Skip to content
2000
Volume 26, Issue 3
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Background

Induction of immunogenic cell death (ICD) in tumors can enhance antitumor immunity and modulate immunosuppression in the tumor microenvironment (TME).

Objective

In the current study, we investigated the effect of silibinin, a natural compound with anticancer activity, and its polymer-based nanoformulations on the induction of apoptosis and ICD in cancer cells.

Methods

Free and nanoparticulate silibinin were evaluated for their growth-inhibitory effects using an MTT assay. Annexin V/PI staining was used to analyze apoptosis. Calreticulin (CRT) expression was measured by flow cytometry. Western blotting was conducted to examine the levels of elf2α, which plays a role in the ICD pathway. The HSP90 and ATP levels were determined using specific detection kits.

Results

Compared to the free drug, silibinin-loaded nanocarriers significantly increased the induction of apoptosis and ICD in B16F10 cells. ICD induction was characterized by significantly increased levels of ICD biomarkers, including CRT, HSP90, and ATP. We also observed an increased expression of p-elf-2α/ elf-2α in B16F10 cells treated with silibinin-loaded micelles compared to cells that received free silibinin.

Conclusion

Our findings showed that the encapsulation of silibinin in polymeric nanocarriers can potentiate the effects of this drug on the induction of apoptosis and ICD in B16F10 melanoma cells.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010280336240227062954
2024-03-12
2025-04-13
Loading full text...

Full text loading...

