Skip to content
2000
image of Recent Advances in Immunotherapy and Targeted Therapy of Triple Negative Breast Cancer

Abstract

The truancy of representation of the estrogen, progesterone, and human epidermal growth factor receptors occurs during TNBC. TNBC is recognized for the upper reappearance and has a poorer diagnosis compared with rest breast cancer (BC) types. Presently, as such, no targeted therapy is approved for TNBC and treatment options are subjected to chemotherapy and surgery, which have high mortality rates. Hence, the current article focuses on the scenario of TNBC vital pathways and discusses the latest advances in TNBC treatment, including immune checkpoint inhibitors (ICIs), PARP suppressors, and cancer vaccines. Immunotherapy and ICIs, like PD 1 and PD L1 suppressors, displayed potential in clinical trials (CTs). These suppressors obstruct the mechanisms which allow tumor cells to evade the system thereby boosting the body’s defense against TNBC. Immunotherapy, either alone or combined with chemotherapy has demonstrated patient outcomes such as increased survival rates and reduced treatment-related side effects. Additionally, targeted therapy approaches include BRCA/2 mutation poly ribose polymerase inhibitors, Vascular Endothelial Growth Factor Receptor (VEGFR) inhibitors, Epidermal growth factor receptor inhibitors, Fibroblast growth factor inhibitors, Androgen Receptor inhibitors, PIK3/AKT/mTOR pathway inhibitors, Cyclin-dependent kinase (CDK) inhibitors, Notch signaling pathway inhibitors, Signal transducer and activator of transcription 3 (STAT3) signaling pathway inhibitors, Chimeric antigen receptor T (CAR-T) cell therapy, Transforming growth factor (TGF) -β inhibitors, Epigenetic modifications (EPM), Aurora Kinase inhibitors and antibody-drug conjugates. We also highlight ongoing clinical trials and potential future directions for TNBC therapy. Despite the challenges in treating TNBC, recent developments in understanding the molecular and immune characteristics of TNBC have opened up new opportunities for targeted therapies, which hold promise for improving outcomes in this aggressive disease.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010303244240718075729
2024-07-31
2025-01-19
Loading full text...

Full text loading...

References

  1. Khan M.M. Yalamarty S.S.K. Rajmalani B.A. Filipczak N. Torchilin V.P. Recent strategies to overcome breast cancer resistance. Crit. Rev. Oncol. Hematol. 2024 197 104351 10.1016/j.critrevonc.2024.104351 38615873
    [Google Scholar]
  2. Franzoi M.A. Romano E. Piccart M. Immunotherapy for early breast cancer: too soon, too superficial, or just right? Ann. Oncol. 2021 32 3 323 336 10.1016/j.annonc.2020.11.022 33307202
    [Google Scholar]
  3. He Z. Chen Z. Tan M. Elingarami S. Liu Y. Li T. Deng Y. He N. Li S. Fu J. Li W. A review on methods for diagnosis of breast cancer cells and tissues. Cell Prolif. 2020 53 7 e12822 10.1111/cpr.12822 32530560
    [Google Scholar]
  4. Zubair M. Wang S. Ali N. Advanced approaches to breast cancer classification and diagnosis. Front. Pharmacol. 2021 11 632079 10.3389/fphar.2020.632079 33716731
    [Google Scholar]
  5. Sindhi K. Kanugo A. Recent developments in nanotechnology and immunotherapy for the diagnosis and treatment of pancreatic cancer. Curr. Pharm. Biotechnol. 2024 25 10.2174/0113892010284407240212110745 38415488
    [Google Scholar]
  6. Siegel R.L. Giaquinto A.N. Jemal A. Cancer statistics, 2024. CA Cancer J. Clin. 2024 74 1 12 49 10.3322/caac.21820 38230766
    [Google Scholar]
  7. Mohammed A.A. The clinical behavior of different molecular subtypes of breast cancer. Cancer Treat. Res. Commun. 2021 29 100469 10.1016/j.ctarc.2021.100469 34624832
    [Google Scholar]
  8. Peddi P.F. Ellis M.J. Ma C. Molecular basis of triple negative breast cancer and implications for therapy. Int. J. Breast Cancer 2012 2012 1 7 10.1155/2012/217185 22295242
    [Google Scholar]
  9. Pavese F. Capoluongo E.D. Muratore M. Minucci A. Santonocito C. Fuso P. Concolino P. Di Stasio E. Carbognin L. Tiberi G. Garganese G. Corrado G. Di Leone A. Generali D. Fragomeni S.M. D’Angelo T. Franceschini G. Masetti R. Fabi A. Mulè A. Santoro A. Belli P. Tortora G. Scambia G. Paris I. BRCA mutation status in triple-negative breast cancer patients treated with neoadjuvant chemotherapy: A pivotal role for treatment decision-making. Cancers 2022 14 19 4571 10.3390/cancers14194571 36230495
    [Google Scholar]
  10. Choi E. Mun G. Lee J. Lee H. Cho J. Lee Y.S. BRCA1 deficiency in triple-negative breast cancer: Protein stability as a basis for therapy. Biomed. Pharmacother. 2023 158 114090 10.1016/j.biopha.2022.114090 36493696
    [Google Scholar]
  11. Layman R.M. Arun B. PARP inhibitors in triple-negative breast cancer including those with BRCA mutations. Cancer J. 2021 27 1 67 75 10.1097/PPO.0000000000000499 33475295
    [Google Scholar]
  12. Pauwels E.K.J. Bourguignon M.H. PARP inhibition and beyond in BRCA-associated breast cancer in women: A state-of-the-art summary of preclinical research on risk reduction and clinical benefits. Med. Princ. Pract. 2022 31 4 303 312 10.1159/000525281 35636395
    [Google Scholar]
  13. Li X. Zhao L. Chen C. Nie J. Jiao B. Can EGFR be a therapeutic target in breast cancer? Biochim. Biophys. Acta Rev. Cancer 2022 1877 5 188789 10.1016/j.bbcan.2022.188789 36064121
    [Google Scholar]
  14. Ma J. Dong C. Cao Y.Z. Ma B.L. Dual Target of EGFR and mTOR suppresses triple-negative breast cancer cell growth by regulating the phosphorylation of mTOR downstream proteins. Breast Cancer 2023 15 11 24 10.2147/BCTT.S390017 36691572
    [Google Scholar]
  15. Zhang M. Liu J. Liu G. Xing Z. Jia Z. Li J. Wang W. Wang J. Qin L. Wang X. Wang X. Anti-vascular endothelial growth factor therapy in breast cancer: Molecular pathway, potential targets, and current treatment strategies. Cancer Lett. 2021 520 422 433 10.1016/j.canlet.2021.08.005 34389434
    [Google Scholar]
  16. Shashni B. Nishikawa Y. Nagasaki Y. Management of tumor growth and angiogenesis in triple-negative breast cancer by using redox nanoparticles. Biomaterials 2021 269 120645 10.1016/j.biomaterials.2020.120645 33453633
    [Google Scholar]
  17. Wu Y. Yi Z. Li J. Wei Y. Feng R. Liu J. Huang J. Chen Y. Wang X. Sun J. Yin X. Li Y. Wan J. Zhang L. Huang J. Du H. Wang X. Li Q. Ren G. Li H. FGFR blockade boosts T cell infiltration into triple-negative breast cancer by regulating cancer-associated fibroblasts. Theranostics 2022 12 10 4564 4580 10.7150/thno.68972 35832090
    [Google Scholar]
  18. Hui M.N. Cazet A. Elsworth B. Roden D. Cox T. Yang J. McFarland A. Deng N. Chan C-L. O’Toole S. Swarbrick A. Targeting the hedgehog signalling pathway in triple negative breast cancer. JCO 2018 36 e24216 10.1200/JCO.2018.36.15_suppl.e24216
