Skip to content
2000
Volume 26, Issue 3
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

The truancy of representation of the estrogen, progesterone, and human epidermal growth factor receptors occurs during TNBC. TNBC is recognized for the upper reappearance and has a poorer diagnosis compared with rest breast cancer (BC) types. Presently, as such, no targeted therapy is approved for TNBC and treatment options are subjected to chemotherapy and surgery, which have high mortality rates. Hence, the current article focuses on the scenario of TNBC vital pathways and discusses the latest advances in TNBC treatment, including immune checkpoint inhibitors (ICIs), PARP suppressors, and cancer vaccines. Immunotherapy and ICIs, like PD 1 and PD L1 suppressors, displayed potential in clinical trials (CTs). These suppressors obstruct the mechanisms which allow tumor cells to evade the system thereby boosting the body’s defense against TNBC. Immunotherapy, either alone or combined with chemotherapy has demonstrated patient outcomes such as increased survival rates and reduced treatment-related side effects. Additionally, targeted therapy approaches include BRCA/2 mutation poly ribose polymerase inhibitors, Vascular Endothelial Growth Factor Receptor (VEGFR) inhibitors, Epidermal growth factor receptor inhibitors, Fibroblast growth factor inhibitors, Androgen Receptor inhibitors, PIK3/AKT/mTOR pathway inhibitors, Cyclin-dependent kinase (CDK) inhibitors, Notch signaling pathway inhibitors, Signal transducer and activator of transcription 3 (STAT3) signaling pathway inhibitors, Chimeric antigen receptor T (CAR-T) cell therapy, Transforming growth factor (TGF) -β inhibitors, Epigenetic modifications (EPM), Aurora Kinase inhibitors and antibody-drug conjugates. We also highlight ongoing clinical trials and potential future directions for TNBC therapy. Despite the challenges in treating TNBC, recent developments in understanding the molecular and immune characteristics of TNBC have opened up new opportunities for targeted therapies, which hold promise for improving outcomes in this aggressive disease.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010303244240718075729
2024-07-31
2025-04-07
Loading full text...

Full text loading...

References

  1. KhanM.M. YalamartyS.S.K. RajmalaniB.A. FilipczakN. TorchilinV.P. Recent strategies to overcome breast cancer resistance.Crit. Rev. Oncol. Hematol.202419710435110.1016/j.critrevonc.2024.10435138615873
    [Google Scholar]
  2. FranzoiM.A. RomanoE. PiccartM. Immunotherapy for early breast cancer: too soon, too superficial, or just right?Ann. Oncol.202132332333610.1016/j.annonc.2020.11.02233307202
    [Google Scholar]
  3. HeZ. ChenZ. TanM. ElingaramiS. LiuY. LiT. DengY. HeN. LiS. FuJ. LiW. A review on methods for diagnosis of breast cancer cells and tissues.Cell Prolif.2020537e1282210.1111/cpr.1282232530560
    [Google Scholar]
  4. ZubairM. WangS. AliN. Advanced approaches to breast cancer classification and diagnosis.Front. Pharmacol.20211163207910.3389/fphar.2020.63207933716731
    [Google Scholar]
  5. SindhiK. KanugoA. Recent developments in nanotechnology and immunotherapy for the diagnosis and treatment of pancreatic cancer.Curr. Pharm. Biotechnol.20242510.2174/011389201028440724021211074538415488
    [Google Scholar]
  6. SiegelR.L. GiaquintoA.N. JemalA. Cancer statistics, 2024.CA Cancer J. Clin.2024741124910.3322/caac.2182038230766
    [Google Scholar]
  7. MohammedA.A. The clinical behavior of different molecular subtypes of breast cancer.Cancer Treat. Res. Commun.20212910046910.1016/j.ctarc.2021.10046934624832
    [Google Scholar]
  8. PeddiP.F. EllisM.J. MaC. Molecular basis of triple negative breast cancer and implications for therapy.Int. J. Breast Cancer201220121710.1155/2012/21718522295242
    [Google Scholar]
  9. PaveseF. CapoluongoE.D. MuratoreM. MinucciA. SantonocitoC. FusoP. ConcolinoP. Di StasioE. CarbogninL. TiberiG. GarganeseG. CorradoG. Di LeoneA. GeneraliD. FragomeniS.M. D’AngeloT. FranceschiniG. MasettiR. FabiA. MulèA. SantoroA. BelliP. TortoraG. ScambiaG. ParisI. BRCA mutation status in triple-negative breast cancer patients treated with neoadjuvant chemotherapy: A pivotal role for treatment decision-making.Cancers20221419457110.3390/cancers1419457136230495
    [Google Scholar]
  10. ChoiE. MunG. LeeJ. LeeH. ChoJ. LeeY.S. BRCA1 deficiency in triple-negative breast cancer: Protein stability as a basis for therapy.Biomed. Pharmacother.202315811409010.1016/j.biopha.2022.11409036493696
    [Google Scholar]
  11. LaymanR.M. ArunB. PARP inhibitors in triple-negative breast cancer including those with BRCA mutations.Cancer J.2021271677510.1097/PPO.000000000000049933475295
    [Google Scholar]
  12. PauwelsE.K.J. BourguignonM.H. PARP inhibition and beyond in BRCA-associated breast cancer in women: A state-of-the-art summary of preclinical research on risk reduction and clinical benefits.Med. Princ. Pract.202231430331210.1159/00052528135636395
    [Google Scholar]
  13. LiX. ZhaoL. ChenC. NieJ. JiaoB. Can EGFR be a therapeutic target in breast cancer?Biochim. Biophys. Acta Rev. Cancer20221877518878910.1016/j.bbcan.2022.18878936064121
    [Google Scholar]
  14. MaJ. DongC. CaoY.Z. MaB.L. Dual Target of EGFR and mTOR suppresses triple-negative breast cancer cell growth by regulating the phosphorylation of mTOR downstream proteins.Breast Cancer202315112410.2147/BCTT.S39001736691572
    [Google Scholar]
  15. ZhangM. LiuJ. LiuG. XingZ. JiaZ. LiJ. WangW. WangJ. QinL. WangX. WangX. Anti-vascular endothelial growth factor therapy in breast cancer: Molecular pathway, potential targets, and current treatment strategies.Cancer Lett.202152042243310.1016/j.canlet.2021.08.00534389434
    [Google Scholar]
  16. ShashniB. NishikawaY. NagasakiY. Management of tumor growth and angiogenesis in triple-negative breast cancer by using redox nanoparticles.Biomaterials202126912064510.1016/j.biomaterials.2020.12064533453633
    [Google Scholar]
  17. WuY. YiZ. LiJ. WeiY. FengR. LiuJ. HuangJ. ChenY. WangX. SunJ. YinX. LiY. WanJ. ZhangL. HuangJ. DuH. WangX. LiQ. RenG. LiH. FGFR blockade boosts T cell infiltration into triple-negative breast cancer by regulating cancer-associated fibroblasts.Theranostics202212104564458010.7150/thno.6897235832090
    [Google Scholar]
  18. HuiM. N. CazetA. ElsworthB. RodenD. CoxT. YangJ. McFarlandA. DengN. ChanC.-L. O’TooleS. SwarbrickA. Targeting the hedgehog signalling pathway in triple negative breast cancer.JCO201836e2421610.1200/JCO.2018.36.15_suppl.e24216