References

  1. AhmedA. TaitS.W.G. Targeting immunogenic cell death in cancer.Mol. Oncol.202014122994300610.1002/1878‑0261.1285133179413
    [Google Scholar]
  2. TroitskayaO.S. NovakD.D. RichterV.A. KovalO.A. Immunogenic cell death in cancer therapy.Acta Nat.2022141405335441043
    [Google Scholar]
  3. Immunogenic cell stress and death in the treatment of cancer. Pan, H.; Liu, P.; Zhao, L.; Pan, Y.; Mao, M.; Kroemer, G., Eds.; Seminars in Cell & Developmental BiologyElsevier2024
    [Google Scholar]
  4. MartinJ.D. CabralH. StylianopoulosT. JainR.K. Improving cancer immunotherapy using nanomedicines: Progress, opportunities and challenges.Nat. Rev. Clin. Oncol.202017425126610.1038/s41571‑019‑0308‑z32034288
    [Google Scholar]
  5. GolbashirzadehM. HeidariH.R. KhosroushahiA.Y. Molecular mechanisms of reactive oxygen species in regulated cell deaths: Impact of ferroptosis in cancer therapy.Gene Rep.20222710161410.1016/j.genrep.2022.101614
    [Google Scholar]
  6. RuanH. LeibowitzB.J. ZhangL. YuJ. Immunogenic cell death in colon cancer prevention and therapy.Mol. Carcinog.202059778379310.1002/mc.2318332215970
    [Google Scholar]
  7. ZhangS. WangJ. KongZ. SunX. HeZ. SunB. LuoC. SunJ. Emerging photodynamic nanotherapeutics for inducing immunogenic cell death and potentiating cancer immunotherapy.Biomaterials202228212143310.1016/j.biomaterials.2022.12143335202933
    [Google Scholar]
  8. ElhassannyA. EscobedoR. LadinD. BurnsC. Van DrossR. Damage-associated molecular pattern (DAMP) activation in melanoma: Investigation of the immunogenic activity of 15-deoxy, Δ12,14 prostamide J2.Oncotarget202011524788480210.18632/oncotarget.2785633447347
    [Google Scholar]
  9. KielbikM. Szulc-KielbikI. KlinkM. Calreticulin—multifunctional chaperone in immunogenic cell death: Potential significance as a prognostic biomarker in ovarian cancer patients.Cells202110113010.3390/cells1001013033440842
    [Google Scholar]
  10. ZhangM. XiaoJ. LiuJ. BaiX. ZengX. ZhangZ. LiuF. Calreticulin as a marker and therapeutic target for cancer.Clin. Exp. Med.20222351393140410.1007/s10238‑022‑00937‑736335525
    [Google Scholar]
  11. LambertiM.J. NigroA. CasolaroV. VittarR.N.B. Dal ColJ. Damage-associated molecular patterns modulation by microRNA: relevance on immunogenic cell death and cancer treatment outcome.Cancers20211311256610.3390/cancers1311256634073766
    [Google Scholar]
  12. MuraoA. AzizM. WangH. BrennerM. WangP. Release mechanisms of major DAMPs.Apoptosis2021263-415216210.1007/s10495‑021‑01663‑333713214
    [Google Scholar]
  13. SansoneC. BrunoA. PiscitelliC. BaciD. FontanaA. BrunetC. NoonanD.M. AlbiniA. Natural compounds of marine origin as inducers of immunogenic cell death (ICD): Potential role for cancer interception and therapy.Cells202110223110.3390/cells1002023133504012
    [Google Scholar]
  14. RadognaF. DicatoM. DiederichM. Natural modulators of the hallmarks of immunogenic cell death.Biochem. Pharmacol.2019162557010.1016/j.bcp.2018.12.01630615863
    [Google Scholar]
  15. OliyapourY. DabiriS. MolaviO. HejaziM.S. DavaranS. JafariS. MontazersahebS. Chrysin and chrysin-loaded nanocarriers induced immunogenic cell death on B16 melanoma cells.Med. Oncol.2023401027810.1007/s12032‑023‑02145‑z37624439
    [Google Scholar]
  16. JafariS. HeydarianS. LaiR. AghdamM.E. MolaviO. Silibinin induces immunogenic cell death in cancer cells and enhances the induced immunogenicity by chemotherapy.Bioimpacts2023131516110.34172/bi.2022.2369836816998
    [Google Scholar]
  17. AmiriM. MolaviO. SabetkamS. JafariS. MontazersahebS. Stimulators of immunogenic cell death for cancer therapy: Focusing on natural compounds.Cancer Cell Int.202323120010.1186/s12935‑023‑03058‑737705051
    [Google Scholar]
