Skip to content
2000
Volume 26, Issue 3
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Self-emulsifying drug delivery systems (SEDDS) can increase the solubility and bioavailability of poorly soluble drugs. The inability of 35% to 40% of new pharmaceuticals to dissolve in water presents a serious challenge for the pharmaceutical industry. As a result, there must be dosage proportionality, considerable intra- and inter-subject variability, poor solubility, and limited lung bioavailability. As a result, it is critical that drugs intended for oral administration be highly soluble. This can be improved through a variety of means, including salt generation and the facilitation of solid and complicated dispersion. Surfactants, co-surfactants, and cosolvents may occasionally be found in SEDDS or isotropic blends. Lipophilic drugs, whose absorption is limited by their dissolution rate, have been used to demonstrate the effectiveness of various formulations and techniques. These particles can form microemulsions and suitable oil-in-water emulsions with minimal agitation and dilution by the water phase as they pass through the gastrointestinal tract. This study summarises the numerous advances, biopharmaceutical components, variations, production techniques, characterisation approaches, limitations, and opportunities for SEDDS. With this context in mind, this review compiles a current account of biopharmaceutical advancements, such as the application of quality by design (QbD) methodologies to optimise drug formulations in different excipients with controllable ratios, the presence of regulatory roadblocks to progress, and the future consequences of SEDDS, encompassing composition, evaluation, diverse dosage forms, and innovative techniques for converting liquid SEDDS to solid forms.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010296223240612050639
2024-06-20
2025-07-12
Loading full text...

Full text loading...

References

  1. ZhuY. YeJ. ZhangQ. Self-emulsifying drug delivery system improve oral bioavailability: Role of excipients and physico-chemical characterization.Pharm. Nanotechnol.20208429030110.2174/221173850866620081110424032781978
    [Google Scholar]
  2. TranP. ParkJ.S. Recent trends of self-emulsifying drug delivery system for enhancing the oral bioavailability of poorly water-soluble drugs.J. Pharm. Investig.202151443946310.1007/s40005‑021‑00516‑0
    [Google Scholar]
  3. UjhelyiZ. VecsernyésM. FehérP. KósaD. AranyP. NemesD. SinkaD. VasváriG. FenyvesiF. VáradiJ. BácskayI. Physico-chemical characterization of self-emulsifying drug delivery systems.Drug Discov. Today. Technol.201827818610.1016/j.ddtec.2018.06.00530103867
    [Google Scholar]
  4. PageS. SzepesA. Impact on drug development and drug product processing.Solid state development and processing of pharmaceutical molecules: Salts, cocrystals, and polymorphism. GrussM. 2021Vol. 7932536410.1002/9783527823048.ch6
    [Google Scholar]
  5. MahmoodA. Bernkop-SchnürchA. SEDDS: A game changing approach for the oral administration of hydrophilic macromolecular drugs.Adv. Drug Deliv. Rev.20191429110110.1016/j.addr.2018.07.00129981355
    [Google Scholar]
  6. AmaraS. BourlieuC. HumbertL. RainteauD. CarrièreF. Variations in gastrointestinal lipases, pH and bile acid levels with food intake, age and diseases: Possible impact on oral lipid-based drug delivery systems.Adv. Drug Deliv. Rev.201914231510.1016/j.addr.2019.03.00530926476
    [Google Scholar]
  7. ParkH. HaE.S. KimM.S. Current status of supersaturable self-emulsifying drug delivery systems.Pharmaceutics202012436510.3390/pharmaceutics1204036532316199
    [Google Scholar]
  8. SirviA. KucheK. ChaudhariD. GhadiR. DateT. KatiyarS.S. JainS. Supersaturable self-emulsifying drug delivery system: A strategy for improving the loading and oral bioavailability of quercetin.J. Drug Deliv. Sci. Technol.20227110328910.1016/j.jddst.2022.103289
    [Google Scholar]
  9. CherniakovI. DombA.J. HoffmanA. Self-nano-emulsifying drug delivery systems: An update of the biopharmaceutical aspects.Expert Opin. Drug Deliv.20151271121113310.1517/17425247.2015.99903825556987
    [Google Scholar]
  10. RuizP.S.L. SerafiniM.R. AlvesI.A. NovoaD.M.A. Recent progress in self-emulsifying drug delivery systems: A systematic patent review (2011-2020).Crit. Rev. Ther. Drug Carrier Syst.202239217710.1615/CritRevTherDrugCarrierSyst.202103849035378013
    [Google Scholar]
  11. SalawiA. Self-emulsifying drug delivery systems: a novel approach to deliver drugs.Drug Deliv.20222911811182310.1080/10717544.2022.2083724
    [Google Scholar]
  12. ParkH. HaE.S. KimM.S. Current status of supersaturable selfemulsifying drug delivery systems.Pharmaceutics202012436510.3390/pharmaceutics12040365
