Skip to content
2000
Volume 26, Issue 4
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Introduction

Quercetin (Qc), rutin (Ru), and hyperoside (Hyp) are three common polyphenols widely distributed in the plant kingdom.

Methods

This study explored the inhibition and mechanisms of Qc, Ru, and Hyp against xanthine oxidase (XOD) by enzyme kinetic analysis, fluorescence analysis, and molecular docking. The inhibitory activities of the three polyphenols on XOD showed the following trend: quercetin > hyperoside > rutin, with IC values of 8.327 ± 0.36 µmol/L, 35.215 ± 0.4 µmol/L and 60.811 ± 0.19 µmol/L, respectively. All three polyphenols inhibited xanthine oxidase activity in a mixed-competitive manner. Synchronous fluorescence results demonstrated that three polyphenols binding to XOD were spontaneous and showed static quenching.

Results

The binding of the three polyphenols to XOD is mainly driven by hydrogen bonding and van der Waals forces, resulting in the formation of an XOD-XA complex with only one affinity binding site. The binding sites of the three RSFQ phenolic compounds are close to those of tryptophan. Molecular docking showed that all three polyphenols enter the active pocket of XOD and maintain the stability of the complex through hydrogen bonding, hydrophobic interaction, and van der Waals forces.

Conclusion

The results provide a theoretical basis for quercetin, rutin, and hyperoside to be used as function factors to prevent hyperuricemia.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010297269240427055003
2024-05-16
2025-03-29
Loading full text...

Full text loading...