  18. SuY. WuT. YuX.Y. HuoW.B. WangS.H. HuanC. LiuY.M. LiuJ.M. CuiM.N. LiX.H. YuJ.H. Inhibitory effect of tanshinone IIA, resveratrol and silibinin on enterovirus 68 production through inhibiting ATM and DNA-PK pathway.Phytomedicine20229915397710.1016/j.phymed.2022.15397735305353
    [Google Scholar]
  19. HaddadY VallerandD BraultA HaddadPS Antioxidant and hepatoprotective effects of silibinin in a rat model of nonalcoholic steatohepatitis.Evid Based Complement Alternat Med.20112011nep16410.1093/ecam/nep164
    [Google Scholar]
  20. JafariS. BakhshaeiA. EskandaniM. MolaviO. Silibinin-loaded nanostructured lipid carriers for growth inhibition of cisplatin-resistant ovarian cancer cells.Assay Drug Dev. Technol.202220833934810.1089/adt.2022.06036383148
    [Google Scholar]
  21. LiuP. WangC. ChenW. KangY. LiuW. QiuZ. HayashiT. MizunoK. HattoriS. FujisakiH. IkejimaT. Inhibition of GluN2B pathway is involved in the neuroprotective effect of silibinin on streptozotocin-induced Alzheimer’s disease models.Phytomedicine202310915459410.1016/j.phymed.2022.15459436610115
    [Google Scholar]
  22. WangJ. ZhangL. CaoH. ShiX. ZhangX. GaoZ. IkedaK. YanT. JiaY. XuF. Silibinin improves L-cell mass and function through an estrogen receptor-mediated antioxidative mechanism.Phytomedicine20229915402210.1016/j.phymed.2022.15402235255283
    [Google Scholar]
  23. Mashhadi Akbar BoojarM. BoojarM.A.M. GolmohammadS. Overview of silibinin anti-tumor effects.J. Herb. Med.20202310037510.1016/j.hermed.2020.100375
    [Google Scholar]
  24. LinS.R. ChangC.H. HsuC.F. TsaiM.J. ChengH. LeongM.K. SungP.J. ChenJ.C. WengC.F. Natural compounds as potential adjuvants to cancer therapy: Preclinical evidence.Br. J. Pharmacol.202017761409142310.1111/bph.1481631368509
    [Google Scholar]
  25. ZhouL LiuJ MengW ZhangH ChenB valuation of silibinin-loaded microbubbles combined with ultrasound in ovarian cancer cells: Cytotoxicity and mechanisms.Ant-Cancer. Agent. Med. Chemistr.202222713201327
    [Google Scholar]
  26. RadH.A. AsiaeeF. JafariS. ShayanfarA. LavasanifarA. MolaviO. Poly(ethylene glycol)-poly(ε-caprolactone)-based micelles for solubilization and tumor-targeted delivery of silibinin.Bioimpacts2019102879510.34172/bi.2020.1132363152
    [Google Scholar]
  27. BanstolaA. PoudelK. KimJ.O. JeongJ.H. YookS. Recent progress in stimuli-responsive nanosystems for inducing immunogenic cell death.J. Control. Release202133750552010.1016/j.jconrel.2021.07.03834314800
    [Google Scholar]
  28. Firouzi AmandiA. JokarE. EslamiM. DadashpourM. RezaieM. YazdaniY. NejatiB. Enhanced anti-cancer effect of artemisinin- and curcumin-loaded niosomal nanoparticles against human colon cancer cells.Med. Oncol.202340617010.1007/s12032‑023‑02032‑737156929
    [Google Scholar]
  29. AmirsaadatS. Jafari-GharabaghlouD. DadashpourM. ZarghamiN. Potential anti-proliferative effect of nano-formulated curcumin through modulating micro RNA-132, Cyclin D1, and hTERT genes expression in breast cancer cell lines.J. Cluster Sci.20233452537254610.1007/s10876‑023‑02404‑z
    [Google Scholar]
  30. GharabaghlouJ.D. DadashpourM. khanghahO.J. JavanS.E. ZarghamiN. Potentiation of folate-functionalized PLGA-PEG nanoparticles loaded with metformin for the treatment of breast Cancer: Possible clinical application.Mol. Biol. Rep.20235043023303310.1007/s11033‑022‑08171‑w36662452
    [Google Scholar]
  31. RasafarN. BarzegarA. AghdamM.E. Structure-based designing efficient peptides based on p53 binding site residues to disrupt p53-MDM2/X interaction.Sci. Rep.20201011144910.1038/s41598‑020‑67510‑832651397
    [Google Scholar]
  32. GhorbanpourM. SoltaniB. MotaA. SardroodiJ.J. AghdamM.E. ShayanfarA. MolaviO. RezaeiM.R. NahariE.M. ZieglerC.J. Copper (II) complexes with N, S donor pyrazole-based ligands as anticancer agents.Biometals20223551095111110.1007/s10534‑022‑00426‑036001216