    [Google Scholar]
  19. Habib J.G. O’Shaughnessy J.A. The hedgehog pathway in triple‐negative breast cancer. Cancer Med. 2016 5 10 2989 3006 10.1002/cam4.833 27539549
    [Google Scholar]
  20. Banerjee M. Devi Rajeswari V. Inhibition of WNT signaling by conjugated microRNA nano-carriers: A new therapeutic approach for treating triple-negative breast cancer a perspective review. Crit. Rev. Oncol. Hematol. 2023 182 103901 10.1016/j.critrevonc.2022.103901 36584723
    [Google Scholar]
  21. Yin L. Duan J.J. Bian X.W. Yu S.C. Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Res. 2020 22 1 61 10.1186/s13058‑020‑01296‑5
    [Google Scholar]
  22. Gerratana L. Basile D. Buono G. De Placido S. Giuliano M. Minichillo S. Coinu A. Martorana F. De Santo I. Del Mastro L. De Laurentiis M. Puglisi F. Arpino G. Androgen receptor in triple negative breast cancer: A potential target for the targetless subtype. Cancer Treat. Rev. 2018 68 102 110 10.1016/j.ctrv.2018.06.005 29940524
    [Google Scholar]
  23. Lu B. Natarajan E. Balaji Raghavendran H.R. Markandan U.D. Molecular classification, treatment, and genetic biomarkers in triple-negative breast cancer: A review. Technol. Cancer Res. Treat. 2023 22 10.1177/15330338221145246 36601658
    [Google Scholar]
  24. Haque S. Cook K. Sahay G. Sun C. RNA-based therapeutics: current developments in targeted molecular therapy of triple-negative breast cancer. Pharmaceutics 2021 13 10 1694 10.3390/pharmaceutics13101694 34683988
    [Google Scholar]
  25. Park J.H. Ahn J.H. Kim S.B. How shall we treat early triple-negative breast cancer (TNBC): from the current standard to upcoming immuno-molecular strategies. ESMO Open 2018 3 1 e000357 10.1136/esmoopen‑2018‑000357 29765774
    [Google Scholar]
  26. Waks A.G. Stover D.G. Guerriero J.L. Dillon D. Barry W.T. Gjini E. Hartl C. Lo W. Savoie J. Brock J. Wesolowski R. Li Z. Damicis A. Philips A.V. Wu Y. Yang F. Sullivan A. Danaher P. Brauer H.A. Osmani W. Lipschitz M. Hoadley K.A. Goldberg M. Perou C.M. Rodig S. Winer E.P. Krop I.E. Mittendorf E.A. Tolaney S.M. The immune microenvironment in hormone receptor positive breast cancer before and after preoperative chemotherapy. Clin. Cancer Res. 2019 25 15 4644 4655 10.1158/1078‑0432.CCR‑19‑0173 31061067
    [Google Scholar]
  27. Dieci M.V. Guarneri V. Tosi A. Bisagni G. Musolino A. Spazzapan S. Moretti G. Vernaci G.M. Griguolo G. Giarratano T. Urso L. Schiavi F. Pinato C. Magni G. Lo Mele M. De Salvo G.L. Rosato A. Conte P. Neoadjuvant chemotherapy and immunotherapy in luminal B-like breast cancer: Results of the phase II GIADA trial. Clin. Cancer Res. 2022 28 2 308 317 10.1158/1078‑0432.CCR‑21‑2260 34667023
    [Google Scholar]
  28. Hormone Therapy for Breast Cancer Fact Sheet - NCI Available from: https://www.cancer.gov/types/breast/breast-hormone-therapy-fact-sheet (accessed 2024-05-08).
  29. Mohanty S.S. Sahoo C.R. Padhy R.N. Role of hormone receptors and HER2 as prospective molecular markers for breast cancer: An update. Genes Dis. 2022 9 3 648 658 10.1016/j.gendis.2020.12.005 35782984
    [Google Scholar]
  30. A Study of Neoadjuvant Nivolumab + Palbociclib + Anastrozole in Post-Menopausal Women and Men With Primary Breast Cancer. NCT04075604 2022 Available from: https://classic.clinicaltrials.gov/ct2/show/NCT04075604
    [Google Scholar]
  31. Neoadjuvant Endocrine Therapy Palbociclib, Avelumab in Estrogen Receptor Positive Breast Cancer. NCT03573648. 2024 Available from: https://clinicaltrials.gov/study/NCT03573648?cond=NCT03573648&rank=1
    [Google Scholar]
  32. Neoadjuvant Study of Abemaciclib, Durvalumab, and an Aromatase Inhibitor Early Stage Breast Cancer. NCT04088032. 2020 Available from: https://clinicaltrials.gov/study/NCT04088032?cond=NCT04088032
    [Google Scholar]
  33. Migliaccio I. Bonechi M. McCartney A. Guarducci C. Benelli M. Biganzoli L. Di Leo A. Malorni L. CDK4/6 inhibitors: A focus on biomarkers of response and post-treatment therapeutic strategies in hormone receptor-positive HER2-negative breast cancer. Cancer Treat. Rev. 2021 93 102136 10.1016/j.ctrv.2020.102136 33360919
    [Google Scholar]
  34. Saleh L. Ottewell P.D. Brown J.E. Wood S.L. Brown N.J. Wilson C. Park C. Ali S. Holen I. The CDK4/6 Inhibitor palbociclib inhibits estrogen-positive and triple negative breast cancer bone metastasis in vivo. Cancers 2023 15 8 2211 10.3390/cancers15082211 37190140
    [Google Scholar]
  35. Ratosa I. Orazem M. Scoccimarro E. Steinacher M. Dominici L. Aquilano M. Cerbai C. Desideri I. Ribnikar D. Marinko T. Livi L. Meattini I. Cyclin-dependent kinase 4/6 inhibitors combined with radiotherapy for patients with metastatic breast cancer. Clin. Breast Cancer 2020 20 6 495 502 10.1016/j.clbc.2020.05.013 32622736
    [Google Scholar]
  36. Ozman Z. Guney Eskiler G. Sekeroglu M.R. In vitro therapeutic effects of abemaciclib on triple‐negative breast cancer cells. J. Biochem. Mol. Toxicol. 2021 35 9 e22858 10.1002/jbt.22858 34309953
    [Google Scholar]
  37. Rampioni Vinciguerra G.L. Sonego M. Segatto I. Dall’Acqua A. Vecchione A. Baldassarre G. Belletti B. CDK4/6 inhibitors in combination therapies: better in company than alone: A mini review. Front. Oncol. 2022 12 891580 10.3389/fonc.2022.891580 35712501
    [Google Scholar]
  38. Rajabi N. Mohammadnejad F. Doustvandi M.A. Shadbad M.A. Amini M. Tajalli H. Mokhtarzadeh A. Baghbani E. Silvestris N. Baradaran B. Photodynamic therapy with zinc phthalocyanine enhances the anti-cancer effect of tamoxifen in breast cancer cell line: Promising combination treatment against triple-negative breast cancer? Photodiagn. Photodyn. Ther. 2023 41 103212 10.1016/j.pdpdt.2022.103212 36436735
    [Google Scholar]
  39. Ma J. Li X. Zhang Q. Li N. Sun S. Zhao S. Zhao Z. Li M. A novel treatment strategy of HER2-targeted therapy in combination with Everolimus for HR+/HER2- advanced breast cancer patients with HER2 mutations. Transl. Oncol. 2022 21 101444 10.1016/j.tranon.2022.101444 35523006
    [Google Scholar]
  40. Huober J. Barrios C.H. Niikura N. Jarząb M. Chang Y.C. Huggins-Puhalla S.L. Pedrini J. Zhukova L. Graupner V. Eiger D. Henschel V. Gochitashvili N. Lambertini C. Restuccia E. Zhang H. Atezolizumab with neoadjuvant anti–human epidermal growth factor receptor 2 therapy and chemotherapy in human epidermal growth factor receptor 2–positive early breast cancer: Primary results of the randomized phase III IMpassion050 trial. J. Clin. Oncol. 2022 40 25 2946 2956 10.1200/JCO.21.02772 35763704
    [Google Scholar]
  41. Li Y. Zhang H. Merkher Y. Chen L. Liu N. Leonov S. Chen Y. Recent advances in therapeutic strategies for triple-negative breast cancer. J. Hematol. Oncol. 2022 15 1 121 10.1186/s13045‑022‑01341‑0 36038913
    [Google Scholar]