    [Google Scholar]
  19. HabibJ.G. O’ShaughnessyJ.A. The hedgehog pathway in triple‐negative breast cancer.Cancer Med.20165102989300610.1002/cam4.83327539549
    [Google Scholar]
  20. BanerjeeM. Devi RajeswariV. Inhibition of WNT signaling by conjugated microRNA nano-carriers: A new therapeutic approach for treating triple-negative breast cancer a perspective review.Crit. Rev. Oncol. Hematol.202318210390110.1016/j.critrevonc.2022.10390136584723
    [Google Scholar]
  21. YinL. DuanJ. J. BianX. W. YuS. C. Triple-negative breast cancer molecular subtyping and treatment progress.Breast Cancer Res20202216110.1186/s13058‑020‑01296‑5
    [Google Scholar]
  22. GerratanaL. BasileD. BuonoG. De PlacidoS. GiulianoM. MinichilloS. CoinuA. MartoranaF. De SantoI. Del MastroL. De LaurentiisM. PuglisiF. ArpinoG. Androgen receptor in triple negative breast cancer: A potential target for the targetless subtype.Cancer Treat. Rev.20186810211010.1016/j.ctrv.2018.06.00529940524
    [Google Scholar]
  23. LuB. NatarajanE. Balaji RaghavendranH.R. MarkandanU.D. Molecular classification, treatment, and genetic biomarkers in triple-negative breast cancer: A review.Technol. Cancer Res. Treat.20232210.1177/1533033822114524636601658
    [Google Scholar]
  24. HaqueS. CookK. SahayG. SunC. RNA-based therapeutics: current developments in targeted molecular therapy of triple-negative breast cancer.Pharmaceutics20211310169410.3390/pharmaceutics1310169434683988
    [Google Scholar]
  25. ParkJ.H. AhnJ.H. KimS.B. How shall we treat early triple-negative breast cancer (TNBC): from the current standard to upcoming immuno-molecular strategies.ESMO Open201831e00035710.1136/esmoopen‑2018‑00035729765774
    [Google Scholar]
  26. WaksA.G. StoverD.G. GuerrieroJ.L. DillonD. BarryW.T. GjiniE. HartlC. LoW. SavoieJ. BrockJ. WesolowskiR. LiZ. DamicisA. PhilipsA.V. WuY. YangF. SullivanA. DanaherP. BrauerH.A. OsmaniW. LipschitzM. HoadleyK.A. GoldbergM. PerouC.M. RodigS. WinerE.P. KropI.E. MittendorfE.A. TolaneyS.M. The immune microenvironment in hormone receptor positive breast cancer before and after preoperative chemotherapy.Clin. Cancer Res.201925154644465510.1158/1078‑0432.CCR‑19‑017331061067
    [Google Scholar]
  27. DieciM.V. GuarneriV. TosiA. BisagniG. MusolinoA. SpazzapanS. MorettiG. VernaciG.M. GriguoloG. GiarratanoT. UrsoL. SchiaviF. PinatoC. MagniG. Lo MeleM. De SalvoG.L. RosatoA. ConteP. Neoadjuvant chemotherapy and immunotherapy in luminal B-like breast cancer: Results of the phase II GIADA trial.Clin. Cancer Res.202228230831710.1158/1078‑0432.CCR‑21‑226034667023
    [Google Scholar]
  28. Hormone Therapy for Breast Cancer Fact Sheet - NCI.Available from: https://www.cancer.gov/types/breast/breast-hormone-therapy-fact-sheet (accessed 2024-05-08).
  29. MohantyS.S. SahooC.R. PadhyR.N. Role of hormone receptors and HER2 as prospective molecular markers for breast cancer: An update.Genes Dis.20229364865810.1016/j.gendis.2020.12.00535782984
    [Google Scholar]
  30. A Study of Neoadjuvant Nivolumab + Palbociclib + Anastrozole in Post-Menopausal Women and Men With Primary Breast Cancer.NCT040756042022Available from: https://classic.clinicaltrials.gov/ct2/show/NCT04075604
  31. Neoadjuvant Endocrine Therapy, Palbociclib, Avelumab in Estrogen Receptor Positive Breast Cancer.NCT035736482024Available from: https://clinicaltrials.gov/study/NCT03573648?cond=NCT03573648&rank=1
  32. Neoadjuvant Study of Abemaciclib, Durvalumab, and an Aromatase Inhibitor Early Stage Breast Cancer.NCT040880322020Available from: https://clinicaltrials.gov/study/NCT04088032?cond=NCT04088032
  33. MigliaccioI. BonechiM. McCartneyA. GuarducciC. BenelliM. BiganzoliL. Di LeoA. MalorniL. CDK4/6 inhibitors: A focus on biomarkers of response and post-treatment therapeutic strategies in hormone receptor-positive HER2-negative breast cancer.Cancer Treat. Rev.20219310213610.1016/j.ctrv.2020.10213633360919
    [Google Scholar]
  34. SalehL. OttewellP.D. BrownJ.E. WoodS.L. BrownN.J. WilsonC. ParkC. AliS. HolenI. The CDK4/6 Inhibitor palbociclib inhibits estrogen-positive and triple negative breast cancer bone metastasis in vivo.Cancers2023158221110.3390/cancers1508221137190140
    [Google Scholar]
  35. RatosaI. OrazemM. ScoccimarroE. SteinacherM. DominiciL. AquilanoM. CerbaiC. DesideriI. RibnikarD. MarinkoT. LiviL. MeattiniI. Cyclin-dependent kinase 4/6 inhibitors combined with radiotherapy for patients with metastatic breast cancer.Clin. Breast Cancer202020649550210.1016/j.clbc.2020.05.01332622736
    [Google Scholar]
  36. OzmanZ. Guney EskilerG. SekerogluM.R. In vitro therapeutic effects of abemaciclib on triple‐negative breast cancer cells.J. Biochem. Mol. Toxicol.2021359e2285810.1002/jbt.2285834309953
    [Google Scholar]
  37. Rampioni VinciguerraG.L. SonegoM. SegattoI. Dall’AcquaA. VecchioneA. BaldassarreG. BellettiB. CDK4/6 inhibitors in combination therapies: better in company than alone: A mini review.Front. Oncol.20221289158010.3389/fonc.2022.89158035712501
    [Google Scholar]
  38. RajabiN. MohammadnejadF. DoustvandiM.A. ShadbadM.A. AminiM. TajalliH. MokhtarzadehA. BaghbaniE. SilvestrisN. BaradaranB. Photodynamic therapy with zinc phthalocyanine enhances the anti-cancer effect of tamoxifen in breast cancer cell line: Promising combination treatment against triple-negative breast cancer?Photodiagn. Photodyn. Ther.20234110321210.1016/j.pdpdt.2022.10321236436735
    [Google Scholar]
  39. MaJ. LiX. ZhangQ. LiN. SunS. ZhaoS. ZhaoZ. LiM. A novel treatment strategy of HER2-targeted therapy in combination with Everolimus for HR+/HER2- advanced breast cancer patients with HER2 mutations.Transl. Oncol.20222110144410.1016/j.tranon.2022.10144435523006
    [Google Scholar]
  40. HuoberJ. BarriosC.H. NiikuraN. JarząbM. ChangY.C. Huggins-PuhallaS.L. PedriniJ. ZhukovaL. GraupnerV. EigerD. HenschelV. GochitashviliN. LambertiniC. RestucciaE. ZhangH. Atezolizumab with neoadjuvant anti–human epidermal growth factor receptor 2 therapy and chemotherapy in human epidermal growth factor receptor 2–positive early breast cancer: Primary results of the randomized phase III IMpassion050 trial.J. Clin. Oncol.202240252946295610.1200/JCO.21.0277235763704
    [Google Scholar]
  41. LiY. ZhangH. MerkherY. ChenL. LiuN. LeonovS. ChenY. Recent advances in therapeutic strategies for triple-negative breast cancer.J. Hematol. Oncol.202215112110.1186/s13045‑022‑01341‑036038913
    [Google Scholar]