    [Google Scholar]
  33. MahmudA. XiongX.B. LavasanifarA. Novel self-associating poly (ethylene oxide)-b lock-poly (ε-caprolactone) block copolymers with functional side groups on the polyester block for drug delivery.Macromolecules200639269419942810.1021/ma0613786
    [Google Scholar]
  34. MehdizadehA. SomiM.H. DarabiM. FarajniaS. AkbarzadehA. MontazersahebS. YousefiM. BonyadiM. Liposome-mediated RNA interference delivery against Erk1 and Erk2 does not equally promote chemosensitivity in human hepatocellular carcinoma cell line HepG2.Artif. Cells Nanomed. Biotechnol.20174581612161910.1080/21691401.2016.126911728058860
    [Google Scholar]
  35. MontazersahebS. AvciÇ.B. BagcaB.G. AyN.P.O. TarhrizV. NielsenP.E. CharoudehH.N. HejaziM.S. Targeting TdT gene expression in Molt-4 cells by PNA-octaarginine conjugates.Int. J. Biol. Macromol.20201644583459010.1016/j.ijbiomac.2020.09.08132941907
    [Google Scholar]
  36. MontazersahebS. KazemiM. NabatE. NielsenP.E. HejaziM.S. Downregulation of TdT expression through splicing modulation by antisense peptide nucleic acid (PNA).Curr. Pharm. Biotechnol.201920216817810.2174/138920102066619020620265030727883
    [Google Scholar]
  37. MontazersahebS. KabiriF. SalianiN. NourazarianA. AvciÇ.B. RahbarghaziR. CharoudehN.H. Prolonged incubation with Metformin decreased angiogenic potential in human bone marrow mesenchymal stem cells.Biomed. Pharmacother.20181081328133710.1016/j.biopha.2018.09.13530372835
    [Google Scholar]
  38. FathiE. VandghanooniS. MontazersahebS. FarahzadiR. Mesenchymal stem cells promote caspase-3 expression of SH-SY5Y neuroblastoma cells via reducing telomerase activity and telomere length.Iran. J. Basic Med. Sci.202124111583158935317118
    [Google Scholar]
  39. FarjamiA. Siahi-ShadbadM. AkbarzadehlalehP. RoshanzamirK. MolaviO. Evaluation of the physicochemical and biological stability of cetuximab under various stress condition.J. Pharm. Pharm. Sci.201922117119010.18433/jpps3042731112673
    [Google Scholar]
  40. RahimiM.M. BagheriA. BagheriY. FathiE. BagheriS. NiaA.V. JafariS. MontazersahebS. Renoprotective effects of prazosin on ischemia-reperfusion injury in rats.Hum. Exp. Toxicol.20214081263127310.1177/096032712199322433559503
    [Google Scholar]
  41. ValipourB. AbedelahiA. NaderaliE. VelaeiK. MovassaghpourA. TalebiM. MontazersahebS. KarimipourM. DarabiM. ChavoshiH. CharoudehN.H. Cord blood stem cell derived CD16+ NK cells eradicated acute lymphoblastic leukemia cells using with anti-CD47 antibody.Life Sci.202024211722310.1016/j.lfs.2019.11722331881222
    [Google Scholar]
  42. BagheriY. BaratiA. NouraeiS. NaminiJ.N. BakhshiM. FathiE. MontazersahebS. Comparative study of gavage and intraperitoneal administration of gamma-oryzanol in alleviation/attenuation in a rat animal model of renal ischemia/reperfusion-induced injury.Iran. J. Basic Med. Sci.202124217518333953856
    [Google Scholar]
  43. GhaderiS. AlidadianiN. SoleimaniRadJ. HeidariH.R. DilaverN. HeimC. GleixnerR.M. BaradaranB. WeyandM. DJ1 and microRNA‐214 act synergistically to rescue myoblast cells after ischemia/reperfusion injury.J. Cell. Biochem.201811997192720310.1002/jcb.2684229806880
    [Google Scholar]
  44. BagheriY. EteghadS.S. FathiE. MahmoudiJ. AbdollahpourA. NaminiN.J. MalekinejadZ. MokhtariK. BaratiA. MontazersahebS. Hepatoprotective effects of sericin on aging-induced liver damage in mice.Naunyn Schmiedebergs Arch. Pharmacol.2021394122441245010.1007/s00210‑021‑02160‑934605941
    [Google Scholar]
  45. MonticoB. NigroA. CasolaroV. Dal ColJ. Immunogenic apoptosis as a novel tool for anticancer vaccine development.Int. J. Mol. Sci.201819259410.3390/ijms1902059429462947
    [Google Scholar]