  42. Hassan G. Afify S.M. Du J. Nawara H.M. Sheta M. Monzur S. Zahra M.H. Abu Quora H.A. Mansour H. El-Ghlban S. Uesaki R. Seno A. Seno M. MEK1/2 is a bottleneck that induces cancer stem cells to activate the PI3K/AKT pathway. Biochem. Biophys. Res. Commun. 2021 583 49 55 10.1016/j.bbrc.2021.10.047 34735879
    [Google Scholar]
  43. Dent R. Oliveira M. Isakoff S.J. Im, S.A.; Espié, M.; Blau, S.; Tan, A.R.; Saura, C.; Wongchenko, M.J.; Xu, N.; Bradley, D.; Reilly, S.J.; Mani, A.; Kim, S.B.; Lee, K.S.; Sohn, J.H.; Kim, J.H.; Seo, J.H.; Kim, J.S.; Park, S.; Velez, M.; Dakhil, S.; Hurvitz, S.; Valero, V.; Vidal, G.; Figlin, R.; Allison, M.A.K.; Chan, D.; Cobleigh, M.; Hansen, V.; Iannotti, N.; Lawler, W.; Salkini, M.; Seigel, L.; Romieu, G.; Debled, M.; Levy, C.; Hardy-Bessard, A.; Guiu, S.; Estevez, L.G.; Villanueva, R.; Martin, A.G.; Rovira, P.S.; Montaño, A.; Plaza, M.I.C.; Saenz, J.A.G.; Garau, I.; Bermejo, B.; Alonso, E.V.; Wang, H-C.; Huang, C-S.; Chen, S-C.; Chen, Y-H.; Tseng, L-M.; Wong, A.; Ang, C.S.P.; De Laurentiis, M.; Conte, P.F.; De Braud, F.; Montemurro, F.; Gianni, L.; Dirix, L. Final results of the double-blind placebo-controlled randomized phase 2 LOTUS trial of first-line ipatasertib plus paclitaxel for inoperable locally advanced/metastatic triple-negative breast cancer. Breast Cancer Res. Treat. 2021 189 2 377 386 10.1007/s10549‑021‑06143‑5 34264439
    [Google Scholar]
  44. Hellmann M.D. Kim T.W. Lee C.B. Goh B.C. Miller W.H. Jr Oh D.Y. Jamal R. Chee C.E. Chow L.Q.M. Gainor J.F. Desai J. Solomon B.J. Das Thakur M. Pitcher B. Foster P. Hernandez G. Wongchenko M.J. Cha E. Bang Y.J. Siu L.L. Bendell J. Phase Ib study of atezolizumab combined with cobimetinib in patients with solid tumors. Ann. Oncol. 2019 30 7 1134 1142 10.1093/annonc/mdz113 30918950
    [Google Scholar]
  45. Atezolizumab + Sacituzumab Govitecan to Prevent Recurrence in TNBC (ASPRIA). NCT04434040 2020 Available from: https://classic.clinicaltrials.gov/ct2/show/NCT04434040
    [Google Scholar]
  46. Goel S. DeCristo M.J. McAllister S.S. Zhao J.J. CDK4/6 inhibition in cancer: Beyond cell cycle arrest. Trends Cell Biol. 2018 28 11 911 925 10.1016/j.tcb.2018.07.002 30061045
    [Google Scholar]
  47. Jiang N. Dai Q. Su X. Fu J. Feng X. Peng J. Role of PI3K/AKT pathway in cancer: the framework of malignant behavior. Mol. Biol. Rep. 2020 47 6 4587 4629 10.1007/s11033‑020‑05435‑1 32333246
    [Google Scholar]
  48. Li G. Lin S. Yu Z. Wu X. Liu J. Tu G. Liu Q. Tang Y. Jiang Q. Xu J. Huang Q. Wu L.A. PARP1 PROTAC as a novel strategy against PARP inhibitor resistance via promotion of ferroptosis in p53-positive breast cancer. Biochem. Pharmacol. 2022 206 115329 10.1016/j.bcp.2022.115329 36309080
    [Google Scholar]
  49. Force J. Leal J.H.S. McArthur H.L. Checkpoint blockade strategies in the treatment of breast cancer: Where we are and where we are heading. Curr. Treat. Options Oncol. 2019 20 4 35 10.1007/s11864‑019‑0634‑5 30923913
    [Google Scholar]
  50. Dubsky P. Van’t Veer L. Gnant M. Rudas M. Bago-Horvath Z. Greil R. Lujinovic E. Buresch J. Rinnerthaler G. Hulla W. Moinfar F. Egle D. Herz W. Dreezen C. Frantal S. Filipits M. A clinical validation study of MammaPrint in hormone receptor-positive breast cancer from the Austrian Breast and Colorectal Cancer Study Group 8 (ABCSG-8) biomarker cohort. ESMO Open 2021 6 1 100006 10.1016/j.esmoop.2020.100006 33399073
    [Google Scholar]
  51. Window of Opportunity Trial of Neoadjuvant Olaparib and Durvalumab for Triple Negative or Low ER+ Breast Cancer. NCT03594396 2021 Available from: https://classic.clinicaltrials.gov/ct2/show/NCT03594396
    [Google Scholar]
  52. Chen A. PARP inhibitors: its role in treatment of cancer. Chin. J. Cancer 2011 30 7 463 471 10.5732/cjc.011.10111 21718592
    [Google Scholar]
  53. Langelier M.F. Lin X. Zha S. Pascal J.M. Clinical PARP inhibitors allosterically induce PARP2 retention on DNA. Sci. Adv. 2023 9 12 eadf7175 10.1126/sciadv.adf7175 36961901
    [Google Scholar]
  54. Murthy P. Muggia F. PARP inhibitors: clinical development, emerging differences, and the current therapeutic issues. Cancer Drug Resist. 2019 2 3 665 679 10.20517/cdr.2019.002 35582575
    [Google Scholar]
  55. Murai J. Huang S.N. Das B.B. Renaud A. Zhang Y. Doroshow J.H. Ji J. Takeda S. Pommier Y. Trapping of PARP1 and PARP2 by Clinical PARP Inhibitors. Cancer Res. 2012 72 21 5588 5599 10.1158/0008‑5472.CAN‑12‑2753 23118055
    [Google Scholar]
  56. Rose M. Burgess J.T. O’Byrne K. Richard D.J. Bolderson E. PARP inhibitors: Clinical relevance, mechanisms of action and tumor resistance. Front. Cell Dev. Biol. 2020 8 September 564601 10.3389/fcell.2020.564601 33015058
    [Google Scholar]
  57. van Beek L. McClay É. Patel S. Schimpl M. Spagnolo L. Maia de Oliveira T. PARP Power: A structural perspective on PARP1, PARP2, and PARP3 in DNA damage repair and nucleosome remodelling. Int. J. Mol. Sci. 2021 22 10 5112 10.3390/ijms22105112 34066057
    [Google Scholar]
  58. Sanderson D.J. Rodriguez K.M. Bejan D.S. Olafsen N.E. Bohn I.D. Kojic A. Sundalam S. Siordia I.R. Duell A.K. Deng N. Schultz C. Grant D.M. Matthews J. Cohen M.S. Structurally distinct PARP7 inhibitors provide new insights into the function of PARP7 in regulating nucleic acid-sensing and IFN-β signaling. Cell Chem. Biol. 2023 30 1 43 54.e8 10.1016/j.chembiol.2022.11.012 36529140
    [Google Scholar]
  59. Xu J. Zhao A. Chen D. Wang J. Ma J. Qing L. Li Y. Fang H. He H. Pan W. Zhang S. Discovery of tricyclic PARP7 inhibitors with high potency, selectivity, and oral bioavailability. Eur. J. Med. Chem. 2024 266 116160 10.1016/j.ejmech.2024.116160 38277917
    [Google Scholar]
  60. Wang L-M. Wang P. Chen X-M. Yang H. Song S-S. Song Z. Jia L. Chen H-D. Bao X-B. Guo N. Huan X-J. Xi Y. Shen Y-Y. Yang X-Y. Su Y. Sun Y-M. Gao Y-L. Chen Y. Ding J. Lang J-Y. Miao Z-H. Zhang A. He J-X. Thioparib inhibits homologous recombination repair, activates the type I IFN response, and overcomes olaparib resistance. EMBO Mol. Med. 2023 15 3 e16235 10.15252/emmm.202216235
    [Google Scholar]
  61. Santa-Maria C.A. Dunn S.A. Ho A.Y. Immunotherapy Combined with Radiation Therapy in Breast Cancer: A Rapidly Evolving Landscape. Semin. Radiat. Oncol. 2022 32 3 291 297 10.1016/j.semradonc.2022.01.001 35688527
    [Google Scholar]
  62. Breast Cancer Study of Preoperative Pembrolizumab + Radiation. NCT03366844 2024 Available from: https://classic.clinicaltrials.gov/ct2/show/NCT03366844
    [Google Scholar]
  63. Napier T.S. Lynch S.E. Lu Y. Song P.N. Burns A.C. Sorace A.G. Molecular imaging of oxygenation changes during immunotherapy in combination with paclitaxel in triple negative breast cancer. Biomedicines 2023 11 1 125 10.3390/biomedicines11010125 36672633
    [Google Scholar]