  42. HassanG. AfifyS.M. DuJ. NawaraH.M. ShetaM. MonzurS. ZahraM.H. Abu QuoraH.A. MansourH. El-GhlbanS. UesakiR. SenoA. SenoM. MEK1/2 is a bottleneck that induces cancer stem cells to activate the PI3K/AKT pathway.Biochem. Biophys. Res. Commun.2021583495510.1016/j.bbrc.2021.10.04734735879
    [Google Scholar]
  43. DentR. OliveiraM. IsakoffS.J. ImS.A. EspiéM. BlauS. TanA.R. SauraC. WongchenkoM.J. XuN. BradleyD. ReillyS.J. ManiA. KimS.B. LeeK.S. SohnJ.H. KimJ.H. SeoJ.H. KimJ.S. ParkS. VelezM. DakhilS. HurvitzS. ValeroV. VidalG. FiglinR. AllisonM.A.K. ChanD. CobleighM. HansenV. IannottiN. LawlerW. SalkiniM. SeigelL. RomieuG. DebledM. LevyC. Hardy-BessardA. GuiuS. EstevezL.G. VillanuevaR. MartinA.G. RoviraP.S. MontañoA. PlazaM.I.C. SaenzJ.A.G. GarauI. BermejoB. AlonsoE.V. WangH-C. HuangC-S. ChenS-C. ChenY-H. TsengL-M. WongA. AngC.S.P. De LaurentiisM. ConteP.F. De BraudF. MontemurroF. GianniL. DirixL. Final results of the double-blind placebo-controlled randomized phase 2 LOTUS trial of first-line ipatasertib plus paclitaxel for inoperable locally advanced/metastatic triple-negative breast cancer.Breast Cancer Res. Treat.2021189237738610.1007/s10549‑021‑06143‑534264439
    [Google Scholar]
  44. HellmannM.D. KimT.W. LeeC.B. GohB.C. MillerW.H.Jr OhD.Y. JamalR. CheeC.E. ChowL.Q.M. GainorJ.F. DesaiJ. SolomonB.J. Das ThakurM. PitcherB. FosterP. HernandezG. WongchenkoM.J. ChaE. BangY.J. SiuL.L. BendellJ. Phase Ib study of atezolizumab combined with cobimetinib in patients with solid tumors.Ann. Oncol.20193071134114210.1093/annonc/mdz11330918950
    [Google Scholar]
  45. Atezolizumab + Sacituzumab Govitecan to Prevent Recurrence in TNBC (ASPRIA).NCT044340402020Available from: https://classic.clinicaltrials.gov/ct2/show/NCT04434040
  46. GoelS. DeCristoM.J. McAllisterS.S. ZhaoJ.J. CDK4/6 inhibition in cancer: Beyond cell cycle arrest.Trends Cell Biol.2018281191192510.1016/j.tcb.2018.07.00230061045
    [Google Scholar]
  47. JiangN. DaiQ. SuX. FuJ. FengX. PengJ. Role of PI3K/AKT pathway in cancer: the framework of malignant behavior.Mol. Biol. Rep.20204764587462910.1007/s11033‑020‑05435‑132333246
    [Google Scholar]
  48. LiG. LinS. YuZ. WuX. LiuJ. TuG. LiuQ. TangY. JiangQ. XuJ. HuangQ. WuL. A PARP1 PROTAC as a novel strategy against PARP inhibitor resistance via promotion of ferroptosis in p53-positive breast cancer.Biochem. Pharmacol.202220611532910.1016/j.bcp.2022.11532936309080
    [Google Scholar]
  49. ForceJ. LealJ.H.S. McArthurH.L. Checkpoint blockade strategies in the treatment of breast cancer: Where we are and where we are heading.Curr. Treat. Options Oncol.20192043510.1007/s11864‑019‑0634‑530923913
    [Google Scholar]
  50. DubskyP. Van’t VeerL. GnantM. RudasM. Bago-HorvathZ. GreilR. LujinovicE. BureschJ. RinnerthalerG. HullaW. MoinfarF. EgleD. HerzW. DreezenC. FrantalS. FilipitsM. A clinical validation study of MammaPrint in hormone receptor-positive breast cancer from the Austrian Breast and Colorectal Cancer Study Group 8 (ABCSG-8) biomarker cohort.ESMO Open20216110000610.1016/j.esmoop.2020.10000633399073
    [Google Scholar]
  51. Window of Opportunity Trial of Neoadjuvant Olaparib and Durvalumab for Triple Negative or Low ER+ Breast Cancer.NCT035943962021Available from: https://classic.clinicaltrials.gov/ct2/show/NCT03594396
  52. ChenA. PARP inhibitors: its role in treatment of cancer.Chin. J. Cancer201130746347110.5732/cjc.011.1011121718592
    [Google Scholar]
  53. LangelierM.F. LinX. ZhaS. PascalJ.M. Clinical PARP inhibitors allosterically induce PARP2 retention on DNA.Sci. Adv.2023912eadf717510.1126/sciadv.adf717536961901
    [Google Scholar]
  54. MurthyP. MuggiaF. PARP inhibitors: clinical development, emerging differences, and the current therapeutic issues.Cancer Drug Resist.20192366567910.20517/cdr.2019.00235582575
    [Google Scholar]
  55. MuraiJ. HuangS.N. DasB.B. RenaudA. ZhangY. DoroshowJ.H. JiJ. TakedaS. PommierY. Trapping of PARP1 and PARP2 by Clinical PARP Inhibitors.Cancer Res.201272215588559910.1158/0008‑5472.CAN‑12‑275323118055
    [Google Scholar]
  56. RoseM. BurgessJ.T. O’ByrneK. RichardD.J. BoldersonE. PARP inhibitors: Clinical relevance, mechanisms of action and tumor resistance.Front. Cell Dev. Biol.20208September56460110.3389/fcell.2020.56460133015058
    [Google Scholar]
  57. van BeekL. McClayÉ. PatelS. SchimplM. SpagnoloL. Maia de OliveiraT. PARP Power: A structural perspective on PARP1, PARP2, and PARP3 in DNA damage repair and nucleosome remodelling.Int. J. Mol. Sci.20212210511210.3390/ijms2210511234066057
    [Google Scholar]
  58. SandersonD.J. RodriguezK.M. BejanD.S. OlafsenN.E. BohnI.D. KojicA. SundalamS. SiordiaI.R. DuellA.K. DengN. SchultzC. GrantD.M. MatthewsJ. CohenM.S. Structurally distinct PARP7 inhibitors provide new insights into the function of PARP7 in regulating nucleic acid-sensing and IFN-β signaling.Cell Chem. Biol.20233014354.e810.1016/j.chembiol.2022.11.01236529140
    [Google Scholar]
  59. XuJ. ZhaoA. ChenD. WangJ. MaJ. QingL. LiY. FangH. HeH. PanW. ZhangS. Discovery of tricyclic PARP7 inhibitors with high potency, selectivity, and oral bioavailability.Eur. J. Med. Chem.202426611616010.1016/j.ejmech.2024.11616038277917
    [Google Scholar]
  60. WangL.-M. WangP. ChenX.-M. YangH. SongS.-S. SongZ. JiaL. ChenH.-D. BaoX.-B. GuoN. HuanX.-J. XiY. ShenY.-Y. YangX.-Y. SuY. SunY.-M. GaoY.-L. ChenY. DingJ. LangJ.-Y. MiaoZ.-H. ZhangA. HeJ.-X. Thioparib inhibits homologous recombination repair, activates the type I IFN response, and overcomes olaparib resistance.EMBO Mol Med2023153e1623510.15252/emmm.202216235
    [Google Scholar]
  61. Santa-MariaC.A. DunnS.A. HoA.Y. Immunotherapy Combined with Radiation Therapy in Breast Cancer: A Rapidly Evolving Landscape.Semin. Radiat. Oncol.202232329129710.1016/j.semradonc.2022.01.00135688527
    [Google Scholar]
  62. Breast Cancer Study of Preoperative Pembrolizumab + Radiation.NCT033668442024Available from: https://classic.clinicaltrials.gov/ct2/show/NCT03366844
  63. NapierT.S. LynchS.E. LuY. SongP.N. BurnsA.C. SoraceA.G. Molecular imaging of oxygenation changes during immunotherapy in combination with paclitaxel in triple negative breast cancer.Biomedicines202311112510.3390/biomedicines1101012536672633
    [Google Scholar]
  64. GongR. MaZ. HeL. JiangS. CaoD. ChengY. Identification and evaluation of a novel PARP1 inhibitor for the treatment of triple-negative breast cancer.Chem. Biol. Interact.202338211056710.1016/j.cbi.2023.11056737271214
    [Google Scholar]