    [Google Scholar]
  13. NigadeP.M. PatilS.L. TiwariS.S. Self-emulsifying drug delivery system (SEDDS): A review.Int. J. Pharm. Biol. Sci.201224252
    [Google Scholar]
  14. SoutoE.B. CanoA. Martins-GomesC. CoutinhoT.E. ZielińskaA. SilvaA.M. Microemulsions and nanoemulsions in skin drug delivery.Bioengineering (Basel)20229415810.3390/bioengineering904015835447718
    [Google Scholar]
  15. WadhwaJ. NairA. KumriaR. Self-emulsifying therapeutic system: A potential approach for delivery of lipophilic drugs.Braz. J. Pharm. Sci.201147344746510.1590/S1984‑82502011000300003
    [Google Scholar]
  16. HalderS. IslamA. MuhitM.A. ShillM.C. HaiderS.S. Self-emulsifying drug delivery system of black seed oil with improved hypotriglyceridemic effect and enhanced hepatoprotective function.J. Funct. Foods20217810439110.1016/j.jff.2021.104391
    [Google Scholar]
  17. GershanikT. BenitaS. Positively charged self-emulsifying oil formulation for improving oral bioavailability of progesterone.Pharm. Dev. Technol.19961214715710.3109/108374596090298899552341
    [Google Scholar]
  18. RaniS. RanaR. SaraogiG.K. KumarV. GuptaU. Self-emulsifying oral lipid drug delivery systems: Advances and challenges.AAPS PharmSciTech201920312910.1208/s12249‑019‑1335‑x30815765
    [Google Scholar]
  19. ParthasarathiP. MuditD. PrudhviR. LavanyaD.K. KrishnaL.V. Formulation and evaluation of positively charged self-emulsifying drug delivery system containing ibuprofen.IRJP2011288291
    [Google Scholar]
  20. MatsaridouI. BarmpalexisP. SalisA. NikolakakisI. The influence of surfactant HLB and oil/surfactant ratio on the formation and properties of self-emulsifying pellets and microemulsion reconstitution.AAPS PharmSciTech20121341319133010.1208/s12249‑012‑9855‑723054984
    [Google Scholar]
  21. ReddyM.S. GurramA.K. DeshpandeP.B. KarS.S. NayakU.Y. UdupaN. Role of components in the formation of self-microemulsifying drug delivery systems.Indian J. Pharm. Sci.201577324925710.4103/0250‑474X.15959626180269
    [Google Scholar]
  22. BashaS.P. RaoK.P. VedanthamC. A brief introduction to methods of preparation, applications and characterization of nanoemulsion drug delivery systems.Indian J Res Pharm Biotechnol.201312528
    [Google Scholar]
  23. PatelP. PatelM. PatelK. PatelN. A review on self-micro emulsifying drug delivery systems.Adv Res Pharm Biol.20144590598
    [Google Scholar]
  24. MishraV. NayakP. YadavN. SinghM. TambuwalaM.M. AljabaliA.A.A. Orally administered self-emulsifying drug delivery system in disease management: Advancement and patents.Expert Opin. Drug Deliv.202118331533210.1080/17425247.2021.185607333232184
    [Google Scholar]
  25. TangB. ChengG. GuJ.C. XuC.H. Development of solid self-emulsifying drug delivery systems: Preparation techniques and dosage forms.Drug Discov. Today20081313-1460661210.1016/j.drudis.2008.04.00618598917
    [Google Scholar]
  26. QianC. McClementsD.J. Formation of nanoemulsions stabilized by model food-grade emulsifiers using high-pressure homogenization: Factors affecting particle size.Food Hydrocoll.20112551000100810.1016/j.foodhyd.2010.09.017
    [Google Scholar]
  27. KumarR. Lipid-based nanoparticles for drug-delivery systems.Micro and Nano technologies, nanocarriers for drug delivery.Chapter 8 MohapatraS.S. RanjanS. DasguptaN. MishraR.K. ThomasS. Elsevier201924928410.1016/B978‑0‑12‑814033‑8.00008‑4
    [Google Scholar]
  28. HicksD.C. FreeseH.L. Extrusion and spheronizing equipment.Pharmaceutical pelletization technologyNew YorkMarcel Dekker198971101
    [Google Scholar]
  29. NewtonJ.M. ChapmanS.R. RoweR.C. The influence of process variables on the preparation and properties of spherical granules by the process of extrusion and spheronisation.Int. J. Pharm.1995120110110910.1016/0378‑5173(94)00427‑7
    [Google Scholar]
  30. BashaiwolduA.B. PodczeckF. NewtonJ.M. A study on the effect of drying techniques on the mechanical properties of pellets and compacted pellets.Eur. J. Pharm. Sci.2004212-311912910.1016/j.ejps.2003.09.01314757483
    [Google Scholar]
  31. BerggrenJ. AlderbornG. Drying behaviour of two sets of microcrystalline cellulose pellets.Int. J. Pharm.20012191-211312610.1016/S0378‑5173(01)00636‑611337172
    [Google Scholar]
  32. HaussD.J. FogalS.E. FicorilliJ.V. PriceC.A. RoyT. JayarajA.A. KeirnsJ.J. Lipid-based delivery systems for improving the bioavailability and lymphatic transport of a poorly water-soluble LTB4 inhibitor.J. Pharm. Sci.199887216416910.1021/js970300n9519148
    [Google Scholar]
  33. LavraZ.M.M. Pereira de SantanaD. RéM.I. Solubility and dissolution performances of spray-dried solid dispersion of Efavirenz in Soluplus.Drug Dev. Ind. Pharm.2017431425410.1080/03639045.2016.120559827349377
    [Google Scholar]