References

  1. LiuW. PengJ. WuY. YeZ. ZongZ. WuR. LiH. Immune and inflammatory mechanisms and therapeutic targets of gout: An update.Int. Immunopharmacol.202312111046610.1016/j.intimp.2023.11046637311355
    [Google Scholar]
  2. ZhouJ.W. ZhengX.B. LiuH.S. WenB.Y. KouY.C. ZhangL. SongJ.J. ZhangY.J. LiJ.F. Reliable quantitative detection of uric acid in urine by surface-enhanced Raman spectroscopy with endogenous internal standard.Biosens. Bioelectron.202425111610110.1016/j.bios.2024.11610138324971
    [Google Scholar]
  3. SunH. WuY. BianH. YangH. WangH. MengX. JinJ. Function of uric acid transporters and their inhibitors in hyperuricaemia.Front. Pharmacol.20211266775310.3389/fphar.2021.66775334335246
    [Google Scholar]
  4. WangM. ChenJ. ZhangR. GuoX. ChenD. GuoX. ChenY. WuY. SunJ. LiuY. LiuC. Design, synthesis and bioactive evaluation of geniposide derivatives for antihyperuricemic and nephroprotective effects.Bioorg. Chem.202111610532110.1016/j.bioorg.2021.10532134500305
    [Google Scholar]
  5. PirmohammadiY. AsnaashariS. NazemiyehH. HamedeyazdanS. Bioactivity assays and phytochemical analysis upon Alcea glabrata; focusing on xanthine oxidase inhibitory and antimalarial properties.Toxicon202322910714010.1016/j.toxicon.2023.10714037119859
    [Google Scholar]
  6. LiW. ChenX. LiF. HuiyaoZ. SongZ. LiD. Quercetin ameliorates hyperuricemic nephropathy by repressing uric acid synthesis and reabsorption in mice and cells.eFood202452e13910.1002/efd2.139
    [Google Scholar]
  7. FengS. WuS. XieF. YangC.S. ShaoP. Natural compounds lower uric acid levels and hyperuricemia: Molecular mechanisms and prospective.Trends Food Sci. Technol.20221238710210.1016/j.tifs.2022.03.002
    [Google Scholar]
  8. MaghsoudY. DongC. CisnerosG.A. Computational characterization of the inhibition mechanism of xanthine oxidoreductase by topiroxostat.ACS Catal.20231396023604310.1021/acscatal.3c0124537547543
    [Google Scholar]
  9. YinC. SunQ. WuM. YuX. NiuN. ChenL. Novel lignin-derived carbon dots nanozyme cascade-amplified for ratiometric fluorescence detection of xanthine oxidase and intracellular imaging.Sens. Actuators B Chem.202440613545810.1016/j.snb.2024.135458
    [Google Scholar]
  10. VijeeshV. JishaN. VysakhA. LathaM.S. Interaction of eugenol with xanthine oxidase: Multi spectroscopic and in silico modelling approach.Spectrochim. Acta A Mol. Biomol. Spectrosc.202125811984310.1016/j.saa.2021.11984333933941
    [Google Scholar]
  11. YangY.S. WangB. LiuJ. LiQ. JiaoQ.C. QinP. Discovery of coumaric acid derivatives hinted by coastal marine source to seek for uric acid lowering agents.J. Enzyme Inhib. Med. Chem.2023381216324110.1080/14756366.2022.216324136629443
    [Google Scholar]
  12. Petrov IvankovićA. ĆorovićM. MilivojevićA. SimovićM. BanjanacK. VeljkovićM. BezbradicaD. Berries pomace valorization: From waste to potent antioxidants and emerging skin prebiotics.Int. J. Fruit Sci.20242418510110.1080/15538362.2024.2322743
    [Google Scholar]
  13. AbidF. SaleemM. JamshaidT. JamshaidU. YoussefF.S. DiriR.M. ElhadyS.S. AshourM.L. Opuntia monacantha: Validation of the anti-inflammatory and anti-arthritic activity of its polyphenolic rich extract in silico and in vivo via assessment of pro- and anti-inflammatory cytokines.J. Ethnopharmacol.202432611788411788410.1016/j.jep.2024.11788438350502
    [Google Scholar]
  14. LiR. YiQ. WangJ. MiaoY. ChenQ. XuY. TaoM. Paeonol promotes longevity and fitness in Caenorhabditis elegans through activating the DAF-16/FOXO and SKN-1/Nrf2 transcription factors.Biomed. Pharmacother.202417311636810.1016/j.biopha.2024.116368
    [Google Scholar]
  15. HuangK.C. ChangY.T. PranataR. ChengY.H. ChenY.C. KuoP.C. HuangY.H. TzenJ.T.C. ChenR.J. Alleviation of hyperuricemia by strictinin in AML12 mouse hepatocytes treated with xanthine and in mice treated with potassium oxonate.Biology202312232910.3390/biology1202032936829604
    [Google Scholar]