  65. HeR. YuanX. ChenZ. ZhengY. Combined immunotherapy for metastatic triple-negative breast cancer based on PD-1/PD-L1 immune checkpoint blocking.Int Immunopharmacol2022113Pt B10944410.1016/j.intimp.2022.109444
    [Google Scholar]
  66. PindiproluS.K.S.S. MadhanJ. SrinivasaraoD.A. DasariN. Phani KumarC.S. KattaC. Sainaga JyothiV.G.S. Therapeutic targeting of aberrant sialylation for prevention of chemoresistance and metastasis in triple negative breast cancer.J. Drug Deliv. Sci. Technol.20238610461710.1016/j.jddst.2023.104617
    [Google Scholar]
  67. KossaiM. Radosevic-RobinN. Penault-LlorcaF. Refining patient selection for breast cancer immunotherapy: beyond PD-L1.ESMO Open20216510025710.1016/j.esmoop.2021.10025734487970
    [Google Scholar]
  68. ÖzcanD. Lade-KellerJ. TrammT. Can evaluation of mismatch repair defect and TILs increase the number of triple-negative breast cancer patients eligible for immunotherapy?Pathol. Res. Pract.202122615360610.1016/j.prp.2021.15360634530255
    [Google Scholar]
  69. Sobral-LeiteM. SalomonI. OpdamM. KrugerD.T. BeelenK.J. van der NoortV. van VlierbergheR.L.P. BlokE.J. GiardielloD. SandersJ. Van de VijverK. HorlingsH.M. KuppenP.J.K. LinnS.C. SchmidtM.K. KokM. Cancer-immune interactions in ER-positive breast cancers: PI3K pathway alterations and tumor-infiltrating lymphocytes.Breast Cancer Res.20192119010.1186/s13058‑019‑1176‑231391067
    [Google Scholar]
  70. PilipowK. DarwichA. LosurdoA. T-cell-based breast cancer immunotherapy.Semin. Cancer Biol.2021729010110.1016/j.semcancer.2020.05.01932492452
    [Google Scholar]
  71. LiR. CaoL. The role of tumor-infiltrating lymphocytes in triple-negative breast cancer and the research progress of adoptive cell therapy.Front. Immunol.202314119402010.3389/fimmu.2023.119402037275874
    [Google Scholar]
  72. Search for: Triple Negative Breast Cancer | Card Results.Available from: https://clinicaltrials.gov/search?cond=Triple (accessed 2024-05-06).
  73. PradhanR. DeyA. TaliyanR. PuriA. KharavtekarS. DubeyS.K. Recent advances in targeted nanocarriers for the management of triple negative breast cancer.Pharmaceutics202315124610.3390/pharmaceutics1501024636678877
    [Google Scholar]
  74. ObidiroO. BattogtokhG. AkalaE.O. Triple negative breast cancer treatment options and limitations: Future outlook.Pharmaceutics2023157179610.3390/pharmaceutics1507179637513983
    [Google Scholar]
  75. KumarP. AggarwalR. An overview of triple-negative breast cancer.Arch. Gynecol. Obstet.2016293224726910.1007/s00404‑015‑3859‑y26341644
    [Google Scholar]
  76. GaynorN. CrownJ. CollinsD.M. Immune checkpoint inhibitors: Key trials and an emerging role in breast cancer.Semin. Cancer Biol.202279445710.1016/j.semcancer.2020.06.01632623044
    [Google Scholar]
  77. WangX. WangJ. HeY. LiJ. WangT. OuyangT. FanZ. Observation effectiveness of dose-dense neoadjuvant anthracycline sequential weekly paclitaxel for triple-negative breast cancer patients.Clin. Breast Cancer202323442343010.1016/j.clbc.2023.02.00936997401
    [Google Scholar]
  78. LiQ. LiuJ. ZhangQ. OuyangQ. ZhangY. LiuQ. SunT. YeF. ZhangB. XiaS. ZhangB. XuB. The anti-PD-L1/CTLA-4 bispecific antibody KN046 in combination with nab-paclitaxel in first-line treatment of metastatic triple-negative breast cancer: A multicenter phase II trial.Nat. Commun.2024151101510.1038/s41467‑024‑45160‑y38310192
    [Google Scholar]
  79. LinX. ChenH. XieY. ZhouX. WangY. ZhouJ. LongS. HuZ. ZhangS. QiuW. ZengZ. LiuL. Combination of CTLA-4 blockade with MUC1 mRNA nanovaccine induces enhanced anti-tumor CTL activity by modulating tumor microenvironment of triple negative breast cancer.Transl. Oncol.202215110129810.1016/j.tranon.2021.10129834875483
    [Google Scholar]
  80. Novel CTLA-4 Agents Build on Immunotherapy Foundation, Aim to Improve Efficacy/Safety.Available from: https://www.targetedonc.com/view/novel-ctla-4-agents-build-on-immunotherapy-foundation-aim-to-improve-efficacy-safety (accessed 2024-05-10).
  81. PesceM. MaccioA. SimoneN. Di BaldanziG. Immune checkpoint receptors signaling in T cells.Int J Mol Sci2022237352910.3390/ijms23073529
    [Google Scholar]
  82. LiY. ZhanZ. YinX. FuS. DengX. Targeted therapeutic strategies for triple-negative breast cancer.Front. Oncol.20211173153510.3389/fonc.2021.73153534778045
    [Google Scholar]
  83. LiC. W. LimS. O. XiaW. LeeH. H. ChanL. C. KuoC. W. KhooK. H. ChangS. S. ChaJ. H. KimT. HsuJ. L. WuY. HsuJ. M. YamaguchiH. DingQ. WangY. YaoJ. LeeC. C. WuH. J. SahinA. A. AllisonJ. P. YuD. HortobagyiG. N. HungM. C. Glycosylation and stabilization of programmed death ligand-1 suppresses T-cell activity.Nat Commun201671263210.1038/ncomms12632
    [Google Scholar]
  84. CaoP. YangX. LiuD. YeS. YangW. XieZ. LeiX. Research progress of PD‐L1 non‐glycosylation in cancer immunotherapy.Scand. J. Immunol.2022964e1320510.1111/sji.13205
    [Google Scholar]
  85. JiangY. ChenM. NieH. YuanY. PD-1 and PD-L1 in cancer immunotherapy: clinical implications and future considerations.Hum. Vaccin. Immunother.20191551111112210.1080/21645515.2019.157189230888929
    [Google Scholar]
  86. ShiravandY. KhodadadiF. KashaniS.M.A. Hosseini-FardS.R. HosseiniS. SadeghiradH. LadwaR. O’ByrneK. KulasingheA. Immune checkpoint inhibitors in cancer therapy.Curr. Oncol.20222953044306010.3390/curroncol2905024735621637
    [Google Scholar]
  87. LiuD. CheX. WangX. MaC. WuG. Tumor Vaccines: Unleashing the Power of the Immune System to Fight Cancer.Pharmaceuticals (Basel)20231610138410.3390/ph1610138437895855
    [Google Scholar]
  88. Ongoing Trial Investigates Cancer Vaccine Plus Keytruda for TNBC.Available from: https://www.curetoday.com/view/ongoing-trial-investigates-cancer-vaccine-plus-keytruda-for-tnbc (accessed 2024-05-04).
  89. Vaccine for triple-negative breast cancer produces ‘exciting’ results in early testing.Available from: https://www.healio.com/news/hematology-oncology/20240119/vaccine-for-triplenegative-breast-cancer-produces-exciting-results-in-early-testing (accessed 2024-05-04).
  90. KarimA.M. Eun KwonJ. AliT. JangJ. UllahI. LeeY.G. ParkD.W. ParkJ. JeangJ.W. KangS.C. Triple-negative breast cancer: epidemiology, molecular mechanisms, and modern vaccine-based treatment strategies.Biochem. Pharmacol.2023212February11554510.1016/j.bcp.2023.11554537044296
    [Google Scholar]
  91. Search for: Cancer Vaccine for triple negative breast cancer | Card Results.Available from: https://clinicaltrials.gov/search?cond=Cancer (accessed 2024-05-04).