  64. Gong R. Ma Z. He L. Jiang S. Cao D. Cheng Y. Identification and evaluation of a novel PARP1 inhibitor for the treatment of triple-negative breast cancer. Chem. Biol. Interact. 2023 382 110567 10.1016/j.cbi.2023.110567 37271214
    [Google Scholar]
  65. He R. Yuan X. Chen Z. Zheng Y. Combined immunotherapy for metastatic triple-negative breast cancer based on PD-1/PD-L1 immune checkpoint blocking. Int Immunopharmacol 2022 113 Pt B 109444 10.1016/j.intimp.2022.109444
    [Google Scholar]
  66. Pindiprolu S.K.S.S. Madhan J. Srinivasarao D.A. Dasari N. Phani Kumar C.S. Katta C. Sainaga Jyothi V.G.S. Therapeutic targeting of aberrant sialylation for prevention of chemoresistance and metastasis in triple negative breast cancer. J. Drug Deliv. Sci. Technol. 2023 86 104617 10.1016/j.jddst.2023.104617
    [Google Scholar]
  67. Kossai M. Radosevic-Robin N. Penault-Llorca F. Refining patient selection for breast cancer immunotherapy: beyond PD-L1. ESMO Open 2021 6 5 100257 10.1016/j.esmoop.2021.100257 34487970
    [Google Scholar]
  68. Özcan D. Lade-Keller J. Tramm T. Can evaluation of mismatch repair defect and TILs increase the number of triple-negative breast cancer patients eligible for immunotherapy? Pathol. Res. Pract. 2021 226 153606 10.1016/j.prp.2021.153606 34530255
    [Google Scholar]
  69. Sobral-Leite M. Salomon I. Opdam M. Kruger D.T. Beelen K.J. van der Noort V. van Vlierberghe R.L.P. Blok E.J. Giardiello D. Sanders J. Van de Vijver K. Horlings H.M. Kuppen P.J.K. Linn S.C. Schmidt M.K. Kok M. Cancer-immune interactions in ER-positive breast cancers: PI3K pathway alterations and tumor-infiltrating lymphocytes. Breast Cancer Res. 2019 21 1 90 10.1186/s13058‑019‑1176‑2 31391067
    [Google Scholar]
  70. Pilipow K. Darwich A. Losurdo A. T-cell-based breast cancer immunotherapy. Semin. Cancer Biol. 2021 72 90 101 10.1016/j.semcancer.2020.05.019 32492452
    [Google Scholar]
  71. Li R. Cao L. The role of tumor-infiltrating lymphocytes in triple-negative breast cancer and the research progress of adoptive cell therapy. Front. Immunol. 2023 14 1194020 10.3389/fimmu.2023.1194020 37275874
    [Google Scholar]
  72. Search for: Triple Negative Breast Cancer | Card Results. Available from: https://clinicaltrials.gov/search?cond=Triple(accessed 2024-05-06).
  73. Pradhan R. Dey A. Taliyan R. Puri A. Kharavtekar S. Dubey S.K. Recent advances in targeted nanocarriers for the management of triple negative breast cancer. Pharmaceutics 2023 15 1 246 10.3390/pharmaceutics15010246 36678877
    [Google Scholar]
  74. Obidiro O. Battogtokh G. Akala E.O. Triple negative breast cancer treatment options and limitations: Future outlook. Pharmaceutics 2023 15 7 1796 10.3390/pharmaceutics15071796 37513983
    [Google Scholar]
  75. Kumar P. Aggarwal R. An overview of triple-negative breast cancer. Arch. Gynecol. Obstet. 2016 293 2 247 269 10.1007/s00404‑015‑3859‑y 26341644
    [Google Scholar]
  76. Gaynor N. Crown J. Collins D.M. Immune checkpoint inhibitors: Key trials and an emerging role in breast cancer. Semin. Cancer Biol. 2022 79 44 57 10.1016/j.semcancer.2020.06.016 32623044
    [Google Scholar]
  77. Wang X. Wang J. He Y. Li J. Wang T. Ouyang T. Fan Z. Observation effectiveness of dose-dense neoadjuvant anthracycline sequential weekly paclitaxel for triple-negative breast cancer patients. Clin. Breast Cancer 2023 23 4 423 430 10.1016/j.clbc.2023.02.009 36997401
    [Google Scholar]
  78. Li Q. Liu J. Zhang Q. Ouyang Q. Zhang Y. Liu Q. Sun T. Ye F. Zhang B. Xia S. Zhang B. Xu B. The anti-PD-L1/CTLA-4 bispecific antibody KN046 in combination with nab-paclitaxel in first-line treatment of metastatic triple-negative breast cancer: A multicenter phase II trial. Nat. Commun. 2024 15 1 1015 10.1038/s41467‑024‑45160‑y 38310192
    [Google Scholar]
  79. Lin X. Chen H. Xie Y. Zhou X. Wang Y. Zhou J. Long S. Hu Z. Zhang S. Qiu W. Zeng Z. Liu L. Combination of CTLA-4 blockade with MUC1 mRNA nanovaccine induces enhanced anti-tumor CTL activity by modulating tumor microenvironment of triple negative breast cancer. Transl. Oncol. 2022 15 1 101298 10.1016/j.tranon.2021.101298 34875483
    [Google Scholar]
  80. Novel CTLA-4 Agents Build on Immunotherapy Foundation, Aim to Improve Efficacy/Safety. Available from: https://www.targetedonc.com/view/novel-ctla-4-agents-build-on-immunotherapy-foundation-aim-to-improve-efficacy-safety (accessed 2024-05-10).
  81. Pesce M. Maccio A. Simone N. Di; Baldanzi, G. Immune checkpoint receptors signaling in T cells. Int. J. Mol. Sci. 2022 23 7 3529 10.3390/ijms23073529
    [Google Scholar]
  82. Li Y. Zhan Z. Yin X. Fu S. Deng X. Targeted therapeutic strategies for triple-negative breast cancer. Front. Oncol. 2021 11 731535 10.3389/fonc.2021.731535 34778045
    [Google Scholar]
  83. Li C.W. Lim S.O. Xia W. Lee H.H. Chan L.C. Kuo C.W. Khoo K.H. Chang S.S. Cha J.H. Kim T. Hsu J.L. Wu Y. Hsu J.M. Yamaguchi H. Ding Q. Wang Y. Yao J. Lee C.C. Wu H.J. Sahin A.A. Allison J.P. Yu D. Hortobagyi G.N. Hung M.C. Glycosylation and stabilization of programmed death ligand-1 suppresses T-cell activity. Nat. Commun. 2016 7 12632 10.1038/ncomms12632
    [Google Scholar]
  84. Cao P. Yang X. Liu D. Ye S. Yang W. Xie Z. Lei X. Research progress of PD‐L1 non‐glycosylation in cancer immunotherapy. Scand. J. Immunol. 2022 96 4 e13205 10.1111/sji.13205
    [Google Scholar]
  85. Jiang Y. Chen M. Nie H. Yuan Y. PD-1 and PD-L1 in cancer immunotherapy: clinical implications and future considerations. Hum. Vaccin. Immunother. 2019 15 5 1111 1122 10.1080/21645515.2019.1571892 30888929
    [Google Scholar]
  86. Shiravand Y. Khodadadi F. Kashani S.M.A. Hosseini-Fard S.R. Hosseini S. Sadeghirad H. Ladwa R. O’Byrne K. Kulasinghe A. Immune checkpoint inhibitors in cancer therapy. Curr. Oncol. 2022 29 5 3044 3060 10.3390/curroncol29050247 35621637
    [Google Scholar]
  87. Liu D. Che X. Wang X. Ma C. Wu G. Tumor Vaccines: Unleashing the Power of the Immune System to Fight Cancer. Pharmaceuticals 2023 16 10 1384 10.3390/ph16101384 37895855
    [Google Scholar]
  88. Ongoing Trial Investigates Cancer Vaccine Plus Keytruda for TNBC Available from: https://www.curetoday.com/view/ongoing-trial-investigates-cancer-vaccine-plus-keytruda-for-tnbc (accessed 2024-05-04).
  89. Available from: https://www.healio.com/news/hematology-oncology/20240119/vaccine-for-triplenegative-breast-cancer-produces-exciting-results-in-early-testing (accessed 2024-05-04).
  90. Karim A.M. Eun Kwon J. Ali T. Jang J. Ullah I. Lee Y.G. Park D.W. Park J. Jeang J.W. Kang S.C. Triple-negative breast cancer: epidemiology, molecular mechanisms, and modern vaccine-based treatment strategies. Biochem. Pharmacol. 2023 212 February 115545 10.1016/j.bcp.2023.115545 37044296
    [Google Scholar]
  91. Search for: Cancer Vaccine for triple negative breast cancer | Card Results. Available from: https://clinicaltrials.gov/search?cond=Cancer (accessed 2024-05-04).