  46. FengX. LinT. ChenD. LiZ. YangQ. TianH. XiaoY. LinM. LiangM. GuoW. ZhaoP. GuoZ. Mitochondria-associated ER stress evokes immunogenic cell death through the ROS-PERK-eIF2α pathway under PTT/CDT combined therapy.Acta Biomater.202316021122410.1016/j.actbio.2023.02.01136792045
    [Google Scholar]
  47. SethuramanS.N. SinghM.P. PatilG. LiS. FieringS. HoopesP.J. GuhaC. MalayerJ. RanjanA. Novel calreticulin-nanoparticle in combination with focused ultrasound induces immunogenic cell death in melanoma to enhance antitumor immunity.Theranostics20201083397341210.7150/thno.4224332206098
    [Google Scholar]
  48. eIF2α phosphorylation as a biomarker of immunogenic cell death. Kepp, O.; Semeraro, M.; Pedro, B.S.J.M.; Bloy, N.; Buqué, A.; Huang, X., Eds.; Seminars in cancer biologyElsevier2015
    [Google Scholar]
  49. CaoY. LongJ. LiuL. HeT. JiangL. ZhaoC. LiZ. A review of endoplasmic reticulum (ER) stress and nanoparticle (NP) exposure.Life Sci.2017186334210.1016/j.lfs.2017.08.00328782531
    [Google Scholar]
  50. RanaS.V.S. Endoplasmic reticulum stress induced by toxic elements—A review of recent developments.Biol. Trace Elem. Res.20201961101910.1007/s12011‑019‑01903‑331686395
    [Google Scholar]
  51. BezuL. HumeauJ. LeducM. PanH. KroemerG. KeppO. Assessment of eIF2α phosphorylation during immunogenic cell death.Methods Cell Biol.2022172839810.1016/bs.mcb.2022.01.00336064228
    [Google Scholar]
  52. MolaviO. TorkzabanF. JafariS. AsnaashariS. AsgharianP. Chemical compositions and anti-proliferative activity of the aerial parts and rhizomes of squirting cucumber, Cucurbitaceae.Jundishapur J. Nat. Pharm. Prod.201915110.5812/jjnpp.82990
    [Google Scholar]
  53. DiederichM. Natural compound inducers of immunogenic cell death.Arch. Pharm. Res.201942762964510.1007/s12272‑019‑01150‑z30955159
    [Google Scholar]
  54. MollazadehS. BabaeiS. OstadhassanM. RobatiY.R. Concentration-dependent assembly of Bovine serum albumin molecules in the doxorubicin loading process: Molecular dynamics simulation.Colloids Surf. A Physicochem. Eng. Asp.202264012842910.1016/j.colsurfa.2022.128429
    [Google Scholar]
  55. JantanI. WahabA.S.M. HusainK. ArshadL. HaqueM.A. FauziM.N. NafiahM.A. DasS. Immunosuppressive effects of Annona muricata L. leaf extract on cellular and humoral immune responses in male wistar rats.Curr. Pharm. Biotechnol.202324111465147710.2174/138920102466622122111302036545731
    [Google Scholar]
  56. ChenW. WangS. WuY. ShenX. XuS. GuoZ. ZhangR. XingD. The physiologic activity and mechanism of quercetin-like natural plant flavonoids.Curr. Pharm. Biotechnol.202021865465810.2174/138920102166620021209313032048963
    [Google Scholar]
  57. UpadhyayP.K. SinghS. VishwakarmaV.K. Natural polyphenols in cancer management: Promising role, mechanisms, and chemistry.Curr. Pharm. Biotechnol.202437608669
    [Google Scholar]
  58. MolaviO. NarimaniF. AsiaeeF. SharifiS. TarhrizV. ShayanfarA. HejaziM. LaiR. Silibinin sensitizes chemo-resistant breast cancer cells to chemotherapy.Pharm. Biol.201755172973910.1080/13880209.2016.127097228027688
    [Google Scholar]
  59. SinghM. KadhimM.M. Turki JalilA. OudahS.K. AminovZ. AlsaikhanF. JawharZ.H. CoronelR.A.A. FarhoodB. A systematic review of the protective effects of silymarin/silibinin against doxorubicin-induced cardiotoxicity.Cancer Cell Int.20232318810.1186/s12935‑023‑02936‑437165384
    [Google Scholar]
  60. HorowitzZ.B. Silibinin: A toxicologist’s herbal medicine?Clin. Toxicol.202260111194119710.1080/15563650.2022.212881536222816
    [Google Scholar]
  61. BiniendaA ZiolkowskaS PluciennikE The anticancer properties of silibinin: Its molecular mechanism and therapeutic effect in breast cancer.Anticancer Agents Med Chem202020151787179610.2174/1871520620666191220142741
    [Google Scholar]