  92. BignonL. FrickerJ.P. NoguesC. Mouret-FourmeE. Stoppa-LyonnetD. CaronO. LortholaryA. FaivreL. LassetC. MariV. GestaP. GladieffL. HamimiA. PetitT. VeltenM. Efficacy of anthracycline/taxane-based neo-adjuvant chemotherapy on triple-negative breast cancer in BRCA1 / BRCA2 mutation carriers.Breast J.201824326927710.1111/tbj.1288728929593
    [Google Scholar]
  93. KolinjivadiA.M. SanninoV. de AntoniA. TécherH. BaldiG. CostanzoV. Moonlighting at replication forks a new life for homologous recombination proteins BRCA 1, BRCA 2 and RAD 51.FEBS Lett.201759181083110010.1002/1873‑3468.1255628079255
    [Google Scholar]
  94. McClurgD.P. UrquhartG. McGoldrickT. ChatterjiS. MiedzybrodzkaZ. SpeirsV. ElsbergerB. Analysis of the clinical advancements for BRCA-related malignancies highlights the lack of treatment evidence for BRCA-positive male breast cancer.Cancers20221413317510.3390/cancers1413317535804947
    [Google Scholar]
  95. TurnerN.C. BalmañaJ. PoncetC. GouliotiT. TryfonidisK. HonkoopA.H. ZoppoliG. RazisE. JohannssonO.T. ColleoniM. TuttA.N. AudehW. IgnatiadisM. MailliezA. TrédanO. MusolinoA. VuylstekeP. Juan-FitaM.J. MacphersonI.R.J. KaufmanB. MansoL. GoldsteinL.J. EllardS.L. LángI. JenK.Y. AdamV. LitièreS. ErbanJ. CameronD.A. Niraparib for Advanced Breast Cancer with Germline BRCA1 and BRCA2 Mutations: the EORTC 1307-BCG/BIG5–13/TESARO PR-30–50–10-C BRAVO Study.Clin. Cancer Res.202127205482549110.1158/1078‑0432.CCR‑21‑031034301749
    [Google Scholar]
  96. AgostinettoE. EigerD. PunieK. de AzambujaE. Emerging therapeutics for patients with triple-negative breast cancer.Curr. Oncol. Rep.20212355710.1007/s11912‑021‑01038‑633763756
    [Google Scholar]
  97. LiuY. LiY. WangY. LinC. ZhangD. ChenJ. OuyangL. WuF. ZhangJ. ChenL. Recent progress on vascular endothelial growth factor receptor inhibitors with dual targeting capabilities for tumor therapy.J. Hematol. Oncol.20221518910.1186/s13045‑022‑01310‑735799213
    [Google Scholar]
  98. LiY. YangG. ZhangJ. TangP. YangC. WangG. ChenJ. LiuJ. ZhangL. OuyangL. Discovery, synthesis, and evaluation of highly selective vascular endothelial growth factor receptor 3 (VEGFR3) inhibitor for the potential treatment of metastatic triple-negative breast cancer.J. Med. Chem.20216416120221204810.1021/acs.jmedchem.1c0067834351741
    [Google Scholar]
  99. ZhuS. WuY. SongB. YiM. YanY. MeiQ. WuK. Recent advances in targeted strategies for triple-negative breast cancer.J. Hematol. Oncol.202316110010.1186/s13045‑023‑01497‑337641116
    [Google Scholar]
  100. FanW. DingJ. ZhongW. Efficacy and safety of third-line apatinib plus chemotherapy in metastatic triple-negative breast cancer patients: A multicenter, retrospective, cohort study.Tohoku J. Exp. Med.20232601132010.1620/tjem.2023.J00636696982
    [Google Scholar]
  101. KanugoA. GautamR.K. KamalM.A. Recent advances of nanotechnology in the diagnosis and therapy of triple negative breast cancer (TNBC).Curr. Pharm. Biotechnol.202223131581159510.2174/138920102366621123011365834967294
    [Google Scholar]
  102. JuJ. ZhuA.J. YuanP. Progress in targeted therapy for breast cancer.Chronic Dis. Transl. Med.20184316417510.1016/j.cdtm.2018.04.00230276363
    [Google Scholar]
  103. LiuZ. L. ChenH. H. ZhengL. L. SunL. P. ShiL. Angiogenic signaling pathways and anti-angiogenic therapy for cancer.Signal Transduct Target Ther20238119810.1038/s41392‑023‑01460‑1
    [Google Scholar]
  104. LinP.H. TsengL.M. LeeY.H. ChenS.T. YehD.C. DaiM.S. LiuL.C. WangM.Y. LoC. ChangS. TanK.T. ChenS.J. KuoS.H. HuangC.S. Neoadjuvant afatinib with paclitaxel for triple-negative breast cancer and the molecular characteristics in responders and non-responders.J. Formos. Med. Assoc.2022121122538254710.1016/j.jfma.2022.05.01535752529
    [Google Scholar]
  105. GuH. ShiR. XuC. LvW. HuX. XuC. PanY. HeX. WuA. LiJ. EGFR-targeted liposomes combined with ginsenoside Rh2 inhibit triple-negative breast cancer growth and metastasis.Bioconjug. Chem.20233461157116510.1021/acs.bioconjchem.3c0020737235785
    [Google Scholar]
  106. MamotC. WickiA. Hasler-StrubU. RinikerS. LiQ. HolerL. BärtschiD. ZamanK. von MoosR. DedesK. J. BoosL. A. NovakU. BodmerA. RitschardR. ObermannE. C. TzankovA. AckermannC. Membrez-AntonioliV. Zürrer-HärdiU. CasparC. B. DeusterS. SennM. WinterhalderR. RochlitzC. A multicenter phase II trial of anti-EGFR-immunoliposomes loaded with doxorubicin in patients with advanced triple negative breast cancer.Sci Rep2023131370210.1038/s41598‑023‑30950‑z
    [Google Scholar]
  107. FarooqM. KhanA.W. KimM.S. ChoiS. The role of fibroblast growth factor (FGF) signaling in tissue repair and regeneration.Cells20211011324210.3390/cells1011324234831463
    [Google Scholar]
  108. MasudaH. ZhangD. BartholomeuszC. DoiharaH. HortobagyiG.N. UenoN.T. Role of epidermal growth factor receptor in breast cancer.Breast Cancer Res. Treat.2012136233134510.1007/s10549‑012‑2289‑923073759
    [Google Scholar]
  109. SaridoganT. AkcakanatA. ZhaoM. EvansK. W. YucaE. ScottS. KirbyB. P. ZhengX. HaM. J. ChenH. NgP. K. S. DiPeriT. P. MillsG. B. Rodon AhnertJ. DamodaranS. Meric-BernstamF. Efficacy of futibatinib, an irreversible fibroblast growth factor receptor inhibitor, in FGFR-altered breast cancer.Sci Rep20231312022310.1038/s41598‑023‑46586‑y
    [Google Scholar]
  110. ChoupaniE. Mahmoudi GomariM. ZanganehS. NasseriS. Haji-allahverdipoorK. RostamiN. HernandezY. NajafiS. Saraygord-AfshariN. HosseiniA. Newly developed targeted therapies against the androgen receptor in triple-negative breast cancer: A review.Pharmacol. Rev.202375230932710.1124/pharmrev.122.00066536781219
    [Google Scholar]
  111. LiuD. AR pathway activity correlates with AR expression in a HER2-dependent manner and serves as a better prognostic factor in breast cancer.Cell Oncol.202043232133310.1007/s13402‑019‑00492‑631933152
    [Google Scholar]
  112. JinnaN. RidaP. SmartM. LaBargeM. Jovanovic-TalismanT. NatarajanR. SeewaldtV. Adaptation to hypoxia may promote therapeutic resistance to androgen receptor inhibition in triple-negative breast cancer.Int. J. Mol. Sci.20222316884410.3390/ijms2316884436012111
    [Google Scholar]
  113. RampurwalaM. WisinskiK.B. O’ReganR. Role of the androgen receptor in triple-negative breast cancer.Clin. Adv. Hematol. Oncol.201614318619327058032