  92. Bignon L. Fricker J.P. Nogues C. Mouret-Fourme E. Stoppa-Lyonnet D. Caron O. Lortholary A. Faivre L. Lasset C. Mari V. Gesta P. Gladieff L. Hamimi A. Petit T. Velten M. Efficacy of anthracycline/taxane-based neo-adjuvant chemotherapy on triple-negative breast cancer in BRCA1/BRCA2 mutation carriers. Breast J. 2018 24 3 269 277 10.1111/tbj.12887 28929593
    [Google Scholar]
  93. Kolinjivadi A.M. Sannino V. de Antoni A. Técher H. Baldi G. Costanzo V. Moonlighting at replication forks a new life for homologous recombination proteins BRCA 1, BRCA 2 and RAD 51. FEBS Lett. 2017 591 8 1083 1100 10.1002/1873‑3468.12556 28079255
    [Google Scholar]
  94. McClurg D.P. Urquhart G. McGoldrick T. Chatterji S. Miedzybrodzka Z. Speirs V. Elsberger B. Analysis of the clinical advancements for BRCA-related malignancies highlights the lack of treatment evidence for BRCA-positive male breast cancer. Cancers 2022 14 13 3175 10.3390/cancers14133175 35804947
    [Google Scholar]
  95. Turner N.C. Balmaña J. Poncet C. Goulioti T. Tryfonidis K. Honkoop A.H. Zoppoli G. Razis E. Johannsson O.T. Colleoni M. Tutt A.N. Audeh W. Ignatiadis M. Mailliez A. Trédan O. Musolino A. Vuylsteke P. Juan-Fita M.J. Macpherson I.R.J. Kaufman B. Manso L. Goldstein L.J. Ellard S.L. Láng I. Jen K.Y. Adam V. Litière S. Erban J. Cameron D.A. Niraparib for Advanced Breast Cancer with Germline BRCA1 and BRCA2 Mutations: the EORTC 1307-BCG/BIG5–13/TESARO PR-30–50–10-C BRAVO Study. Clin. Cancer Res. 2021 27 20 5482 5491 10.1158/1078‑0432.CCR‑21‑0310 34301749
    [Google Scholar]
  96. Agostinetto E. Eiger D. Punie K. de Azambuja E. Emerging therapeutics for patients with triple-negative breast cancer. Curr. Oncol. Rep. 2021 23 5 57 10.1007/s11912‑021‑01038‑6 33763756
    [Google Scholar]
  97. Liu Y. Li Y. Wang Y. Lin C. Zhang D. Chen J. Ouyang L. Wu F. Zhang J. Chen L. Recent progress on vascular endothelial growth factor receptor inhibitors with dual targeting capabilities for tumor therapy. J. Hematol. Oncol. 2022 15 1 89 10.1186/s13045‑022‑01310‑7 35799213
    [Google Scholar]
  98. Li Y. Yang G. Zhang J. Tang P. Yang C. Wang G. Chen J. Liu J. Zhang L. Ouyang L. Discovery, synthesis, and evaluation of highly selective vascular endothelial growth factor receptor 3 (VEGFR3) inhibitor for the potential treatment of metastatic triple-negative breast cancer. J. Med. Chem. 2021 64 16 12022 12048 10.1021/acs.jmedchem.1c00678 34351741
    [Google Scholar]
  99. Zhu S. Wu Y. Song B. Yi M. Yan Y. Mei Q. Wu K. Recent advances in targeted strategies for triple-negative breast cancer. J. Hematol. Oncol. 2023 16 1 100 10.1186/s13045‑023‑01497‑3 37641116
    [Google Scholar]
  100. Fan W. Ding J. Zhong W. Efficacy and safety of third-line apatinib plus chemotherapy in metastatic triple-negative breast cancer patients: A multicenter, retrospective, cohort study. Tohoku J. Exp. Med. 2023 260 1 13 20 10.1620/tjem.2023.J006 36696982
    [Google Scholar]
  101. Kanugo A. Gautam R.K. Kamal M.A. Recent advances of nanotechnology in the diagnosis and therapy of triple negative breast cancer (TNBC). Curr. Pharm. Biotechnol. 2022 23 13 1581 1595 10.2174/1389201023666211230113658 34967294
    [Google Scholar]
  102. Ju J. Zhu A.J. Yuan P. Progress in targeted therapy for breast cancer. Chronic Dis. Transl. Med. 2018 4 3 164 175 10.1016/j.cdtm.2018.04.002 30276363
    [Google Scholar]
  103. Liu Z.L. Chen H.H. Zheng L.L. Sun L.P. Shi L. Angiogenic signaling pathways and anti-angiogenic therapy for cancer. Signal Transduct. Target. Ther. 2023 8 1 198 10.1038/s41392‑023‑01460‑1
    [Google Scholar]
  104. Lin P.H. Tseng L.M. Lee Y.H. Chen S.T. Yeh D.C. Dai M.S. Liu L.C. Wang M.Y. Lo C. Chang S. Tan K.T. Chen S.J. Kuo S.H. Huang C.S. Neoadjuvant afatinib with paclitaxel for triple-negative breast cancer and the molecular characteristics in responders and non-responders. J. Formos. Med. Assoc. 2022 121 12 2538 2547 10.1016/j.jfma.2022.05.015 35752529
    [Google Scholar]
  105. Gu H. Shi R. Xu C. Lv W. Hu X. Xu C. Pan Y. He X. Wu A. Li J. EGFR-targeted liposomes combined with ginsenoside Rh2 inhibit triple-negative breast cancer growth and metastasis. Bioconjug. Chem. 2023 34 6 1157 1165 10.1021/acs.bioconjchem.3c00207 37235785
    [Google Scholar]
  106. Mamot C. Wicki A. Hasler-Strub U. Riniker S. Li Q. Holer L. Bärtschi D. Zaman K. von Moos R. Dedes K.J. Boos L.A. Novak U. Bodmer A. Ritschard R. Obermann E.C. Tzankov A. Ackermann C. Membrez-Antonioli V. Zürrer-Härdi U. Caspar C.B. Deuster S. Senn M. Winterhalder R. Rochlitz C. A multicenter phase II trial of anti-EGFR-immunoliposomes loaded with doxorubicin in patients with advanced triple negative breast cancer. Sci. Rep. 2023 13 1 3702 10.1038/s41598‑023‑30950‑z
    [Google Scholar]
  107. Farooq M. Khan A.W. Kim M.S. Choi S. The role of fibroblast growth factor (FGF) signaling in tissue repair and regeneration. Cells 2021 10 11 3242 10.3390/cells10113242 34831463
    [Google Scholar]
  108. Masuda H. Zhang D. Bartholomeusz C. Doihara H. Hortobagyi G.N. Ueno N.T. Role of epidermal growth factor receptor in breast cancer. Breast Cancer Res. Treat. 2012 136 2 331 345 10.1007/s10549‑012‑2289‑9 23073759
    [Google Scholar]
  109. Saridogan T. Akcakanat A. Zhao M. Evans K.W. Yuca E. Scott S. Kirby B.P. Zheng X. Ha M.J. Chen H. Ng P.K.S. DiPeri T.P. Mills G.B. Rodon Ahnert J. Damodaran S. Meric-Bernstam F. Efficacy of futibatinib, an irreversible fibroblast growth factor receptor inhibitor, in FGFR-altered breast cancer. Sci. Rep. 2023 13 1 20223 10.1038/s41598‑023‑46586‑y
    [Google Scholar]
  110. Choupani E. Mahmoudi Gomari M. Zanganeh S. Nasseri S. Haji-allahverdipoor K. Rostami N. Hernandez Y. Najafi S. Saraygord-Afshari N. Hosseini A. Newly developed targeted therapies against the androgen receptor in triple-negative breast cancer: A review. Pharmacol. Rev. 2023 75 2 309 327 10.1124/pharmrev.122.000665 36781219
    [Google Scholar]
  111. Liu D. AR pathway activity correlates with AR expression in a HER2-dependent manner and serves as a better prognostic factor in breast cancer. Cell. Oncol. 2020 43 2 321 333 10.1007/s13402‑019‑00492‑6 31933152
    [Google Scholar]
  112. Jinna N. Rida P. Smart M. LaBarge M. Jovanovic-Talisman T. Natarajan R. Seewaldt V. Adaptation to hypoxia may promote therapeutic resistance to androgen receptor inhibition in triple-negative breast cancer. Int. J. Mol. Sci. 2022 23 16 8844 10.3390/ijms23168844 36012111
    [Google Scholar]
  113. Rampurwala M. Wisinski K.B. O’Regan R. Role of the androgen receptor in triple-negative breast cancer. Clin. Adv. Hematol. Oncol. 2016 14 3 186 193 27058032