  34. TanA. SimovicS. DaveyA.K. RadesT. PrestidgeC.A. Silica-lipid hybrid (SLH) microcapsules: A novel oral delivery system for poorly soluble drugs.J. Control. Release20091341627010.1016/j.jconrel.2008.10.01419013488
    [Google Scholar]
  35. TricklerW.J. NagvekarA.A. DashA.K. A novel nanoparticle formulation for sustained paclitaxel delivery.AAPS PharmSciTech20089248649310.1208/s12249‑008‑9063‑718431660
    [Google Scholar]
  36. GaoP. MorozowichW. Improving the oral absorption of poorly soluble drug using SEDDS and S-SEDDS formulations.Developing solid oral dosage forms theory and practice.2nd ed QiuY. ChenY. ZhangG.G.Z. New YorkAcademic Press2009443449
    [Google Scholar]
  37. LandL.M. LiP. BummerP.M. The influence of water content of triglyceride oils on the solubility of steroids.Pharm. Res.200522578478810.1007/s11095‑005‑2595‑615906174
    [Google Scholar]
  38. HaussD.J. Oral lipid-based formulations.Adv. Drug Deliv. Rev.200759766767610.1016/j.addr.2007.05.00617618704
    [Google Scholar]
  39. BalakrishnanP. LeeB.J. OhD.H. KimJ.O. HongM.J. JeeJ.P. KimJ.A. YooB.K. WooJ.S. YongC.S. ChoiH.G. Enhanced oral bioavailability of dexibuprofen by a novel solid Self-emulsifying drug delivery system (SEDDS).Eur. J. Pharm. Biopharm.200972353954510.1016/j.ejpb.2009.03.00119298857
    [Google Scholar]
  40. CarlertS. PålssonA. HanischG. von CorswantC. NilssonC. LindforsL. LennernäsH. AbrahamssonB. Predicting intestinal precipitation--a case example for a basic BCS class II drug.Pharm. Res.201027102119213010.1007/s11095‑010‑0213‑820717839
    [Google Scholar]
  41. SamimiS. MaghsoudniaN. EftekhariR.B. DorkooshF. Lipid-based nanoparticles for drug delivery systems.Micro and nano technologies, characterization and biology of nanomaterials for drug deliveryElsevier20194776
    [Google Scholar]
  42. FarahN. LaforetJ.P. DenisJ. Self-micro emulsifying drug delivery systems (SMEDDS) for improving dissolution and availability of poorly soluble actives ingredients.BT Gattefosse.1992874147
    [Google Scholar]
  43. ConstantinidesP.P. WelzelG. EllensH. SmithP.L. SturgisS. YivS.H. OwenA.B. Water-in-oil microemulsions containing medium-chain fatty acids/salts: Formulation and intestinal absorption enhancement evaluation.Pharm. Res.199613221021510.1023/A:10160308122728932438
    [Google Scholar]
  44. MohsinK. LongM.A. PoutonC.W. Design of lipid-based formulations for oral administration of poorly water-soluble drugs: Precipitation of drug after dispersion of formulations in aqueous solution.J. Pharm. Sci.200998103582359510.1002/jps.2165919130605
    [Google Scholar]
  45. CuiJ. YuB. ZhaoY. ZhuW. LiH. LouH. ZhaiG. Enhancement of oral absorption of curcumin by self-microemulsifying drug delivery systems.Int. J. Pharm.20093711-214815510.1016/j.ijpharm.2008.12.00919124065
    [Google Scholar]
  46. TroutmanM.D. ThakkerD.R. Novel experimental parameters to quantify the modulation of absorptive and secretory transport of compounds by P-glycoprotein in cell culture models of intestinal epithelium.Pharm. Res.20032081210122410.1023/A:102500113151312948019
    [Google Scholar]
  47. CollettA Tanianis-HughesJ HallifaxD WarhurstG. Predicting P-glycoprotein effects on absorption: correlation of transport in caco-2 with drug pharmacokinetics in wild-type and MDR1A (-/-) mice in vivo.Pharm Res2004215819826
    [Google Scholar]
  48. CharmanS.A. CharmanW.N. RoggeM.C. WilsonT.D. DutkoF.J. PoutonC.W. Self-emulsifying drug delivery systems: Formulation and biopharmaceutic evaluation of an investigational lipophilic compound.Pharm. Res.199291879310.1023/A:10189879289361589415
    [Google Scholar]
  49. Neslihan GursoyR. BenitaS. Self-emulsifying drug delivery systems (SEDDS) for improved oral delivery of lipophilic drugs.Biomed. Pharmacother.200458317318210.1016/j.biopha.2004.02.00115082340
    [Google Scholar]
  50. ElnaggarY.S.R. El-MassikM.A. AbdallahO.Y. Self-nanoemulsifying drug delivery systems of tamoxifen citrate: Design and optimization.Int. J. Pharm.20093801-213314110.1016/j.ijpharm.2009.07.01519635537
    [Google Scholar]
  51. BetageriG.V. Self-emulsifying drug delivery systems and their marketed products: A review.Asian J. Pharm.2019137384
    [Google Scholar]
  52. JvusC. KothuriN. SinghS. VermaS. ShafiH. ReddyD.V.S. KedarA. RanaR. MishraK. SharmaD. ChourasiaM.K. A Quality by design approach for developing snedds loaded with vemurafenib for enhanced oral bioavailability.AAPS PharmSciTech20242511410.1208/s12249‑023‑02725‑238191830
    [Google Scholar]
  53. SandhyaP. PoornimaP. BhikshapathiD.V.R.N. Self-nanoemulsifying drug delivery system of sorafenib tosylate: Development and in vivo studies.Pharm. Nanotechnol.20208647148410.2174/221173850866620101615140633069205
    [Google Scholar]