  16. LiX. LiB. MengX. YuF. YuX. ZhaoW. WangY. GaoH. ChengM. ZhongL. Integrating network pharmacology and experimental validation to reveal the mechanism of vine grape tea polyphenols on hyperuricemia-induced renal injury in mice.J. Med. Food2024jmf.2023.K.026810.1089/jmf.2023.K.026838377550
    [Google Scholar]
  17. RababiD. NagA. Evaluation of therapeutic potentials of selected phytochemicals against Nipah virus, a multi-dimensional in silico study.3 Biotech202313617410.1007/s13205‑023‑03595‑y
    [Google Scholar]
  18. Barrios-NolascoA. Domínguez-LópezA. Miliar-GarcíaA. Cornejo-GarridoJ. Jaramillo-FloresM.E. Anti-inflammatory effect of ethanolic extract from Tabebuia rosea (Bertol.) DC., Quercetin, and anti-obesity drugs in adipose tissue in wistar rats with diet-induced obesity.Molecules2023289380110.3390/molecules2809380137175211
    [Google Scholar]
  19. AliA.U. KhallafI.S.A. KamelA.A. BadranA.Y. GomaaA.S. El faham, T.H.; Mortagi, Y.I. Impact of quercetin spanlastics on livin and caspase-9 expression in the treatment of psoriasis vulgaris.J. Drug Deliv. Sci. Technol.20227610380910.1016/j.jddst.2022.103809
    [Google Scholar]
  20. LiaoS. ZhangG. CaoH. ChenB. LiW. WuX. FengY. Synthesis and anti-tumor activities against HepG2 cell in vitro of the conjugates of honokiol, quercetin and berberine.Youji Huaxue2018386154910.6023/cjoc201801023
    [Google Scholar]
  21. ArumuganainarD. SubramanianG. BasavarajappaS. HashemM.I. ArunK.V. BalajiS.K. YadalamP.K. VenkidasamyB. VinayagamR. Bioactive efficacy of identified phytochemicals solasodine, lupeol and quercetin from solanum xanthocarpum against the RgpB protein of porphyromonas gingivalis—a molecular docking and simulation analysis.Processes2023117188710.3390/pr11071887
    [Google Scholar]
  22. ChenJ. SuiZ. YinT. ZouJ. YangB. LiaoX. Encapsulation of hyperoside with acyclic cucurbiturils: Supramolecular binding behavior, water solubility and in vitro antioxidant activity.J. Mol. Struct.2023129413634210.1016/j.molstruc.2023.136342
    [Google Scholar]
  23. WangX. CuiZ. LuoY. HuangY. YangX. In vitro xanthine oxidase inhibitory and in vivo anti-hyperuricemic properties of sodium kaempferol-3′-sulfonate.Food Chem. Toxicol.202317711385410.1016/j.fct.2023.113854
    [Google Scholar]
  24. SherN. AhmedM. MushtaqN. Biogenic synthesis of gold nanoparticles using Heliotropium eichwaldi L and neuroprotective potential via anticholinesterase inhibition in rat brain.Appl. Organomet. Chem.2023374e700010.1002/aoc.7000
    [Google Scholar]
  25. DuH. LiS.J. Inhibition of porphyra polysaccharide on xanthine oxidase activity and its inhibition mechanism.Spectrochim. Acta A Mol. Biomol. Spectrosc.202226612044610.1016/j.saa.2021.12044634628362
    [Google Scholar]
  26. LiuX. WuD. LiuJ. LiG. ZhangZ. ChenC. ZhangL. LiJ. Characterization of xanthine oxidase inhibitory activities of phenols from pickled radish with molecular simulation.Food Chem. X20221410034310.1016/j.fochx.2022.10034335634221
    [Google Scholar]
  27. LiH. YangJ. WangM. MaX. PengX. Studies on the inhibition of α-glucosidase by biflavonoids and their interaction mechanisms.Food Chem.202342013611310.1016/j.foodchem.2023.13611337054519
    [Google Scholar]
  28. LuX.Y. LouY.Y. ZhouK.L. JiangS.L. ShiJ.H. Exploring the binding characteristics of febuxostat, an inhibitor of xanthine oxidase with calf thymus DNA: Multi-spectroscopic methodologies and molecular docking.Nucleosides Nucleotides Nucleic Acids202241760562410.1080/15257770.2022.205753435410587
    [Google Scholar]
  29. ZhaoJ. HuangL. SunC. ZhaoD. TangH. Studies on the structure-activity relationship and interaction mechanism of flavonoids and xanthine oxidase through enzyme kinetics, spectroscopy methods and molecular simulations.Food Chem.202032312680710.1016/j.foodchem.2020.12680732330646
    [Google Scholar]
  30. AminM.R. YasminF. HosenM.A. DeyS. MahmudS. SalehM.A. EmranT.B. HasanI. FujiiY. YamadaM. OzekiY. KawsarS.M.A. Synthesis, antimicrobial, anticancer, pass, molecular docking, molecular dynamic simulations & pharmacokinetic predictions of some methyl β-D-Galactopyranoside analogs.Molecules20212622701610.3390/molecules2622701634834107