    [Google Scholar]
  114. Guo Q. Qiu P. Yao Q. Chen J. Lin J. Integrated bioinformatics analysis for the screening of hub genes and therapeutic drugs in androgen receptor-positive TNBC. Dis. Markers 2022 2022 1 18 10.1155/2022/4964793 36157217
    [Google Scholar]
  115. Gao F. Wu Y. Wang R. Yao Y. Liu Y. Fan L. Xu J. Zhang J. Han X. Guan X. Precise nano-system-based drug delivery and synergistic therapy against androgen receptor-positive triple-negative breast cancer. Acta Pharm. Sin. B 2024 14 6 2685 2697 10.1016/j.apsb.2024.03.012 38828153
    [Google Scholar]
  116. Yardley D.A. Young R.R. Adelson K.B. Silber A.L. Najera J.E. Daniel D.B. Peacock N. Finney L. Hoekstra S.J. Shastry M. Hainsworth J.D. Burris H.A. A phase II study evaluating orteronel, an inhibitor of androgen biosynthesis, in patients with androgen receptor (AR)-expressing metastatic breast cancer (MBC). Clin. Breast Cancer 2022 22 3 269 278 10.1016/j.clbc.2021.10.011 34824002
    [Google Scholar]
  117. Jabbarzadeh Kaboli P. Luo S. Chen Y. Jomhori M. Imani S. Xiang S. Wu Z. Li M. Shen J. Zhao Y. Wu X. Hin Cho C. Xiao Z. Pharmacotranscriptomic profiling of resistant triple-negative breast cancer cells treated with lapatinib and berberine shows upregulation of PI3K/Akt signaling under cytotoxic stress. Gene 2022 816 146171 10.1016/j.gene.2021.146171 35026293
    [Google Scholar]
  118. Schmid P. Abraham J. Chan S. Wheatley D. Brunt A.M. Nemsadze G. Baird R.D. Park Y.H. Hall P.S. Perren T. Stein R.C. Mangel L. Ferrero J.M. Phillips M. Conibear J. Cortes J. Foxley A. de Bruin E.C. McEwen R. Stetson D. Dougherty B. Sarker S.J. Prendergast A. McLaughlin-Callan M. Burgess M. Lawrence C. Cartwright H. Mousa K. Turner N.C. Capivasertib plus paclitaxel versus placebo plus paclitaxel as first-line therapy for metastatic triple-negative breast cancer: The PAKT trial. J. Clin. Oncol. 2020 38 5 423 433 10.1200/JCO.19.00368 31841354
    [Google Scholar]
  119. Li G. Hu J. Cho C. Cui J. Li A. Ren P. Zhou J. Wei W. Zhang T. Liu X. Liu W. Everolimus combined with PD-1 blockade inhibits progression of triple-negative breast cancer. Cell. Signal. 2023 109 110729 10.1016/j.cellsig.2023.110729 37257766
    [Google Scholar]
  120. Hu Y. Gao J. Wang M. Li M. Potential prospect of CDK4/6 inhibitors in triple-negative breast cancer. Cancer Manag. Res. 2021 13 5223 5237 10.2147/CMAR.S310649 34234565
    [Google Scholar]
  121. Saleh L. Wilson C. Holen I. CDK4/6 inhibitors: A potential therapeutic approach for triple negative breast cancer. MedComm 2021 2 4 514 530 10.1002/mco2.97 34977868
    [Google Scholar]
  122. Mustafa E.H. Laven-Law G. Kikhtyak Z. Nguyen V. Ali S. Pace A.A. Iggo R. Kebede A. Noll B. Wang S. Winter J.M. Dwyer A.R. Tilley W.D. Hickey T.E. Selective inhibition of CDK9 in triple negative breast cancer. Oncogene 2023 43 3 202 215 10.1038/s41388‑023‑02892‑3
    [Google Scholar]
  123. Orhan E. Velazquez C. Tabet I. Fenou L. Rodier G. Orsetti B. Jacot W. Sardet C. Theillet C. CDK inhibition results in pharmacologic BRCAness increasing sensitivity to olaparib in BRCA1-WT and olaparib resistant in Triple Negative Breast Cancer. Cancer Lett. 2024 589 216820 10.1016/j.canlet.2024.216820 38574883
    [Google Scholar]
  124. Kuchukulla R.R. Hwang I. Kim S.H. Kye Y. Park N. Cha H. Moon S. Chung H.W. Lee C. Kong G. Hur W. Identification of a novel potent CDK inhibitor degrading cyclinK with a superb activity to reverse trastuzumab-resistance in HER2-positive breast cancer in vivo. Eur. J. Med. Chem. 2024 264 116014 10.1016/j.ejmech.2023.116014 38061230
    [Google Scholar]
  125. Zhang L. Wu L. Zhou D. Wang G. Chen B. Shen Z. Li X. Wu Q. Qu N. Wu Y. Yuan L. Gan Z. Zhou W. N76-1, a novel CDK7 inhibitor, exhibits potent anti-cancer effects in triple negative breast cancer. Eur. J. Pharmacol. 2023 955 175892 10.1016/j.ejphar.2023.175892 37429520
    [Google Scholar]
  126. Pooja Y.S. Rajana N. Yadav R. Naraharisetti L.T. Godugu C. Mehra N.K. Design, development, and evaluation of CDK-4/6 inhibitor loaded 4-carboxy phenyl boronic acid conjugated pH-sensitive chitosan lecithin nanoparticles in the management of breast cancer. Int. J. Biol. Macromol. 2024 258 Pt 1 128821 10.1016/j.ijbiomac.2023.128821 38110163
    [Google Scholar]
  127. Pandey P. Khan F. Choi M. Singh S.K. Kang H.N. Park M.N. Ko S.G. Sahu S.K. Mazumder R. Kim B. Review deciphering potent therapeutic approaches targeting Notch signaling pathway in breast cancer. Biomed. Pharmacother. 2023 164 114938 10.1016/j.biopha.2023.114938 37267635
    [Google Scholar]
  128. Yousefi H. Bahramy A. Zafari N. Delavar M.R. Nguyen K. Haghi A. Kandelouei T. Vittori C. Jazireian P. Maleki S. Imani D. Moshksar A. Bitaraf A. Babashah S. Notch signaling pathway: A comprehensive prognostic and gene expression profile analysis in breast cancer. BMC Cancer 2022 22 1 1282 10.1186/s12885‑022‑10383‑z
    [Google Scholar]
  129. Jiang N. Hu Y. Wang M. Zhao Z. Li M. The notch signaling pathway contributes to angiogenesis and tumor immunity in breast cancer. Breast Cancer 2022 14 291 309 10.2147/BCTT.S376873 36193236
    [Google Scholar]
  130. Kushwaha P.P. Vardhan P.S. Kapewangolo P. Shuaib M. Prajapati S.K. Singh A.K. Kumar S. Bulbine frutescens phytochemical inhibits notch signaling pathway and induces apoptosis in triple negative and luminal breast cancer cells. Life Sci. 2019 234 116783 10.1016/j.lfs.2019.116783 31442552
    [Google Scholar]
  131. Das A. Narayanam M.K. Paul S. Mukhnerjee P. Ghosh S. Dastidar D.G. Chakrabarty S. Ganguli A. Basu B. Pal M. Chatterji U. Banerjee S.K. Karmakar P. Kumar D. Chakrabarti G. A novel triazole, NMK-T-057, induces autophagic cell death in breast cancer cells by inhibiting γ-secretase–mediated activation of Notch signaling. J. Biol. Chem. 2019 294 17 6733 6750 10.1074/jbc.RA119.007671 30824542
    [Google Scholar]
  132. Qin J.J. Yan L. Zhang J. Zhang W.D. STAT3 as a potential therapeutic target in triple negative breast cancer: A systematic review. J. Exp. Clin. Cancer Res. 2019 38 1 195 10.1186/s13046‑019‑1206‑z 31088482
    [Google Scholar]
  133. Long L. Fei X. Chen L. Yao L. Lei X. Mohammed S. Arias-Romero L.E. Ben Hammouda M. Potential therapeutic targets of the JAK2/STAT3 signaling pathway in triple-negative breast cancer. Front. Oncol. 2024 14 1381251 10.3389/fonc.2024.1381251 38699644
    [Google Scholar]
  134. Zhu Z. Wang H. Qian X. Xue M. Sun A. Yin Y. Tang J. Zhang J. Inhibitory impact of cinobufagin in triple-negative breast cancer metastasis: involvements of macrophage reprogramming through upregulated mme and inactivated FAK/STAT3 signaling. Clin. Breast Cancer, 2024 24 4 e244 257.e1. 10.1016/j.clbc.2024.01.014 38378361