  54. BadadheS. DalaviN. Review on self-nano emulsifying drug delivery system.Sys Rev Pharm.2022136368
    [Google Scholar]
  55. ViswanathanP. MuralidaranY. RagavanG. Challenges in oral drug delivery: A nano-based strategy to overcome nanostructures for oral medicine in EA Grumezescu.Nanostructures for Oral Medicine201717320
    [Google Scholar]
  56. RaoS.V.R. YajurvediK. ShaoJ. Self-nanoemulsifying drug delivery system (SNEDDS) for oral delivery of protein drugs.Int. J. Pharm.20083621-2161910.1016/j.ijpharm.2008.05.01518650037
    [Google Scholar]
  57. MeirinhoS. RodriguesM. SantosA.O. FalcãoA. AlvesG. Self-emulsifying drug delivery systems: An alternative approach to improve brain bioavailability of poorly water-soluble drugs through intranasal administration.Pharmaceutics2022147148710.3390/pharmaceutics1407148735890385
    [Google Scholar]
  58. AhmedT.A. AlotaibiH.A. AlharbiW.S. SafoM.K. El-SayK.M. Development of 3D-Printed, liquisolid and directly compressed glimepiride tablets, loaded with black seed oil self-nanoemulsifying drug delivery system: in vitro and in vivo characterization.Pharmaceuticals20221516810.3390/ph1501006835056126
    [Google Scholar]
  59. HalimA. JindalK. TariqueM. Solubility enhancement of poorly soluble drug by self-emulsifying drug delivery system: Comprehensive review.World J. Pharm. Res.202110840852
    [Google Scholar]
  60. CaliphSM CharmanWN PorterCJ Effect of short-, medium-, and long-chain fatty acid-based vehicles on the absolute oral bioavailability and intestinal lymphatic transport of halofantrine and assessment of mass balance in lymph-cannulated and non-cannulated rats.J Pharm Sci200089810731084
    [Google Scholar]
  61. BallanceS. SahlstrømS. LeaP. NagyN.E. AndersenP.V. DessevT. HullS. VardakouM. FaulksR. Evaluation of gastric processing and duodenal digestion of starch in six cereal meals on the associated glycaemic response using an adult fasted dynamic gastric model.Eur. J. Nutr.201352279981210.1007/s00394‑012‑0386‑522684609
    [Google Scholar]
  62. Verhoeckx, K.; Cotter, P.; Lopez-Exposito, I., Eds.; The Impact of Food Bioactives on Health: In vitro and ex vivo models.Cham, CHSpringer201510.1007/978‑3‑319‑16104‑4
    [Google Scholar]
  63. MourotJ. ThouvenotP. CouetC. AntoineJ.M. KrobickaA. DebryG. Relationship between the rate of gastric emptying and glucose and insulin responses to starchy foods in young healthy adults.Am. J. Clin. Nutr.19884841035104010.1093/ajcn/48.4.10353048076
    [Google Scholar]
  64. LeaderB. BacaQ.J. GolanD.E. Protein therapeutics: A summary and pharmacological classification.Nat. Rev. Drug Discov.200871213910.1038/nrd239918097458
    [Google Scholar]
  65. IjazM. BonengelS. ZupančičO. YaqoobM. HartlM. HussainS. HuckC.W. Bernkop-SchnürchA. Development of oral self nano-emulsifying delivery system(s) of lanreotide with improved stability against presystemic thiol-disulfide exchange reactions.Expert Opin. Drug Deliv.201613792392910.1517/17425247.2016.116703427020604
    [Google Scholar]
  66. LiP. TanA. PrestidgeC.A. NielsenH.M. MüllertzA. Self-nanoemulsifying drug delivery systems for oral insulin delivery: in vitro and in vivo evaluations of enteric coating and drug loading.Int. J. Pharm.20144771-239039810.1016/j.ijpharm.2014.10.03925455781
    [Google Scholar]
  67. LiP. NielsenH.M. MüllertzA. Impact of lipid-based drug delivery systems on the transport and uptake of insulin across Caco-2 cell monolayers.J. Pharm. Sci.201610592743275110.1016/j.xphs.2016.01.00626921121
    [Google Scholar]
  68. GongT. ZhangJ. PengQ. Sanjun Shi ZhangQ. SunX. GongT. Preparation, characterization, and in vivo evaluation of a self-nanoemulsifying drug delivery system (SNEDDS) loaded with morin-phospholipid complex.Int. J. Nanomedicine201163405341410.2147/IJN.S2582422267925
    [Google Scholar]
  69. ZupančičO. RohrerJ. Thanh LamH. GrießingerJ.A. Bernkop-SchnürchA. Development and in vitro characterization of self-emulsifying drug delivery system (SEDDS) for oral opioid peptide delivery.Drug Dev. Ind. Pharm.201743101694170210.1080/03639045.2017.133872228589736
    [Google Scholar]
  70. SalawiA. Self-emulsifying drug delivery systems: A novel approach to deliver drugs.Drug Deliv.20222911811182310.1080/10717544.2022.208372435666090
    [Google Scholar]
  71. PandeyM. JainN. KanoujiaJ. HussainZ. GorainB. Advances and challenges in intranasal delivery of antipsychotic agents targeting the central nervous system.Front. Pharmacol.20221386559010.3389/fphar.2022.86559035401164
    [Google Scholar]
  72. World Health Organization neurological disorders affect millions globally [WHO report].Available from: https://www.who.int/news/item/27-02-2007-neurological-disorders-affect-millions-globally-who-report (accessed on 2 May 2022).