    [Google Scholar]
  114. GuoQ. QiuP. YaoQ. ChenJ. LinJ. Integrated bioinformatics analysis for the screening of hub genes and therapeutic drugs in androgen receptor-positive TNBC.Dis. Markers2022202211810.1155/2022/496479336157217
    [Google Scholar]
  115. GaoF. WuY. WangR. YaoY. LiuY. FanL. XuJ. ZhangJ. HanX. GuanX. Precise nano-system-based drug delivery and synergistic therapy against androgen receptor-positive triple-negative breast cancer.Acta Pharm. Sin. B20241462685269710.1016/j.apsb.2024.03.01238828153
    [Google Scholar]
  116. YardleyD.A. YoungR.R. AdelsonK.B. SilberA.L. NajeraJ.E. DanielD.B. PeacockN. FinneyL. HoekstraS.J. ShastryM. HainsworthJ.D. BurrisH.A. A phase II study evaluating orteronel, an inhibitor of androgen biosynthesis, in patients with androgen receptor (AR)-expressing metastatic breast cancer (MBC).Clin. Breast Cancer202222326927810.1016/j.clbc.2021.10.01134824002
    [Google Scholar]
  117. Jabbarzadeh KaboliP. LuoS. ChenY. JomhoriM. ImaniS. XiangS. WuZ. LiM. ShenJ. ZhaoY. WuX. Hin ChoC. XiaoZ. Pharmacotranscriptomic profiling of resistant triple-negative breast cancer cells treated with lapatinib and berberine shows upregulation of PI3K/Akt signaling under cytotoxic stress.Gene202281614617110.1016/j.gene.2021.14617135026293
    [Google Scholar]
  118. SchmidP. AbrahamJ. ChanS. WheatleyD. BruntA.M. NemsadzeG. BairdR.D. ParkY.H. HallP.S. PerrenT. SteinR.C. MangelL. FerreroJ.M. PhillipsM. ConibearJ. CortesJ. FoxleyA. de BruinE.C. McEwenR. StetsonD. DoughertyB. SarkerS.J. PrendergastA. McLaughlin-CallanM. BurgessM. LawrenceC. CartwrightH. MousaK. TurnerN.C. Capivasertib plus paclitaxel versus placebo plus paclitaxel as first-line therapy for metastatic triple-negative breast cancer: The PAKT trial.J. Clin. Oncol.202038542343310.1200/JCO.19.0036831841354
    [Google Scholar]
  119. LiG. HuJ. ChoC. CuiJ. LiA. RenP. ZhouJ. WeiW. ZhangT. LiuX. LiuW. Everolimus combined with PD-1 blockade inhibits progression of triple-negative breast cancer.Cell. Signal.202310911072910.1016/j.cellsig.2023.11072937257766
    [Google Scholar]
  120. HuY. GaoJ. WangM. LiM. Potential prospect of CDK4/6 inhibitors in triple-negative breast cancer.Cancer Manag. Res.2021135223523710.2147/CMAR.S31064934234565
    [Google Scholar]
  121. SalehL. WilsonC. HolenI. CDK4/6 inhibitors: A potential therapeutic approach for triple negative breast cancer.MedComm20212451453010.1002/mco2.9734977868
    [Google Scholar]
  122. MustafaE. H. Laven-LawG. KikhtyakZ. NguyenV. AliS. PaceA. A. IggoR. KebedeA. NollB. WangS. WinterJ. M. DwyerA. R. TilleyW. D. HickeyT. E. Selective inhibition of CDK9 in triple negative breast cancer.Oncogene202343320221510.1038/s41388‑023‑02892‑3
    [Google Scholar]
  123. OrhanE. VelazquezC. TabetI. FenouL. RodierG. OrsettiB. JacotW. SardetC. TheilletC. CDK inhibition results in pharmacologic BRCAness increasing sensitivity to olaparib in BRCA1-WT and olaparib resistant in Triple Negative Breast Cancer.Cancer Lett.202458921682010.1016/j.canlet.2024.21682038574883
    [Google Scholar]
  124. KuchukullaR.R. HwangI. KimS.H. KyeY. ParkN. ChaH. MoonS. ChungH.W. LeeC. KongG. HurW. Identification of a novel potent CDK inhibitor degrading cyclinK with a superb activity to reverse trastuzumab-resistance in HER2-positive breast cancer in vivo.Eur. J. Med. Chem.202426411601410.1016/j.ejmech.2023.11601438061230
    [Google Scholar]
  125. ZhangL. WuL. ZhouD. WangG. ChenB. ShenZ. LiX. WuQ. QuN. WuY. YuanL. GanZ. ZhouW. N76-1, a novel CDK7 inhibitor, exhibits potent anti-cancer effects in triple negative breast cancer.Eur. J. Pharmacol.202395517589210.1016/j.ejphar.2023.17589237429520
    [Google Scholar]
  126. PoojaY.S. RajanaN. YadavR. NaraharisettiL.T. GoduguC. MehraN.K. Design, development, and evaluation of CDK-4/6 inhibitor loaded 4-carboxy phenyl boronic acid conjugated pH-sensitive chitosan lecithin nanoparticles in the management of breast cancer.Int. J. Biol. Macromol.2024258Pt 112882110.1016/j.ijbiomac.2023.12882138110163
    [Google Scholar]
  127. PandeyP. KhanF. ChoiM. SinghS.K. KangH.N. ParkM.N. KoS.G. SahuS.K. MazumderR. KimB. Review deciphering potent therapeutic approaches targeting Notch signaling pathway in breast cancer.Biomed. Pharmacother.202316411493810.1016/j.biopha.2023.11493837267635
    [Google Scholar]
  128. YousefiH. BahramyA. ZafariN. DelavarM. R. NguyenK. HaghiA. KandeloueiT. VittoriC. JazireianP. MalekiS. ImaniD. MoshksarA. BitarafA. BabashahS. Notch signaling pathway: A comprehensive prognostic and gene expression profile analysis in breast cancer.BMC Cancer2022221128210.1186/s12885‑022‑10383‑z
    [Google Scholar]
  129. JiangN. HuY. WangM. ZhaoZ. LiM. The notch signaling pathway contributes to angiogenesis and tumor immunity in breast cancer.Breast Cancer20221429130910.2147/BCTT.S37687336193236
    [Google Scholar]
  130. KushwahaP.P. VardhanP.S. KapewangoloP. ShuaibM. PrajapatiS.K. SinghA.K. KumarS. Bulbine frutescens phytochemical inhibits notch signaling pathway and induces apoptosis in triple negative and luminal breast cancer cells.Life Sci.201923411678310.1016/j.lfs.2019.11678331442552
    [Google Scholar]
  131. DasA. NarayanamM.K. PaulS. MukhnerjeeP. GhoshS. DastidarD.G. ChakrabartyS. GanguliA. BasuB. PalM. ChatterjiU. BanerjeeS.K. KarmakarP. KumarD. ChakrabartiG. A novel triazole, NMK-T-057, induces autophagic cell death in breast cancer cells by inhibiting γ-secretase–mediated activation of Notch signaling.J. Biol. Chem.2019294176733675010.1074/jbc.RA119.00767130824542
    [Google Scholar]
  132. QinJ.J. YanL. ZhangJ. ZhangW.D. STAT3 as a potential therapeutic target in triple negative breast cancer: A systematic review.J. Exp. Clin. Cancer Res.201938119510.1186/s13046‑019‑1206‑z31088482
    [Google Scholar]
  133. LongL. FeiX. ChenL. YaoL. LeiX. MohammedS. Arias-RomeroL.E. Ben HammoudaM. Potential therapeutic targets of the JAK2/STAT3 signaling pathway in triple-negative breast cancer.Front. Oncol.202414138125110.3389/fonc.2024.138125138699644
    [Google Scholar]
  134. ZhuZ. WangH. QianX. XueM. SunA. YinY. TangJ. ZhangJ. Inhibitory impact of cinobufagin in triple-negative breast cancer metastasis: involvements of macrophage reprogramming through upregulated mme and inactivated FAK/STAT3 signaling.Clin. Breast Cancer2024244e244, 257.e110.1016/j.clbc.2024.01.01438378361