  62. BernabeuE. GonzalezL. CagelM. GergicE.P. MorettonM.A. ChiappettaD.A. Novel soluplus ® —TPGS mixed micelles for encapsulation of paclitaxel with enhanced in vitro cytotoxicity on breast and ovarian cancer cell lines.Colloids Surf. B Biointerfaces201614040341110.1016/j.colsurfb.2016.01.00326780253
    [Google Scholar]
  63. KazemiM. EmamiJ. HasanzadehF. MinaiyanM. MirianM. LavasanifarA. MokhtariM. In vitro and in vivo evaluation of novel DTX-loaded multifunctional heparin-based polymeric micelles targeting folate receptors and endosomes.Recent Patents Anticancer Drug Discov.202015434135910.2174/157489281566620100612460433023456
    [Google Scholar]
  64. Al-LawatiH. VakiliM.R. LavasanifarA. AhmedS. JamaliF. Delivery and biodistribution of traceable polymeric micellar diclofenac in the rat.J. Pharm. Sci.201910882698270710.1016/j.xphs.2019.03.01630905704
    [Google Scholar]
  65. GhoshB. BiswasS. Polymeric micelles in cancer therapy: State of the art.J. Control. Release202133212714710.1016/j.jconrel.2021.02.01633609621
    [Google Scholar]
  66. SaadatM. JafariS. Zakeri-MilaniP. Shahbazi-MojarradJ. ValizadehH. Stearoylcholine and oleoylcholine: Synthesis, physico-chemical characterization, nanoparticle formation, and toxicity studies.J. Drug Deliv. Sci. Technol.20205910187210.1016/j.jddst.2020.101872
    [Google Scholar]
  67. IyangarM.R. DevarajE. Silibinin triggers the mitochondrial pathway of apoptosis in human Oral squamous carcinoma cells.Asian Pac. J. Cancer Prev.20202171877188210.31557/APJCP.2020.21.7.187732711410
    [Google Scholar]
  68. GuoH. WangY. LiuD. Silibinin ameliorats H2O2-induced cell apoptosis and oxidative stress response by activating Nrf2 signaling in trophoblast cells.Acta Histochem.2020122815162010.1016/j.acthis.2020.15162033068964
    [Google Scholar]
  69. JafariS. LavasanifarA. HejaziM.S. Maleki-DizajiN. MesgariM. MolaviO. STAT3 inhibitory stattic enhances immunogenic cell death induced by chemotherapy in cancer cells.Daru202028115916910.1007/s40199‑020‑00326‑z31942696
    [Google Scholar]
  70. PittJ.M. KroemerG. ZitvogelL. Immunogenic and non-immunogenic cell death in the tumor microenvironment.Adv Exp Med Biol20171036657910.1007/978‑3‑319‑67577‑0_5
    [Google Scholar]
  71. AsadzadehZ. SafarzadehE. SafaeiS. BaradaranA. MohammadiA. HajiasgharzadehK. DerakhshaniA. ArgentieroA. SilvestrisN. BaradaranB. Current approaches for combination therapy of cancer: The role of immunogenic cell death.Cancers2020124104710.3390/cancers1204104732340275
    [Google Scholar]
  72. ZhaoX. YangK. ZhaoR. JiT. WangX. YangX. ZhangY. ChengK. LiuS. HaoJ. RenH. LeongK.W. NieG. Inducing enhanced immunogenic cell death with nanocarrier-based drug delivery systems for pancreatic cancer therapy.Biomaterials201610218719710.1016/j.biomaterials.2016.06.03227343466
    [Google Scholar]
  73. DevaudC. JohnL.B. WestwoodJ.A. DarcyP.K. KershawM.H. Immune modulation of the tumor microenvironment for enhancing cancer immunotherapy.OncoImmunology201328e2596110.4161/onci.2596124083084
    [Google Scholar]
  74. KroemerG. GalluzziL. KeppO. ZitvogelL. Immunogenic cell death in cancer therapy.Annu. Rev. Immunol.2013311517210.1146/annurev‑immunol‑032712‑10000823157435
    [Google Scholar]
  75. RadognaF. DiederichM. Stress-induced cellular responses in immunogenic cell death: Implications for cancer immunotherapy.Biochem. Pharmacol.2018153122310.1016/j.bcp.2018.02.00629438676
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010280336240227062954
Loading
/content/journals/cpb/10.2174/0113892010280336240227062954
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keyword(s): B16F10; calreticulin (CRT); immunogenic cell death; melanoma; micelles; Silibinin
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test