  73. ZhouX. SmithQ.R. LiuX. Brain penetrating peptides and peptide–drug conjugates to overcome the blood–brain barrier and target CNS diseases.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.2021134e169510.1002/wnan.169533470550
    [Google Scholar]
  74. RajpootK. TekadeM. PandeyV. NagarajaS.H. Youngren-OrtizS.R. TekadeR.K. Self-microemulsifying drug-delivery system: Ongoing challenges and future ahead.Amsterdam, The NetherlandsElsevier2019
    [Google Scholar]
  75. BuyaA.B. BeloquiA. MemvangaP.B. PréatV. Self-nano-emulsifying drug-delivery systems: From the development to the current applications and challenges in oral drug delivery.Pharmaceutics202012121194
    [Google Scholar]
  76. GhoseD. PatraC.N. Ravi KumarB.V.V. SwainS. JenaB.R. ChoudhuryP. ShreeD. QbD-based formulation optimization and characterization of polymeric nanoparticles of cinacalcet hydrochloride with improved biopharmaceutical attributes.Turk. J. Pharm. Sci202118445246410.4274/tjps.galenos.2020.0852234496552
    [Google Scholar]
  77. SwainS BegS SahuPK JenaBR BabuSM Formulation development, statistical optimization and characterization of the self-microemulsifying drug delivery system (SMEDDS) of irbesartan.Nanosci. Nanotechnol20199221022810.2174/2210681208666180125143258
    [Google Scholar]
  78. SwainS. ParhiR. JenaB.R. BabuS.M. Quality by design: Concept to applications.Curr. Drug Discov. Technol.201916324025010.2174/157016381566618030814201629521238
    [Google Scholar]
  79. SwainS. JenaB.R. MadugulaD. Application of quality by design paradigms for development of solid dosage forms.Pharmaceutical quality by design2019New YorkAcademic Press
    [Google Scholar]
  80. DholakiyaA. DudhatK. PatelJ. MoriD. An integrated QbD based approach of SMEDDS and liquisolid compacts to simultaneously improve the solubility and processability of hydrochlorthiazide.J. Drug Deliv. Sci. Technol.20216110216210.1016/j.jddst.2020.102162
    [Google Scholar]
  81. DasS.S. SinghA. KarS. GhoshR. PalM. FatimaM. Application of QbD framework for development of self-emulsifying drug delivery systems.Pharmaceutical Quality By DesignAcademic Press201929735010.1016/B978‑0‑12‑815799‑2.00015‑0
    [Google Scholar]
  82. BelhadjZ. ZhangS. ZhangW. WangJ. Formulation development and bioavailability evaluation of a self-nanoemulsifying drug delivery system (SNEDDS) of atorvastatin calcium.Int. J. Pharm.2013111031113
    [Google Scholar]
  83. BorhadeV. NairH. HegdeD. Design and evaluation of self-microemulsifying drug delivery system (SMEDDS) of tacrolimus.AAPS PharmSciTech200891132110.1208/s12249‑007‑9014‑818446456
    [Google Scholar]
  84. KaleA.A. PatravaleV.B. Design and evaluation of self-emulsifying drug delivery systems (SEDDS) of nimodipine.AAPS PharmSciTech20089119119610.1208/s12249‑008‑9037‑918446481
    [Google Scholar]
  85. SoansD. ChandramouliR. KavithaA.N. RoopeshS.K. ShresthaS. Application of design of experiments for optimizing critical quality attributes (CQA) in routine pharmaceutical product development.J. Pharm. Res.20161539610010.18579/jpcrkc/2016/15/3/103041
    [Google Scholar]
  86. ChowdaryK.P. PrakasaR.K. Formulation development of etoricoxib tablets employing HP β cyclodextrin-poloxamer 407-PVP k30: A factorial study.Asian J. Pharm. Clin. Res.20125161164
    [Google Scholar]
  87. TenjarlaS. Microemulsions: An overview and pharmaceutical applications.Crit Rev Ther Drug Carrier Syst199916546152110.1615/CritRevTherDrugCarrierSyst.v16.i5.20
    [Google Scholar]
  88. KimG.G. PoudelB.K. MarasiniN. LeeD.W. HiepT.T. YangK.Y. KimJ.O. YongC.S. ChoiH.G. Enhancement of oral bioavailability of fenofibrate by solid self-microemulsifying drug delivery systems.Drug Dev. Ind. Pharm.20133991431143810.3109/03639045.2012.71990323046292
    [Google Scholar]
  89. SaifeeM. ZarekarS. RaoV.U. ZaheerZ. SoniR. BurandeS. Formulation and in vitro evaluation of solid-self-emulsifying drug delivery system (SEDDS) of glibenclamide.Open J Adv Drug Deliv.20131323340
    [Google Scholar]
  90. KumbharS. PatilA. Formulation and evaluation of self-emulsifying drug delivery system of carbamazepine.Ind J Pharm Educ Res.201347172177
    [Google Scholar]
  91. PatelP. PatelH. MehtaT.A. PanchalS.S. Self micro-emulsifying drug delivery system of tacrolimus: Formulation, in vitro evaluation and stability studies.Int. J. Pharm. Investig.2013329510410.4103/2230‑973X.11489924015381
    [Google Scholar]
  92. BalakumarK. RaghavanC.V. selvanN.T. prasadR.H. AbduS. Self nanoemulsifying drug delivery system (SNEDDS) of Rosuvastatin calcium: Design, formulation, bioavailability and pharmacokinetic evaluation.Colloids Surf. B Biointerfaces201311233734310.1016/j.colsurfb.2013.08.02524012665
    [Google Scholar]
  93. HusseinA.A. Preparation and evaluation of liquid and solid self-microemulsifying drug delivery system of mebendazole.Iraqi J. Pharm Sci.20172318910010.31351/vol23iss1pp89‑100
    [Google Scholar]
  94. AbbaspourM. JalayerN. Sharif MakhmalzadehB. Development and evaluation of a solid self-nanoemulsifying drug delivery system for loratadin by extrusion-spheronization.Adv. Pharm. Bull.20144211311910.5681/apb.2014.01824511474
