Skip to content
2000
Volume 26, Issue 4
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Introduction

The objective of the reported work was to develop Montelukast sodium (MS) solid lipid nanoparticles (MS-SLNs) to ameliorate its oral bio-absorption. Herein, the high-pressure homogenization (HPH) principle was utilized for the fabrication of MS-SLNs.

Methods

The study encompasses a 23 full factorial statistical design approach where mean particle size (Y) and percent entrapment efficiency (Y) were screened as dependent variables while, the concentration of lipid (X), surfactant (X), and co-surfactant (X) were screened as independent variables. The investigation of MS-SLNs by DSC and XRD studies unveiled the molecular dispersion of MS into the SLNs while TEM study showed the smooth surface of developed MS-SLNs. The optimized MS-SLNs exhibited mean particle size (MPS) = 115.5 ± 1.27 nm, polydispersity index (PDI) = 0.256 ± 0.04, zeta potential = -21.9 ± 0.32 mV and entrapment efficiency (EE) = 90.97 ± 1.12%. The pharmacokinetic study performed in Albino Wistar rats revealed 2.87-fold increments in oral bioavailability.

Results

The accelerated stability studies of optimized formulation showed good physical and chemical stability. The shelf life estimated for the developed MS-SLN was found to be 22.38 months.

Conclusion

At the outset, the developed MS-SLNs formulation showed a significant increment in oral bioavailability and also exhibited excellent stability in exaggerated storage conditions.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010300965240612054349
2024-06-24
2025-03-29
Loading full text...

Full text loading...