    [Google Scholar]
  135. WuS. LuJ. ZhuH. WuF. MoY. XieL. SongC. LiuL. XieX. LiY. linH. TangH. A novel axis of circKIF4A-miR-637-STAT3 promotes brain metastasis in triple-negative breast cancer.Cancer Lett.202458121650810.1016/j.canlet.2023.21650838029538
    [Google Scholar]
  136. YuanZ. ZhenY. ChenS. LiZ. FuL. Small-molecule inhibitor of Fam20C in combination with paclitaxel suppresses tumor growth by LIF-JAK2/STAT3-modulated apoptosis in triple-negative breast cancer.J. Taiwan Inst. Chem. Eng.202314310467310.1016/j.jtice.2023.104673
    [Google Scholar]
  137. EffatH. AbosharafH. A. RadwanA. M. Combined effects of naringin and doxorubicin on the JAK/STAT signaling pathway reduce the development and spread of breast cancer cells.Sci Rep2024141282410.1038/s41598‑024‑53320‑9
    [Google Scholar]
  138. DeyA. GhoshS. JhaS. HazraS. SrivastavaN. ChakrabortyU. RoyA.G. Recent advancement in breast cancer treatment using CAR T cell therapy: A review.Advances in Cancer Biology - Metastasis20237710009010.1016/j.adcanc.2023.100090
    [Google Scholar]
  139. JazirehiA. R. Molecular analysis of elements of melanoma insensitivity to TCR-engineered adoptive cell therapy.Int J Mol Sci202122211172610.3390/ijms222111726
    [Google Scholar]
  140. YangP. YuF. YaoZ. DingX. XuH. ZhangJ. CD24 is a novel target of chimeric antigen receptor T cells for the treatment of triple negative breast cancer.Cancer Immunol. Immunother.202372103191320210.1007/s00262‑023‑03491‑737418008
    [Google Scholar]
  141. FatemehN. MehrasaK. Seyed Mohamad JavadM. CAR-T cell therapy in triple-negative breast cancer: Hunting the invisible devil.Front Immunol.2023131018786
    [Google Scholar]
  142. LiuY. HaoY. LvX. ZhangY. ChenJ. TianJ. MaX. ZhouY. FengL. A tetramethylpyrazine releasing hydrogel can potentiate CAR-T cell therapy against triple negative breast cancer by reprogramming tumor vasculatures.Fundam. Res.202310.1016/j.fmre.2023.05.016
    [Google Scholar]
  143. ZhangX. GuoH. ChenJ. XuC. WangL. KeY. GaoY. ZhangB. ZhuJ. Highly proliferative and hypodifferentiated CAR-T cells targeting B7–H3 enhance antitumor activity against ovarian and triple-negative breast cancers.Cancer Lett.202357221635510.1016/j.canlet.2023.21635537597651
    [Google Scholar]
  144. SomboonpatarakunC. PhanthapholN. SuwanchiwasiriK. RamwarungkuraB. YutiP. PoungvarinN. ThuwajitP. JunkingM. YenchitsomanusP. Cytotoxicity of fourth-generation anti-Trop2 CAR-T cells against breast cancer.Int. Immunopharmacol.202412911163110.1016/j.intimp.2024.11163138359664
    [Google Scholar]
  145. YangR. LiY. WangH. QinT. YinX. MaX. Therapeutic progress and challenges for triple negative breast cancer: targeted therapy and immunotherapy.Molecular Biomedicine202231810.1186/s43556‑022‑00071‑635243562
    [Google Scholar]
  146. ZhangJ. ZhangZ. HuangZ. LiM. YangF. WuZ. GuoQ. MeiX. LuB. WangC. WangZ. JiL. Isotoosendanin exerts inhibition on triple-negative breast cancer through abrogating TGF-β-induced epithelial–mesenchymal transition via directly targeting TGFβR1.Acta Pharm. Sin. B20231372990300710.1016/j.apsb.2023.05.00637521871
    [Google Scholar]
  147. YangM. QinC. TaoL. ChengG. LiJ. LvF. YangN. XingZ. ChuX. HanX. HuoM. YinL. Synchronous targeted delivery of TGF-β siRNA to stromal and tumor cells elicits robust antitumor immunity against triple-negative breast cancer by comprehensively remodeling the tumor microenvironment.Biomaterials202330112225310.1016/j.biomaterials.2023.12225337536040
    [Google Scholar]
  148. WebbB.M. BrysonB.L. Williams-MedinaE. BobbittJ.R. SeachristD.D. AnstineL.J. KeriR.A. TGF-β/activin signaling promotes CDK7 inhibitor resistance in triple-negative breast cancer cells through upregulation of multidrug transporters.J. Biol. Chem.2021297410116210.1016/j.jbc.2021.10116234481843
    [Google Scholar]
  149. Ensenyat-MendezM. Solivellas-PierasM. Llinàs-AriasP. Íñiguez-MuñozS. BakerJ.L. MarzeseD.M. DiNomeM.L. Epigenetic profiles of triple-negative breast cancers of african american and white females.JAMA Netw. Open2023610e2335821e233582110.1001/jamanetworkopen.2023.3582137796506
    [Google Scholar]
  150. ZolotaV. TzelepiV. PiperigkouZ. KoureaH. PapakonstantinouE. ArgentouM.I. KaramanosN.K. Epigenetic alterations in triple-negative breast cancer : The critical role of extracellular matrix.Cancers202113471310.3390/cancers1304071333572395
    [Google Scholar]
  151. WangX. XuJ. SunY. CaoS. ZengH. JinN. ShouM. TangS. ChenY. HuangM. Hedgehog pathway orchestrates the interplay of histone modifications and tailors combination epigenetic therapies in breast cancer.Acta Pharm. Sin. B20231362601261210.1016/j.apsb.2023.03.00937425067
    [Google Scholar]
  152. PangY. ShiR. ChanL. LuY. ZhuD. LiuT. YanM. WangY. WangW. The combination of the HDAC1 inhibitor SAHA and doxorubicin has synergic efficacy in triple negative breast cancer in vivo.Pharmacol. Res.202319610692610.1016/j.phrs.2023.10692637716547
    [Google Scholar]
  153. LiuR. WangR. ZhaoM. LiuY. ZhuX. WuX. DuS. GuZ. DuJ. Ultra-small radiosensitizers deliver epigenetic drugs to induce pyroptosis and boost triple-negative breast cancer radiotherapy.Nano Today20235210199710.1016/j.nantod.2023.101997
    [Google Scholar]
  154. DuR. HuangC. LiuK. LiX. DongZ. Targeting AURKA in Cancer: molecular mechanisms and opportunities for Cancer therapy.Mol Cancer20212011510.1186/s12943‑020‑01305‑3
    [Google Scholar]
  155. ZhengD. LiJ. YanH. ZhangG. LiW. ChuE. WeiN. Emerging roles of Aurora-A kinase in cancer therapy resistance.Acta Pharm. Sin. B20231372826284310.1016/j.apsb.2023.03.01337521867
    [Google Scholar]
  156. ZhangB. ZhuC. ChanA.S.C. LuG. Discovery of a first-in-class Aurora A covalent inhibitor for the treatment of triple negative breast cancer.Eur. J. Med. Chem.202325611545710.1016/j.ejmech.2023.11545737207533
    [Google Scholar]
  157. LiC. LiaoJ. WangX. ChenF.X. GuoX. ChenX. Combined aurora kinase A and CHK1 inhibition enhances radiosensitivity of triple-negative breast cancer through induction of apoptosis and mitotic catastrophe associated with excessive DNA damage.Int. J. Radiat. Oncol. Biol. Phys.202311751241125410.1016/j.ijrobp.2023.06.02237393021
    [Google Scholar]