    [Google Scholar]
  95. AggarwalG. HarikumarS.L. JaiswalP. SinghK. Development of self-microemulsifying drug delivery system and solid-self-microemulsifying drug delivery system of telmisartan.Int. J. Pharm. Investig.20144419520610.4103/2230‑973X.14312325426441
    [Google Scholar]
  96. SalimiA. Sharif Makhmal ZadehB. HematiA. Akbari BirganiS. Design and evaluation of self-emulsifying drug delivery system (SEDDS) Of carvedilol to improve the oral absorption.Jundishapur J. Nat. Pharm. Prod.201493e1612510.17795/jjnpp‑1612525237644
    [Google Scholar]
  97. RokadV. NagdaC. NagdaD. Design and evaluation of solid self-emulsifying drug delivery system of rosuvastatin calcium.J. Young Pharm.201463374610.5530/jyp.2014.3.7
    [Google Scholar]
  98. DeshmukhA. KulkarniS. Solid self-microemulsifying drug delivery system of ritonavir.Drug Dev. Ind. Pharm.201440447748710.3109/03639045.2013.76863223465049
    [Google Scholar]
  99. TranT. SiqueiraS.D.V.S. AmenitschH. RadesT. MüllertzA. Monoacyl phosphatidylcholine inhibits the formation of lipid multilamellar structures during in vitro lipolysis of self-emulsifying drug delivery systems.Eur. J. Pharm. Sci.2017108627010.1016/j.ejps.2016.11.02227890596
    [Google Scholar]
  100. SuramD. NaralaA. VeerabrahmaK. Development, characterization, comparative pharmacokinetic and pharmacodynamic studies of iloperidone solid SMEDDS and liquisolid compact.Drug Dev. Ind. Pharm.202046458759610.1080/03639045.2020.174214232162981
    [Google Scholar]
  101. ParkJ.B. ChoiB.K. KangC.Y. Effects of absorbent materials on a self-emulsifying drug delivery system for a poorly water soluble drug.J. Pharm. Investig.201545652953910.1007/s40005‑015‑0201‑4
    [Google Scholar]
  102. KrstićM. PopovićM. DobričićV. IbrićS. Influence of solid drug delivery system formulation on poorly water-soluble drug dissolution and permeability.Molecules2015208146841469810.3390/molecules20081468426287134
    [Google Scholar]
  103. ČerpnjakK. PobirkA.Z. VrečerF. GašperlinM. Tablets and minitablets prepared from spray-dried SMEDDS containing naproxen.Int. J. Pharm.2015495133634610.1016/j.ijpharm.2015.08.09926341323
    [Google Scholar]
  104. Czajkowska-KośnikA. SzekalskaM. AmelianA. SzymańskaE. WinnickaK. Development and evaluation of liquid and solid self-emulsifying drug delivery systems for atorvastatin.Molecules20152012210102102210.3390/molecules20121974526610464
    [Google Scholar]
  105. IshakR.A.H. OsmanR. Lecithin/TPGS-based spray-dried self-microemulsifying drug delivery systems: in vitro pulmonary deposition and cytotoxicity.Int. J. Pharm.20154851-224926010.1016/j.ijpharm.2015.03.01925772421
    [Google Scholar]
  106. ChowP.Y. GueS.Z. LeowS.K. GohL.B. Solid self-microemulsifying system (S-SMECS) for enhanced bioavailability and pigmentation of highly lipophilic bioactive carotenoid.Powder Technol.201527419920410.1016/j.powtec.2015.01.020
    [Google Scholar]
  107. ČerpnjakK. ZvonarA. VrečerF. GašperlinM. Characterization of naproxen-loaded solid SMEDDSs prepared by spray drying: The effect of the polysaccharide carrier and naproxen concentration.Int. J. Pharm.20154851-221522810.1016/j.ijpharm.2015.03.01525772420
    [Google Scholar]
  108. Nanda KishoreR. YalavarthiP.R. VadlamudiH.C. VandanaK.R. RasheedA. SushmaM. Solid self microemulsification of Atorvastatin using hydrophilic carriers: A design.Drug Dev. Ind. Pharm.20154171213122210.3109/03639045.2014.93865525019500
    [Google Scholar]
  109. SriamornsakP. LimmatvapiratS. PiriyaprasarthS. MansukmaneeP. HuangZ. A new self-emulsifying formulation of mefenamic acid with enhanced drug dissolution.Asian J. Pharm. Sci201510212112710.1016/j.ajps.2014.10.003
    [Google Scholar]
  110. YeomD.W. SonH.Y. KimJ.H. KimS.R. LeeS.G. SongS.H. ChaeB.R. ChoiY.W. Development of a solidified self-microemulsifying drug delivery system (S-SMEDDS) for atorvastatin calcium with improved dissolution and bioavailability.Int. J. Pharm.20165061-230231110.1016/j.ijpharm.2016.04.05927125455
    [Google Scholar]
  111. ParakhD.R. PatilM.P. DashputreN.L. KshirsagarS.J. Development of self-microemulsifying drug delivery system of mebendazole by spray drying technology: Characterization, in vitro and in vivo evaluation.Dry. Technol.20163491023104210.1080/07373937.2015.1090447
    [Google Scholar]
  112. LiF. HuR. WangB. GuiY. ChengG. GaoS. YeL. TangJ. Self-microemulsifying drug delivery system for improving the bioavailability of huperzine A by lymphatic uptake.Acta Pharm. Sin. B20177335336010.1016/j.apsb.2017.02.00228540173
    [Google Scholar]
  113. KöllnerS. NardinI. MarktR. GriesserJ. PrüfertF. Bernkop-SchnürchA. Self-emulsifying drug delivery systems: Design of a novel vaginal delivery system for curcumin.Eur. J. Pharm. Biopharm.201711526827510.1016/j.ejpb.2017.03.01228323109
    [Google Scholar]
  114. GausuzzamanS.A.L. SahaM. DipS.J. AlamS. KumarA. DasH. SharkerS.M. RashidM.A. KaziM. RezaH.M. A QbD approach to design and to optimize the self-emulsifying resveratrol-phospholipid complex to enhance drug bioavailability through lymphatic transport.Polymers20221415322010.3390/polym1415322035956734