References

  1. LiW. WangY. PeiY. XiaY. Pharmacokinetics and bioequivalence evaluation of two montelukast sodium chewable tablets in healthy chinese volunteers under fasted and fed conditions.Drug Des. Devel. Ther.2021151091109910.2147/DDDT.S29835533727797
    [Google Scholar]
  2. BarréJ. SabatierJ.M. AnnweilerC. Montelukast drug may improve COVID-19 prognosis: A review of evidence.Front. Pharmacol.2020119134410.3389/fphar.2020.0134433013375
    [Google Scholar]
  3. PopovaT.M. IvanovaS.A. DimitrovM.V. Characterization and drug release from extended-release matrix pellets with montelukast sodium.Izv. Him.2018503405410
    [Google Scholar]
  4. MartirJ. FlanaganT. MannJ. FotakiN. In vivo predictive dissolution testing of montelukast sodium formulations administered with drinks and soft foods to infants.AAPS PharmSciTech202021728210.1208/s12249‑020‑01825‑733051713
    [Google Scholar]
  5. MartirJ. FlanaganT. MannJ. FotakiN. Impact of food and drink administration vehicles on paediatric formulation performance: Part 1—effects on solubility of poorly soluble drugs.AAPS PharmSciTech202021517710.1208/s12249‑020‑01722‑z32592045
    [Google Scholar]
  6. Scioli MontotoS. MuracaG. RuizM.E. Solid lipid nanoparticles for drug delivery: Pharmacological and biopharmaceutical aspects.Front. Mol. Biosci.20207October58799710.3389/fmolb.2020.58799733195435
    [Google Scholar]
  7. MishraV. BansalK. VermaA. YadavN. ThakurS. SudhakarK. RosenholmJ. Solid lipid nanoparticles: Emerging colloidal nano drug delivery systems.Pharmaceutics201810419110.3390/pharmaceutics1004019130340327
    [Google Scholar]
  8. DengS. GigliobiancoM.R. CensiR. Di MartinoP. Polymeric nanocapsules as nanotechnological alternative for drug delivery system: Current status, challenges and opportunities.Nanomaterials202010584710.3390/nano1005084732354008
    [Google Scholar]
  9. ĐorđevićS. GonzalezM.M. Conejos-SánchezI. CarreiraB. PozziS. AcúrcioR.C. FainaroS.R. FlorindoH.F. VicentM.J. Current hurdles to the translation of nanomedicines from bench to the clinic.Drug Deliv. Transl. Res.202212350052510.1007/s13346‑021‑01024‑234302274
    [Google Scholar]
  10. DuanY. DharA. PatelC. KhimaniM. NeogiS. SharmaP. Siva KumarN. VekariyaR.L. A brief review on solid lipid nanoparticles: Part and parcel of contemporary drug delivery systems.RSC Advances20201045267772679110.1039/D0RA03491F35515778
    [Google Scholar]
  11. DuongV.A. NguyenT.T.L. MaengH.J. Preparation of Solid lipid nanoparticles and nanostructured lipid carriers for drug delivery and the effects of preparation parameters of solvent injection method.Molecules20202520478110.3390/molecules2520478133081021
    [Google Scholar]
  12. GanesanP. RamalingamP. KarthivashanG. KoY.T. ChoiD.K. Recent developments in solid lipid nanoparticle and surface-modified solid lipid nanoparticle delivery systems for oral delivery of phyto-bioactive compounds in various chronic diseases.Int. J. Nanomedicine2018131569158310.2147/IJN.S15559329588585
    [Google Scholar]
  13. SakellariG.I. ZafeiriI. BatchelorH. SpyropoulosF. Formulation design, production and characterisation of solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for the encapsulation of a model hydrophobic active.Food Hydrocoll. Health20211August10002410.1016/j.fhfh.2021.10002435028634
    [Google Scholar]
  14. DhimanN. AwasthiR. SharmaB. KharkwalH. KulkarniG.T. Lipid nanoparticles as carriers for bioactive delivery.Front Chem.20219April58011810.3389/fchem.2021.58011833981670
    [Google Scholar]
  15. UnnisaA. ChettupalliA.K. Al HagbaniT. KhalidM. JandrajupalliS.B. ChandoluS. HussainT. Development of dapagliflozin solid lipid nanoparticles as a novel carrier for oral delivery: Statistical design, optimization, in-vitro and in-vivo characterization, and evaluation.Pharmaceuticals202215556810.3390/ph1505056835631394
    [Google Scholar]
  16. JacobS. NairA.B. ShahJ. GuptaS. BodduS.H.S. SreeharshaN. JosephA. ShinuP. MorsyM.A. Lipid nanoparticles as a promising drug delivery carrier for topical ocular therapy—an overview on recent advances.Pharmaceutics202214353310.3390/pharmaceutics1403053335335909
    [Google Scholar]
  17. El-SayK.M. HosnyK.M. Optimization of carvedilol solid lipid nanoparticles: An approach to control the release and enhance the oral bioavailability on rabbits.PloS one,2018138e0203405
    [Google Scholar]
  18. KuncahyoI. ChoiriS. FudholiA. MartienR. RohmanA. Development of pitavastatin-loaded super-saturable self-nano emulsion: A continues screening and optimization approach using statistical technique.J. Dispers. Sci. Technol.202100110
    [Google Scholar]
  19. PriyankaK. HasanA.S.A. Preparation and evaluation of montelukast sodium loaded solid lipid nanoparticles.J. Young Pharm.20124312913710.4103/0975‑1483.10001623112531
    [Google Scholar]
  20. Patil-GadheA. PokharkarV. Montelukast-loaded nanostructured lipid carriers: Part I Oral bioavailability improvement.Eur. J. Pharm. Biopharm.201488116016810.1016/j.ejpb.2014.05.01924878424
    [Google Scholar]
  21. GurumukhiV.C. BariS.B. Fabrication of efavirenz loaded nano-formulation using quality by design (QbD) based approach: Exploring characterizations and in vivo safety.J. Drug Deliv. Sci. Technol.20195611101545
    [Google Scholar]
