Sci.200916221622910.1177/193371910833008719208790
    [Google Scholar]
  37. SuleimanJ.B. BakarA.B.A. MohamedM. Review on bee products as potential protective and therapeutic agents in male reproductive impairment.Molecules20212611342110.3390/molecules2611342134198728
    [Google Scholar]
  38. LahimerM. DjekkounN. Tricotteaux-ZarqaouiS. CoronaA. LafosseI. AliH.B. AjinaM. BachV. BenkhalifaM. Khorsi-CauetH. Impact of perinatal coexposure to chlorpyrifos and a high-fat diet on kisspeptin and GnRHR presence and reproductive organs.Toxics202311978910.3390/toxics1109078937755799
    [Google Scholar]
  39. HatamipourM. SahebkarA. AlavizadehS.H. DorriM. JaafariM.R. Novel nanomicelle formulation to enhance bioavailability and stability of curcuminoids.Iran. J. Basic Med. Sci.201922328228931156789
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010297408240319073735
Loading
/content/journals/cpb/10.2174/0113892010297408240319073735
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test