    [Google Scholar]
  115. VisetvichapornV. KimK.H. JungK. ChoY.S. KimD.D. Formulation of self-microemulsifying drug delivery system (SMEDDS) by D-optimal mixture design to enhance the oral bioavailability of a new cathepsin K inhibitor (HL235).Int. J. Pharm.202057311877210.1016/j.ijpharm.2019.11877231765770
    [Google Scholar]
  116. LiuC.S. ChenL. HuY.N. DaiJ.L. MaB. TangQ.F. TanX.M. Selfmicroemulsifying drug delivery system for improved oral delivery and hypnotic efficacy of ferulic acid.Int. J. Nanomedicine2020152059207010.2147/IJN.S24044932273702
    [Google Scholar]
  117. SookkasemA. ChatpunS. YuenyongsawadS. SangsenY. WiwattanapatapeeR. Colon targeting of self-emulsifying and solid dispersions of curcumin using pectin beads as a delivery vehicle.Lat. Am. J. Pharm.20173624822493
    [Google Scholar]
  118. RahmanM.A. HussainA. HussainM.S. MirzaM.A. IqbalZ. Role of excipients in successful development of self-emulsifying/microemulsifying drug delivery system (SEDDS/SMEDDS).Drug Dev. Ind. Pharm.201339111910.3109/03639045.2012.66094922372916
    [Google Scholar]
  119. SermkaewN. PlyduangT. Self-microemulsifying drug delivery systems of Moringa oleifera extract for enhanced dissolution of kaempferol and quercetin.Acta Pharm.2020701778810.2478/acph‑2020‑001231677372
    [Google Scholar]
  120. ZakkulaA. GabaniB.B. JairamR.K. KiranV. TodmalU. MullangiR. Preparation and optimization of nilotinib self-micro-emulsifying drug delivery systems to enhance oral bioavailability.Drug Dev. Ind. Pharm.202046349850410.1080/03639045.2020.173039832067499
    [Google Scholar]
  121. ZhangR. ZhangZ. KumosaniT. KhojaS. AbualnajaK.O. McClementsD.J. Encapsulation of β-carotene in nanoemulsion-based delivery systemsformed by spontaneous emulsification: Influence of lipid composition onstability and bioaccessibility.Food Biophys.201611215416410.1007/s11483‑016‑9426‑7
    [Google Scholar]
  122. QuanG. NiuB. SinghV. ZhouY. WuC.Y. PanX. WuC. Supersaturable solid self-microemulsifying drug delivery system: Precipitation inhibition and bioavailability enhancement.Int. J. Nanomedicine2017128801881110.2147/IJN.S14971729263669
    [Google Scholar]
  123. PramanikS. ThakkarH. Development of solid self-microemulsifying system of tizanidine hydrochloride for oral bioavailability enhancement: in vitro and in vivo evaluation.AAPS PharmSciTech202021518210.1208/s12249‑020‑01734‑932613377
    [Google Scholar]
  124. SunC. GuiY. HuR. ChenJ. WangB. GuoY. LuW. NieX. ShenQ. GaoS. FangW. Preparation and pharmacokinetics evaluation of solid self-microemulsifying drug delivery system (S-SMEDDS) of osthole.AAPS PharmSciTech20181952301231010.1208/s12249‑018‑1067‑329845504
    [Google Scholar]
  125. MahajanS. SinghD. SharmaR. SinghG. BediN. pH-independent dissolution and enhanced oral bioavailability of aripiprazole-loaded solid self-microemulsifying drug delivery system.AAPS PharmSciTech20212212410.1208/s12249‑020‑01882‑y33400035
    [Google Scholar]
  126. SaggarS. UpadayayA. GoswamiM. Formulation and evaluation of solid self-emulsifying drug delivery system of Bambuterol hydrochloride.Indian J. Pharm. Sci.201981466167210.36468/pharmaceutical‑sciences.557
    [Google Scholar]
  127. DirilM. KarasuluY. ToskasM. NikolakakisI. Development and permeability testing of self-emulsifying atorvastatin calcium pellets and tablets of compressed pellets.Processes20197636510.3390/pr7060365
    [Google Scholar]
  128. MiaoY. ChenG. RenL. PingkaiO. Characterization and evaluation of self-nanoemulsifying sustained-release pellet formulation of ziprasidone with enhanced bioavailability and no food effect.Drug Deliv.20162372163217210.3109/10717544.2014.95076825148542
    [Google Scholar]
  129. TimurS.S. GürsoyR.N. Design and in vitro evaluation of solid SEDDS for breast cancer therapy.J. Drug Deliv. Sci. Technol.20206010202310.1016/j.jddst.2020.102023
    [Google Scholar]
  130. BhagwatDA SwamiPA NadafSJ ChoudhariPB KumbarVM MoreHN Capsaicin loaded solid SNEDDS for enhanced bioavailability and anticancer activity: In-vitro, in-silico, and in-vivo characterization.J Pharm Sci20211101280291
    [Google Scholar]
  131. SinghD. SinghA.P. SinghD. KesavanA.K. AroraS. TiwaryA.K. BediN. Enhanced oral bioavailability and anti-diabetic activity of canagliflozin through a spray dried lipid based oral delivery: A novel paradigm.Daru202028119120810.1007/s40199‑020‑00330‑332034683
    [Google Scholar]
  132. JoshiM. PathakS. SharmaS. PatravaleV. Solid microemulsion preconcentrate (NanOsorb) of artemether for effective treatment of malaria.Int. J. Pharm.20083621-217217810.1016/j.ijpharm.2008.06.01218611435
    [Google Scholar]
  133. SeoYG KimDH RamasamyT KimJH MarasiniN OhY-K Development of docetaxel-loaded solid self-nanoemulsifying drug delivery system (SNEDDS) for enhanced chemotherapeutic effect.Int J Pharm2013452412420
    [Google Scholar]