    [Google Scholar]
  31. MaowaJ. AlamA. RanaK.M. DeyS. HosenA. FujiiY. HasanI. OzekiY. KawsarS.M.A. Synthesis, characterization, synergistic antimicrobial properties and molecular docking of sugar modified uridine derivatives.An. Univ. Ovidius Constanta Ser. Chim.202132162110.2478/auoc‑2021‑0002
    [Google Scholar]
  32. MalikN. DhimanP. KhatkarA. In silico design and synthesis of hesperitin derivatives as new xanthine oxidase inhibitors.BMC Chem.20191315310.1186/s13065‑019‑0571‑131384801
    [Google Scholar]
  33. YasminF. AminM.R. HosenM.A. BulbulM.Z.H. DeyS. KawsarS.M.A. Monosaccharide derivatives: Synthesis antimicrobial, pass, antiviral and molecular docking studies against SARS-COV-COV-2 Mpro inhibitors.Cellul. Chem. Technol.2021555-647749910.35812/CelluloseChemTechnol.2021.55.44
    [Google Scholar]
  34. SinghR.K. ChaurasiyaA.K. KumarA. Ab initio modeling of human IRS1 protein to find novel target to dock with drug MH to mitigate T2DM diabetes by insulin signaling.3 Biotech.202414410810.1007/s13205‑024‑03955‑2
    [Google Scholar]
  35. AminM.R. YasminF. DeyS. MahmudS. SalehM.A. EmranT.B. HasanI. RajiaS. OgawaY. FujiiY. YamadaM. OzekiY. KawsarS.M.A. Methyl β-D-galactopyranoside esters as potential inhibitors for SARS-CoV-2 protease enzyme: Synthesis, antimicrobial, PASS, molecular docking, molecular dynamics simulations and quantum computations.Glycoconj. J.202239226129010.1007/s10719‑021‑10039‑335037163
    [Google Scholar]
  36. Anowar HosenM. Sultana MuniaN. Al-GhorbaniM. BaashenM. AlmalkiF.A. Ben HaddaT. AliF. MahmudS. Abu SalehM. LaaroussiH. KawsarS.M.A. Synthesis, antimicrobial, molecular docking and molecular dynamics studies of lauroyl thymidine analogs against SARS-CoV-2: POM study and identification of the pharmacophore sites.Bioorg. Chem.202212510585010.1016/j.bioorg.2022.10585035533581
    [Google Scholar]
  37. LiJ. GongY. LiJ. FanL. In vitro inhibitory effects of polyphenols from Tartary buckwheat on xanthine oxidase: Identification, inhibitory activity, and action mechanism.Food Chem.202237913210010.1016/j.foodchem.2022.13210035066353
    [Google Scholar]
  38. SaulH. DeeneyB. SwaithesL. RoddyE. How common are side effects of treatment to prevent gout flares when starting allopurinol?BMJ2024384q51410.1136/bmj.q51438458626
    [Google Scholar]
  39. WangY. Curtis-LongM.J. LeeB.W. YukH.J. KimD.W. TanX.F. ParkK.H. Inhibition of tyrosinase activity by polyphenol compounds from Flemingia philippinensis roots.Bioorg. Med. Chem.20142231115112010.1016/j.bmc.2013.12.04724412339
    [Google Scholar]
  40. WangY. ZhangG. PanJ. GongD. Novel insights into the inhibitory mechanism of kaempferol on xanthine oxidase.J. Agric. Food Chem.201563252653410.1021/jf505584m25539132
    [Google Scholar]
  41. YukH.J. RyuH.W. KimD.S. Potent xanthine oxidase inhibitory activity of constituents of Agastache rugosa (Fisch. and C.A.Mey.) Kuntze.Foods202312357310.3390/foods1203057336766102
    [Google Scholar]
  42. ChenJ. HeZ. YuS. CaiX. ZhuD. LinY. Xanthine oxidase inhibitory kinetics and mechanism of ellagic acid: In vitro, in silico and in vivo studies.IET Nanobiotechnol.202317436837510.1049/nbt2.1213537153957
    [Google Scholar]
  43. ZouH. BenT. WuP. WaterhouseG.I.N. ChenY. Effective anti-inflammatory phenolic compounds from dandelion: Identification and mechanistic insights using UHPLC-ESI-MS/MS, fluorescence quenching and anisotropy, molecular docking and dynamics simulation.Food Sci. Hum. Wellness20231262184219410.1016/j.fshw.2023.03.031
    [Google Scholar]
  44. TangH. ZhaoD. Investigation of the interaction between salvianolic acid C and xanthine oxidase: Insights from experimental studies merging with molecular docking methods.Bioorg. Chem.20198810298110.1016/j.bioorg.2019.10298131085372
    [Google Scholar]
  45. ZhangY. HouR. ZhuB. YinG. ZhangJ. ZhaoW. ZhangJ. LiT. ZhangZ. WangH. LiZ. Changes on the conformational and functional properties of soybean protein isolate induced by quercetin.Front. Nutr.2022996675010.3389/fnut.2022.96675035938098