    [Google Scholar]
  135. Wu S. Lu J. Zhu H. Wu F. Mo Y. Xie L. Song C. Liu L. Xie X. Li Y. lin, H.; Tang, H. A novel axis of circKIF4A-miR-637-STAT3 promotes brain metastasis in triple-negative breast cancer. Cancer Lett. 2024 581 216508 10.1016/j.canlet.2023.216508 38029538
    [Google Scholar]
  136. Yuan Z. Zhen Y. Chen S. Li Z. Fu L. Small-molecule inhibitor of Fam20C in combination with paclitaxel suppresses tumor growth by LIF-JAK2/STAT3-modulated apoptosis in triple-negative breast cancer. J. Taiwan Inst. Chem. Eng. 2023 143 104673 10.1016/j.jtice.2023.104673
    [Google Scholar]
  137. Effat H. Abosharaf H.A. Radwan A.M. Combined effects of naringin and doxorubicin on the JAK/STAT signaling pathway reduce the development and spread of breast cancer cells. Sci. Rep. 2024 14 1 2824 10.1038/s41598‑024‑53320‑9
    [Google Scholar]
  138. Dey A. Ghosh S. Jha S. Hazra S. Srivastava N. Chakraborty U. Roy A.G. Recent advancement in breast cancer treatment using CAR T cell therapy: A review. Advances in Cancer Biology - Metastasis 2023 7 7 100090 10.1016/j.adcanc.2023.100090
    [Google Scholar]
  139. Jazirehi A.R. Molecular analysis of elements of melanoma insensitivity to TCR-engineered adoptive cell therapy. Int. J. Mol. Sci. 2021 22 21 11726 10.3390/ijms222111726
    [Google Scholar]
  140. Yang P. Yu F. Yao Z. Ding X. Xu H. Zhang J. CD24 is a novel target of chimeric antigen receptor T cells for the treatment of triple negative breast cancer. Cancer Immunol. Immunother. 2023 72 10 3191 3202 10.1007/s00262‑023‑03491‑7 37418008
    [Google Scholar]
  141. Fatemeh N. Mehrasa K. Seyed Mohamad Javad M. CAR-T cell therapy in triple-negative breast cancer: Hunting the invisible devil. Front. Immunol. 2023 13 1018786
    [Google Scholar]
  142. Liu Y. Hao Y. Lv X. Zhang Y. Chen J. Tian J. Ma X. Zhou Y. Feng L. A tetramethylpyrazine releasing hydrogel can potentiate CAR-T cell therapy against triple negative breast cancer by reprogramming tumor vasculatures. Fundam. Res. 2023 10.1016/j.fmre.2023.05.016
    [Google Scholar]
  143. Zhang X. Guo H. Chen J. Xu C. Wang L. Ke Y. Gao Y. Zhang B. Zhu J. Highly proliferative and hypodifferentiated CAR-T cells targeting B7–H3 enhance antitumor activity against ovarian and triple-negative breast cancers. Cancer Lett. 2023 572 216355 10.1016/j.canlet.2023.216355 37597651
    [Google Scholar]
  144. Somboonpatarakun C. Phanthaphol N. Suwanchiwasiri K. Ramwarungkura B. Yuti P. Poungvarin N. Thuwajit P. Junking M. Yenchitsomanus P. Cytotoxicity of fourth-generation anti-Trop2 CAR-T cells against breast cancer. Int. Immunopharmacol. 2024 129 111631 10.1016/j.intimp.2024.111631 38359664
    [Google Scholar]
  145. Yang R. Li Y. Wang H. Qin T. Yin X. Ma X. Therapeutic progress and challenges for triple negative breast cancer: targeted therapy and immunotherapy. Molecular Biomedicine 2022 3 1 8 10.1186/s43556‑022‑00071‑6 35243562
    [Google Scholar]
  146. Zhang J. Zhang Z. Huang Z. Li M. Yang F. Wu Z. Guo Q. Mei X. Lu B. Wang C. Wang Z. Ji L. Isotoosendanin exerts inhibition on triple-negative breast cancer through abrogating TGF-β-induced epithelial–mesenchymal transition via directly targeting TGFβR1. Acta Pharm. Sin. B 2023 13 7 2990 3007 10.1016/j.apsb.2023.05.006 37521871
    [Google Scholar]
  147. Yang M. Qin C. Tao L. Cheng G. Li J. Lv F. Yang N. Xing Z. Chu X. Han X. Huo M. Yin L. Synchronous targeted delivery of TGF-β siRNA to stromal and tumor cells elicits robust antitumor immunity against triple-negative breast cancer by comprehensively remodeling the tumor microenvironment. Biomaterials 2023 301 122253 10.1016/j.biomaterials.2023.122253 37536040
    [Google Scholar]
  148. Webb B.M. Bryson B.L. Williams-Medina E. Bobbitt J.R. Seachrist D.D. Anstine L.J. Keri R.A. TGF-β/activin signaling promotes CDK7 inhibitor resistance in triple-negative breast cancer cells through upregulation of multidrug transporters. J. Biol. Chem. 2021 297 4 101162 10.1016/j.jbc.2021.101162 34481843
    [Google Scholar]
  149. Ensenyat-Mendez M. Solivellas-Pieras M. Llinàs-Arias P. Íñiguez-Muñoz S. Baker J.L. Marzese D.M. DiNome M.L. Epigenetic profiles of triple-negative breast cancers of african american and white females. JAMA Netw. Open 2023 6 10 e2335821 e2335821 10.1001/jamanetworkopen.2023.35821 37796506
    [Google Scholar]
  150. Zolota V. Tzelepi V. Piperigkou Z. Kourea H. Papakonstantinou E. Argentou M.I. Karamanos N.K. Epigenetic alterations in triple-negative breast cancer: The critical role of extracellular matrix. Cancers 2021 13 4 713 10.3390/cancers13040713 33572395
    [Google Scholar]
  151. Wang X. Xu J. Sun Y. Cao S. Zeng H. Jin N. Shou M. Tang S. Chen Y. Huang M. Hedgehog pathway orchestrates the interplay of histone modifications and tailors combination epigenetic therapies in breast cancer. Acta Pharm. Sin. B 2023 13 6 2601 2612 10.1016/j.apsb.2023.03.009 37425067
    [Google Scholar]
  152. Pang Y. Shi R. Chan L. Lu Y. Zhu D. Liu T. Yan M. Wang Y. Wang W. The combination of the HDAC1 inhibitor SAHA and doxorubicin has synergic efficacy in triple negative breast cancer in vivo. Pharmacol. Res. 2023 196 106926 10.1016/j.phrs.2023.106926 37716547
    [Google Scholar]
  153. Liu R. Wang R. Zhao M. Liu Y. Zhu X. Wu X. Du S. Gu Z. Du J. Ultra-small radiosensitizers deliver epigenetic drugs to induce pyroptosis and boost triple-negative breast cancer radiotherapy. Nano Today 2023 52 101997 10.1016/j.nantod.2023.101997
    [Google Scholar]
  154. Du R. Huang C. Liu K. Li X. Dong Z. Targeting AURKA in Cancer: molecular mechanisms and opportunities for Cancer therapy. Mol. Cancer 2021 20 1 15 10.1186/s12943‑020‑01305‑3
    [Google Scholar]
  155. Zheng D. Li J. Yan H. Zhang G. Li W. Chu E. Wei N. Emerging roles of Aurora-A kinase in cancer therapy resistance. Acta Pharm. Sin. B 2023 13 7 2826 2843 10.1016/j.apsb.2023.03.013 37521867
    [Google Scholar]
  156. Zhang B. Zhu C. Chan A.S.C. Lu G. Discovery of a first-in-class Aurora A covalent inhibitor for the treatment of triple negative breast cancer. Eur. J. Med. Chem. 2023 256 115457 10.1016/j.ejmech.2023.115457 37207533
    [Google Scholar]
  157. Li C. Liao J. Wang X. Chen F.X. Guo X. Chen X. Combined aurora kinase A and CHK1 inhibition enhances radiosensitivity of triple-negative breast cancer through induction of apoptosis and mitotic catastrophe associated with excessive DNA damage. Int. J. Radiat. Oncol. Biol. Phys. 2023 117 5 1241 1254 10.1016/j.ijrobp.2023.06.022 37393021
    [Google Scholar]