  158. MahajanA. SharmaN. UlheA. PatilR. HegdeM. MaliA. From dietary lignans to cancer therapy: Integrative systems analysis of enterolactone’s molecular targets and signaling pathways in combatting cancer stem cells in triple-negative breast cancer.Food Biosci.20245810373210.1016/j.fbio.2024.103732
    [Google Scholar]
  159. ChenM. ZhangM. LuX. LiY. LuC. Diselenium-linked dimeric prodrug nanomedicine breaking the intracellular redox balance for triple-negative breast cancer targeted therapy.Eur. J. Pharm. Biopharm.2023193162710.1016/j.ejpb.2023.10.01437865134
    [Google Scholar]
  160. DaiY. LengD. GuoZ. WangJ. GuY. PengY. ZhuL. ZhaoQ. NIR-II excitation self-assembly nanomedicine for targeted NIR-IIa fluorescence imaging-guided cuproptosis-promoted synergistic therapy against triple-negative breast cancer.Chem. Eng. J.202447914770410.1016/j.cej.2023.147704
    [Google Scholar]
  161. SheikhA. AbourehabM.A.S. TulbahA.S. KesharwaniP. Aptamer-grafted, cell membrane-coated dendrimer loaded with doxorubicin as a targeted nanosystem against epithelial cellular adhesion molecule (EpCAM) for triple negative breast cancer therapy.J. Drug Deliv. Sci. Technol.20238610474510.1016/j.jddst.2023.104745
    [Google Scholar]
  162. ChoudanteP.C. MamillaJ. KongariL. Díaz-GarcíaD. PrasharS. Gómez-RuizS. MisraS. Functionalized tin-loaded mesoporous silica nanoparticles for targeted therapy of triple-negative breast cancer: Evaluation of cytogenetic toxicity.J. Drug Deliv. Sci. Technol.20249410550210.1016/j.jddst.2024.105502
    [Google Scholar]
  163. KesharwaniP. SheikhA. AbourehabM.A.S. SalveR. GajbhiyeV. A combinatorial delivery of survivin targeted siRNA using cancer selective nanoparticles for triple negative breast cancer therapy.J. Drug Deliv. Sci. Technol.20238010416410.1016/j.jddst.2023.104164
    [Google Scholar]
  164. WangX. YuJ. LiuX. LuoD. LiY. SongL. JiangX. YinX. WangY. ChaiL. LuoT. JingJ. ShiH. PSMG2-controlled proteasome-autophagy balance mediates the tolerance for MEK-targeted therapy in triple-negative breast cancer.Cell Rep. Med.20223910074110.1016/j.xcrm.2022.10074136099919
    [Google Scholar]
  165. SchipillitiF.M. DrittoneD. MazzucaF. La ForgiaD. GuvenD.C. RizzoA. Datopotamab deruxtecan: A novel antibody drug conjugate for triple-negative breast cancer.Heliyon2024107e2838510.1016/j.heliyon.2024.e2838538560142
    [Google Scholar]
  166. YuX. LiY. KongF. XuQ. METTL3 regulates FAM83D m6A modification to accelerate tumorigenesis of triple-negative breast cancer via the Wnt/β-catenin pathway.Toxicol. In vitro 20249510574610.1016/j.tiv.2023.10574638043628
    [Google Scholar]
  167. GerosaR. De SanctisR. JacobsF. BenvenutiC. GaudioM. SaltalamacchiaG. TorrisiR. MasciG. MiggianoC. AgustoniF. PedrazzoliP. SantoroA. ZambelliA. Cyclin-dependent kinase 2 (CDK2) inhibitors and others novel CDK inhibitors (CDKi) in breast cancer: Clinical trials, current impact, and future directions.Crit. Rev. Oncol. Hematol.202419610432410.1016/j.critrevonc.2024.10432438462150
    [Google Scholar]
  168. LuL. NiuZ. ChaoZ. FuC. ChenK. ShiY. Exploring the therapeutic potential of ADC combination for triple-negative breast cancer.Cell. Mol. Life Sci.2023801235010.1007/s00018‑023‑04946‑x37930428
    [Google Scholar]
  169. SassoJ.M. TenchovR. BirdR. IyerK.A. RalhanK. RodriguezY. ZhouQ.A. The evolving landscape of antibody–drug conjugates: In depth analysis of recent research progress.Bioconjug. Chem.202334111951200010.1021/acs.bioconjchem.3c0037437821099
    [Google Scholar]
  170. FuZ. LiS. HanS. ShiC. ZhangY. Antibody drug conjugate: the "biological missile" for targeted cancer therapy.Signal Transduct Target Ther2022719310.1038/s41392‑022‑00947‑7
    [Google Scholar]
  171. DriA. ArpinoG. BianchiniG. CuriglianoG. DanesiR. De LaurentiisM. Del MastroL. FabiA. GeneraliD. GennariA. GuarneriV. SantiniD. SimonciniE. ZamagniC. PuglisiF. Breaking barriers in triple negative breast cancer (TNBC) : Unleashing the power of antibody-drug conjugates (ADCs).Cancer Treat. Rev.202412310267210.1016/j.ctrv.2023.10267238118302
    [Google Scholar]
  172. Desroys du RoureP. LajoieL. MallavialleA. AlcarazL.B. MansouriH. FenouL. GaramboisV. RubioL. DavidT. CoenonL. Boissière-MichotF. ChateauM.C. NgoG. JarlierM. VillalbaM. MartineauP. Laurent-MathaV. RogerP. GuiuS. ChardèsT. GrosL. Liaudet-CoopmanE. A novel Fc-engineered cathepsin D-targeting antibody enhances ADCC, triggers tumor-infiltrating NK cell recruitment, and improves treatment with paclitaxel and enzalutamide in triple-negative breast cancer.J. Immunother. Cancer2024121e00713510.1136/jitc‑2023‑00713538290768
    [Google Scholar]
  173. PietenpolJ.A. LehmannB. BauerB. ChenX. Markers of Triple-negative breast cancer and uses thereof.U.S. Patent 117881472023
  174. TolaneyS DudaD.G. Triple-negative breast cancer treatment methods.WO2017184597A12017
  175. XinjunL. PhillipK. KirklandK. TaniL. SinghS. Methods for predicting response of triple-negative breast cancer to therapy.U.S. Patent 10697967B22020
  176. AndreaM StevermannL WeinschenkT SchoorO FritscheJ SinghH. AU Novel peptides and combination of peptides for use in immunotherapy against various tumors.WO2016156202A12020
  177. CarltonD.D. Targeting PAX2 for the treatment of breast cancer.U.S. Patent 80805342011
  178. GoldenbergD.M. ThomasM.C. Synergistic effects of anti-trop-2 antibody drug conjugate in triple-negative breast cancer when used with microtubule inhibitors or PARP Inhibitors.US Patent 11439620B22022
  179. ShuichanX. KristenM.H. HeatherR. RamaK.N. Treatment of cancer with TOR kinase inhibitors.U.S Patent 2023/0338370A12023
  180. SwissG.F. CrowneJ. MarkovicS. NewalaW.K. Methods of treating triple-negative breast cancer using compositions of antibodies and carrier proteins.U.S Patent 11590098B22023
  181. SwissG.F. CrowneJ. MarkovicS. NewalaW.K. Methods of treating triple-negative breast cancer using compositions of antibodies and carrier proteins.U.S Patent 11872205B22024
  182. GlimcherL.H. ChenX. Modulation of breast cancer growth by modulation of X box binding protein 1 (XBP1) activity.U.S. Patent 10655130B22020
/content/journals/cpb/10.2174/0113892010303244240718075729
Loading
/content/journals/cpb/10.2174/0113892010303244240718075729
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test