  22. AlajamiH.N. FouadE.A. AshourA.E. KumarA. YassinA.E.B. Celecoxib-loaded solid lipid nanoparticles for colon delivery: Formulation optimization and in vitro assessment of anti-cancer activity.Pharmaceutics202214113110.3390/pharmaceutics1401013135057027
    [Google Scholar]
  23. BhalekarM. UpadhayaP. MadgulkarA. Formulation and characterization of solid lipid nanoparticles for an anti-retroviral drug darunavir.Appl. Nanosci.201771-2475710.1007/s13204‑017‑0547‑1
    [Google Scholar]
  24. NagarajB. TirumaleshC. DineshS. NarendarD. Zotepine loaded lipid nanoparticles for oral delivery: development, characterization, and in vivo pharmacokinetic studies.Future J. Pharm. Sci.2020613710.1186/s43094‑020‑00051‑z
    [Google Scholar]
  25. MichaelJ. de SousaB.D. ConwayJ. LabradaG.E. ObeidR. TeviniJ. FelderT. Hutter-PaierB. ZerbeH. PaiementN. AignerL. Improved bioavailability of montelukast through a novel oral mucoadhesive film in humans and mice.Pharmaceutics20201311210.3390/pharmaceutics1301001233374646
    [Google Scholar]
  26. KayaZ. YaylaM. CinarI. CelebiD. ToktayE. BayraktutanZ. BiliciD. Effect of montelukast, a cysteinyl leukotriene receptor-1 antagonist, on a rat model of acute bacterial sinonasal inflammation.Am. J. Rhinol. Allergy201933555956610.1177/194589241985257631129976
    [Google Scholar]
  27. SulaimanS. AhmadS. NazS.S. QaisarS. MuhammadS. AlotaibiA. UllahR. Synthesis of copper oxide-based nanoformulations of etoricoxib and montelukast and their evaluation through analgesic, anti-inflammatory, anti-pyretic, and acute toxicity activities.Molecules2022274143310.3390/molecules2704143335209221
    [Google Scholar]
  28. BibiM. DinF. AnwarY. AlkenaniN.A. ZariA.T. MukhtiarM. Abu ZeidI.M. AlthubaitiE.H. NazishH. ZebA. UllahI. KhanG.M. ChoiH-G. Cilostazol-loaded solid lipid nanoparticles: Bioavailability and safety evaluation in an animal model.J. Drug Deliv. Sci. Technol.202274August10358110.1016/j.jddst.2022.103581
    [Google Scholar]
  29. NairA. ShahJ. Al-DhubiabB. JacobS. PatelS. VenugopalaK. MorsyM. GuptaS. AttimaradM. SreeharshaN. ShinuP. Clarithromycin solid lipid nanoparticles for topical ocular therapy: Optimization, evaluation and in vivo studies.Pharmaceutics202113452310.3390/pharmaceutics1304052333918870
    [Google Scholar]
  30. DangreP.V. ShindeS.B. SuranaS.J. JainP.G. ChalikwarS.S. Development and exploration on flowability of solid self-nanoemulsifying drug delivery system of morin hydrate.Adv. Powder Technol.202233810371610.1016/j.apt.2022.103716
    [Google Scholar]
  31. TaleuzzamanM. SartajA. GuptaK.D. GilaniS.J. MohdM.A. Phytosomal gel of Manjistha extract (MJE) formulated and optimized with central composite design of Quality by Design (QbD).J. Dispers. Sci. Technol.20210019
    [Google Scholar]
  32. Sadegh MalvajerdS. AzadiA. IzadiZ. KurdM. DaraT. DibaeiM. ZadehS.M. JavarA.H. HamidiM. Brain delivery of curcumin using solid lipid nanoparticles and nanostructured lipid carriers: Preparation, optimization, and pharmacokinetic evaluation.ACS Chem. Neurosci.201910172873910.1021/acschemneuro.8b0051030335941
    [Google Scholar]
  33. ZhouY. YueW. LuoY. LuoQ. LiuS. ChenH. Preparation and stability characterization of soybean protein isolate/sodium alginate complexes-based nanoemulsions using high-pressure homogenization.LWT202115410112607
    [Google Scholar]
  34. DangreP. SonawaneK. MoravkarK. PetheA. ChalikwarS. BorseV. Design of layer-by-layer lipid-polymer hybrid nanoparticles to elicit oral bioavailability of buspirone hydrochloride.Int. J. Polym. Mater.202300111
    [Google Scholar]
  35. ZhangZ. LuY. QiJ. WuW. An update on oral drug delivery via intestinal lymphatic transport.Acta Pharm. Sin. B20211182449246810.1016/j.apsb.2020.12.02234522594
    [Google Scholar]
  36. RasmussenM.K. PedersenJ.N. MarieR. Size and surface charge characterization of nanoparticles with a salt gradient.Nat. Commun.2020111233710.1038/s41467‑020‑15889‑332393750
    [Google Scholar]
  37. SlettengrenK. XanthakisE. AhrnéL. WindhabE.J. Flow properties of spices measured with powder flow tester and ring shear tester-XS.Int. J. Food Prop.20161971475148210.1080/10942912.2015.1083576
    [Google Scholar]
  38. GurumukhiV.C. BariS.B. Development of ritonavir-loaded nanostructured lipid carriers employing quality by design (QbD) as a tool: Characterizations, permeability, and bioavailability studies.Drug Deliv. Transl. Res.20221271753177310.1007/s13346‑021‑01083‑534671949
    [Google Scholar]
  39. DiwanR. RaviP.R. PathareN.S. AggarwalV. Pharmacodynamic, pharmacokinetic and physical characterization of cilnidipine loaded solid lipid nanoparticles for oral delivery optimized using the principles of design of experiments.Colloids Surf. B Biointerfaces2020193April11107310.1016/j.colsurfb.2020.11107332388122
    [Google Scholar]
  40. ChaudharyH. GauriS. RatheeP. KumarV. Development and optimization of fast dissolving oro-dispersible films of granisetron HCl using Box–Behnken statistical design.Bull. Fac. Pharm. Cairo Univ.201351219320110.1016/j.bfopcu.2013.05.002
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010300965240612054349
Loading
/content/journals/cpb/10.2174/0113892010300965240612054349
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test