  158. Mahajan A. Sharma N. Ulhe A. Patil R. Hegde M. Mali A. From dietary lignans to cancer therapy: Integrative systems analysis of enterolactone’s molecular targets and signaling pathways in combatting cancer stem cells in triple-negative breast cancer. Food Biosci. 2024 58 103732 10.1016/j.fbio.2024.103732
    [Google Scholar]
  159. Chen M. Zhang M. Lu X. Li Y. Lu C. Diselenium-linked dimeric prodrug nanomedicine breaking the intracellular redox balance for triple-negative breast cancer targeted therapy. Eur. J. Pharm. Biopharm. 2023 193 16 27 10.1016/j.ejpb.2023.10.014 37865134
    [Google Scholar]
  160. Dai Y. Leng D. Guo Z. Wang J. Gu Y. Peng Y. Zhu L. Zhao Q. NIR-II excitation self-assembly nanomedicine for targeted NIR-IIa fluorescence imaging-guided cuproptosis-promoted synergistic therapy against triple-negative breast cancer. Chem. Eng. J. 2024 479 147704 10.1016/j.cej.2023.147704
    [Google Scholar]
  161. Sheikh A. Abourehab M.A.S. Tulbah A.S. Kesharwani P. Aptamer-grafted, cell membrane-coated dendrimer loaded with doxorubicin as a targeted nanosystem against epithelial cellular adhesion molecule (EpCAM) for triple negative breast cancer therapy. J. Drug Deliv. Sci. Technol. 2023 86 104745 10.1016/j.jddst.2023.104745
    [Google Scholar]
  162. Choudante P.C. Mamilla J. Kongari L. Díaz-García D. Prashar S. Gómez-Ruiz S. Misra S. Functionalized tin-loaded mesoporous silica nanoparticles for targeted therapy of triple-negative breast cancer: Evaluation of cytogenetic toxicity. J. Drug Deliv. Sci. Technol. 2024 94 105502 10.1016/j.jddst.2024.105502
    [Google Scholar]
  163. Kesharwani P. Sheikh A. Abourehab M.A.S. Salve R. Gajbhiye V. A combinatorial delivery of survivin targeted siRNA using cancer selective nanoparticles for triple negative breast cancer therapy. J. Drug Deliv. Sci. Technol. 2023 80 104164 10.1016/j.jddst.2023.104164
    [Google Scholar]
  164. Wang X. Yu J. Liu X. Luo D. Li Y. Song L. Jiang X. Yin X. Wang Y. Chai L. Luo T. Jing J. Shi H. PSMG2-controlled proteasome-autophagy balance mediates the tolerance for MEK-targeted therapy in triple-negative breast cancer. Cell Rep. Med. 2022 3 9 100741 10.1016/j.xcrm.2022.100741 36099919
    [Google Scholar]
  165. Schipilliti F.M. Drittone D. Mazzuca F. La Forgia D. Guven D.C. Rizzo A. Datopotamab deruxtecan: A novel antibody drug conjugate for triple-negative breast cancer. Heliyon 2024 10 7 e28385 10.1016/j.heliyon.2024.e28385 38560142
    [Google Scholar]
  166. Yu X. Li Y. Kong F. Xu Q. METTL3 regulates FAM83D m6A modification to accelerate tumorigenesis of triple-negative breast cancer via the Wnt/β-catenin pathway. Toxicol. In Vitro 2024 95 105746 10.1016/j.tiv.2023.105746 38043628
    [Google Scholar]
  167. Gerosa R. De Sanctis R. Jacobs F. Benvenuti C. Gaudio M. Saltalamacchia G. Torrisi R. Masci G. Miggiano C. Agustoni F. Pedrazzoli P. Santoro A. Zambelli A. Cyclin-dependent kinase 2 (CDK2) inhibitors and others novel CDK inhibitors (CDKi) in breast cancer: Clinical trials, current impact, and future directions. Crit. Rev. Oncol. Hematol. 2024 196 104324 10.1016/j.critrevonc.2024.104324 38462150
    [Google Scholar]
  168. Lu L. Niu Z. Chao Z. Fu C. Chen K. Shi Y. Exploring the therapeutic potential of ADC combination for triple-negative breast cancer. Cell. Mol. Life Sci. 2023 80 12 350 10.1007/s00018‑023‑04946‑x 37930428
    [Google Scholar]
  169. Sasso J.M. Tenchov R. Bird R. Iyer K.A. Ralhan K. Rodriguez Y. Zhou Q.A. The evolving landscape of antibody–drug conjugates: In depth analysis of recent research progress. Bioconjug. Chem. 2023 34 11 1951 2000 10.1021/acs.bioconjchem.3c00374 37821099
    [Google Scholar]
  170. Fu Z. Li S. Han S. Shi C. Zhang Y. Antibody drug conjugate: the “biological missile” for targeted cancer therapy. Signal Transduct. Target. Ther. 2022 7 1 93 10.1038/s41392‑022‑00947‑7
    [Google Scholar]
  171. Dri A. Arpino G. Bianchini G. Curigliano G. Danesi R. De Laurentiis M. Del Mastro L. Fabi A. Generali D. Gennari A. Guarneri V. Santini D. Simoncini E. Zamagni C. Puglisi F. Breaking barriers in triple negative breast cancer (TNBC): Unleashing the power of antibody-drug conjugates (ADCs). Cancer Treat. Rev. 2024 123 102672 10.1016/j.ctrv.2023.102672 38118302
    [Google Scholar]
  172. Desroys du Roure P. Lajoie L. Mallavialle A. Alcaraz L.B. Mansouri H. Fenou L. Garambois V. Rubio L. David T. Coenon L. Boissière-Michot F. Chateau M.C. Ngo G. Jarlier M. Villalba M. Martineau P. Laurent-Matha V. Roger P. Guiu S. Chardès T. Gros L. Liaudet-Coopman E. A novel Fc-engineered cathepsin D-targeting antibody enhances ADCC, triggers tumor-infiltrating NK cell recruitment, and improves treatment with paclitaxel and enzalutamide in triple-negative breast cancer. J. Immunother. Cancer 2024 12 1 e007135 10.1136/jitc‑2023‑007135 38290768
    [Google Scholar]
  173. Pietenpol J.A. Lehmann B. Bauer B. Chen X. 2023
  174. Tolaney S Duda D.G. Triple-negative breast cancer treatment methods. WO2017184597A1 2017
    [Google Scholar]
  175. Xinjun L. Phillip K. Kirkland K. Tani L. Singh S. Methods for predicting response of triple-negative breast cancer to therapy. U.S. Patent 10697967B2 2020
    [Google Scholar]
  176. Andrea M Stevermann L Weinschenk T Schoor O Fritsche J Singh H. AU Novel peptides and combination of peptides for use in immunotherapy against various tumors. WO2016156202A1 2020
    [Google Scholar]
  177. Carlton D.D. Targeting PAX2 for the treatment of breast cancer. U.S. Patent 8080534 2011
    [Google Scholar]
  178. Goldenberg D.M. Thomas M.C. Synergistic effects of anti-trop-2 antibody drug conjugate in triple-negative breast cancer when used with microtubule inhibitors or PARP Inhibitors. US Patent 11439620B2 2022
    [Google Scholar]
  179. Shuichan X. Kristen M.H. Heather R. Rama K.N. Treatment of cancer with TOR kinase inhibitors. U.S Patent 2023/0338370A1 2023
    [Google Scholar]
  180. Swiss G.F. Crowne J. Markovic S. Newala W.K. Methods of treating triple-negative breast cancer using compositions of antibodies and carrier proteins. U.S Patent 11590098B2, 2023
    [Google Scholar]
  181. Swiss G.F. Crowne J. Markovic S. Newala W.K. Methods of treating triple-negative breast cancer using compositions of antibodies and carrier proteins. U.S Patent 11872205B2 2024
    [Google Scholar]
  182. Glimcher L.H. Chen X. Modulation of breast cancer growth by modulation of X box binding protein 1 (XBP1) activity. U.S. Patent 10655130B2 2020
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010303244240718075729
Loading
/content/journals/cpb/10.2174/0113892010303244240718075729
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test