    [Google Scholar]
  46. VarlanA. HillebrandM. Spectral study of coumarin-3-carboxylic acid interaction with human and bovine serum albumins.Open Chem.20119462463410.2478/s11532‑011‑0043‑5
    [Google Scholar]
  47. Hashemi-ShahrakiF. ShareghiB. FarhadianS. YadollahiE. A comprehensive insight into the effects of caffeic acid (CA) on pepsin: Multi-spectroscopy and MD simulations methods.Spectrochim. Acta A Mol. Biomol. Spectrosc.202328912224010.1016/j.saa.2022.12224036527971
    [Google Scholar]
  48. YadollahiE. ShareghiB. FarhadianS. Insight of the interaction of Naphthol yellow S with trypsin: Experimental and computational techniques.J. Indian Chem. Soc.20221972871288210.1007/s13738‑022‑02497‑9
    [Google Scholar]
  49. BarriT. Trtić-PetrovićT. KarlssonM. JönssonJ.Å. Characterization of drug–protein binding process by employing equilibrium sampling through hollow-fiber supported liquid membrane and Bjerrum and Scatchard plots.J. Pharm. Biomed. Anal.2008481495610.1016/j.jpba.2008.04.03018565712
    [Google Scholar]
  50. Arabpour ShirazZ. SohrabiN. Eslami MoghadamM. OftadehM. Spectroscopic study and molecular simulation: Bovine serum albumin binding with anticancer Pt complex of amyl dithiocarbamate ligand.Heliyon202399e2009010.1016/j.heliyon.2023.e2009037809783
    [Google Scholar]
  51. PanX. YuX.Z. QinP. Effects of two food colorants on catalase and trypsin: Binding evidences from experimental and computational analysis.Spectrochim. Acta A Mol. Biomol. Spectrosc.202329712270210.1016/j.saa.2023.12270237054570
    [Google Scholar]
  52. LiX. JinW. ZhangW. ZhengG. The inhibitory kinetics and mechanism of quercetin-3-O-rhamnoside and chlorogenic acid derived from Smilax china L. EtOAc fraction on xanthine oxidase.Int. J. Biol. Macromol.202221344745510.1016/j.ijbiomac.2022.05.18835660039
    [Google Scholar]
  53. YuX. CaiX. LuoL. WangJ. MaM. WangM. ZengL. Influence of tea polyphenol and bovine serum albumin on tea cream formation by multiple spectroscopy methods and molecular docking.Food Chem.202033312743210.1016/j.foodchem.2020.12743232659661
    [Google Scholar]
  54. LiuG. FanY. TaoY. WangS. WangM. LiL. Interactions of potato-derived and human recombinant 5-lipoxygenase with sec-O-glucosylhamaudol by multi-spectroscopy and molecular docking.Spectrochim. Acta A Mol. Biomol. Spectrosc.202227412110010.1016/j.saa.2022.12110035272121
    [Google Scholar]
  55. SongJ. ChenM. MengF. ChenJ. WangZ. ZhangY. CuiJ. WangJ. ShiD. Studies on the interaction mechanism between xanthine oxidase and osmundacetone: Molecular docking, multi-spectroscopy and dynamical simulation.Spectrochim. Acta A Mol. Biomol. Spectrosc.202329912286110.1016/j.saa.2023.12286137209475
    [Google Scholar]
  56. TaiJ. YeC. CaoX. HuH. LiW. ZhangH. Study on the anti-gout activity of the lotus seed pod by UPLC-QTOF-MS and virtual molecular docking.Fitoterapia202316710550010.1016/j.fitote.2023.10550037028495
    [Google Scholar]
  57. KawsarS.M.A. KumerA. MuniaN.S. HosenM.A. ChakmaU. AkashS. Chemical descriptors, PASS, molecular docking, molecular dynamics and ADMET predictions of glucopyranoside derivatives as inhibitors to bacteria and fungi growth.Organic Communications2022218420310.25135/acg.oc.122.2203.2397
    [Google Scholar]
  58. WanY. QianJ. LiY. ShenY. ChenY. FuG. XieM. Inhibitory mechanism of xanthine oxidase activity by caffeoylquinic acids in vitro.Int. J. Biol. Macromol.202118484385610.1016/j.ijbiomac.2021.06.07534146563
    [Google Scholar]
  59. ChenJ. YuS. HeZ. ZhuD. CaiX. RuanZ. JinN. Inhibition of xanthine oxidase by 4-nitrocinnamic acid: In vitro and in vivo investigations and docking simulations.Curr. Pharm. Biotechnol.202425447748710.2174/138920102466623062114101437345239
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010297269240427055003
Loading
/content/journals/cpb/10.2174/0113892010297269240427055003
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test