  134. GargV. KaurP. GulatiM. SinghS.K. KumarB. PandeyN.K. YadavA.K. KumarR. KuppusamyG. DeA. PuttappaN. WadhwaS. Coadministration of polypeptide-k and curcumin through solid self-nanoemulsifying drug delivery system for better therapeutic effect against diabetes mellitus: Formulation, optimization, biopharmaceutical characterization, and pharmacodynamic assessment.Assay Drug Dev. Technol.201917420122110.1089/adt.2018.90231100018
    [Google Scholar]
  135. MohdA.B. SankaK. BandiS. DiwanP.V. ShastriN. Solid self-nanoemulsifying drug delivery system (S-SNEDDS) for oral delivery of glimepiride: Development and antidiabetic activity in albino rabbits.Drug Deliv.201522449950810.3109/10717544.2013.87975324471856
    [Google Scholar]
  136. ChudiwalP. LahotiS. Solid self-microemulsifying drug delivery system (SMEDDS) of primaquine: Bio-distribution and enhanced liver uptake.J. Nanomed. Nanotechnol.2018911910.4172/2157‑7439.1000483
    [Google Scholar]
  137. MeherJ.G. DixitS. SinghY. PawarV.K. KonwarR. SaklaniR. ChourasiaM.K. Paclitaxel-loaded colloidal silica and TPGS-based solid self-emulsifying system interferes Akt/mTOR pathway in MDA-MB-231 and demonstrates antitumor effect in syngeneic mammary tumors.AAPS PharmSciTech202021831310.1208/s12249‑020‑01855‑133165766
    [Google Scholar]
  138. EtezadiH. MalekiA. FriedlJ.D. Bernkop-SchnürchA. Storage stability of proteins in a liquid-based formulation: Liquid vs. solid self-emulsifying drug delivery.Int. J. Pharm.202059011991810.1016/j.ijpharm.2020.11991833031874
    [Google Scholar]
  139. ChalikwarS.S. SuranaS.J. GoyalS.N. ChaturvediK.K. DangreP.V. Solid self-microemulsifying nutraceutical delivery system for hesperidin using quality by design: Assessment of biopharmaceutical attributes and shelf-life.J. Microencapsul.2021381617910.1080/02652048.2020.185178833245007
    [Google Scholar]
  140. Abou AssiR. M AbdulbaqiI. Seok MingT. Siok YeeC. A WahabH. AsifS.M. DarwisY. Liquid and solid self-emulsifying drug delivery systems (SEDDs) as carriers for the oral delivery of azithromycin: Optimization, in vitro characterization and stability assessment.Pharmaceutics20201211105210.3390/pharmaceutics1211105233158058
    [Google Scholar]
  141. PohlenM. LavričZ. PrestidgeC. DreuR. Preparation, physicochemical characterisation and DoE optimisation of a spray-dried dry emulsion platform for delivery of a poorly soluble drug, simvastatin.AAPS PharmSciTech202021411910.1208/s12249‑020‑01651‑x32318974
    [Google Scholar]
  142. ShaK. MaQ. VeroniainaH. QiX. QinJ. WuZ. Formulation optimization of solid self-microemulsifying pellets for enhanced oral bioavailability of curcumin.Pharm. Dev. Technol.202126554955810.1080/10837450.2021.189920333688786
    [Google Scholar]
  143. DangreP.V. DusadP.P. SinghA.D. SuranaS.J. ChaturvediK.K. ChalikwarS.S. Fabrication of hesperidin self-micro-emulsifying nutraceutical delivery system embedded in sodium alginate beads to elicit gastric stability.Polym. Bull.202112210.1007/s00289‑020‑03507‑7
    [Google Scholar]
  144. LegenI. KercJ. JurkovicP. Self-microemulsifying drug delivery systems.US8592490B22006
  145. HiromitsuI. HirosatoF. MotooY. Self-emulsifying composition of ω-3 fatty acid.SG10202103821W2021
  146. KohliK. ChopraS. AroraS. KharR.K. PillaiK. Self emulsifying drug delivery system for a curcuminoid based composition.US8835509B22021
  147. Hyung-KyunJun A solid dosage form for orally administration.WO20210294672021
    [Google Scholar]
  148. KarolchykS. Self-emulsifying nano-emulsions.US202100599352020
  149. KarolchykS. Self-emulsifying anhydrous intradermal depot gel.US202100935592020
  150. YingX. WenxiaoF. TaofengH. HongfeiL. ShengzheL. Nintedanib self-microemulsion preparation and soft capsule thereof and preparation method.CN1071845492017
  151. Jin CheulK. Jae-hoK. Jung-hyunC. Composition for a self-emulsifying drug delivery system comprising dutasteride.WO20161048892016
  152. PatelR.B. PatelM.M. Free-flowing solid formulations with improved solubility of glipizide.IN895/MUM/20082009
  153. KristinaK. BrittaS. New self-emulsified drug delivery system.RU022759082006
  154. HolmbergC. SiekmannB. Self emulsifying drug delivery system.US7736666B22000
  155. KaradV. SatishP. Formulation of solid self-micro emulsified drug delivery system of curcu-T.ZA202208832B2022
  156. XieZ. Self-emulsifying composition.WO2023/128750A12023
  157. ZhenaoH. XingguoM. Method for preparing three-dimensional calcium-self-emulsified effervescent composition and preparations thereof.CN112741841A2021
  158. ShuguangJ. XiaochangX. SijiaL. Asarone solid self-emulsifying preparation and preparation method thereof.CN109223718A2019
  159. JunM. ChristiaanV.R. CorneliaS.H. Method for preparing a self-emulsifying fat composition.EP3410868B12021
  160. XudongY. YuH. TianZ. Self-emulsifying formulation of bisphosphonates and associated dosage forms.US2022/0040209A12022
  161. YoshihiroT. RyusukeT. NozomiH. Self-emulsifying drug formulation for improving membrane permeability of compound.EP3563833A12019
  162. KumarV.K. ThrimoorthyP. VenkatG. Self-emulsifying cannabidiol formulations.US2020/0360286A12020
  163. CristinaB. RobertoB. Solid microcapsule having self-emulsifying capacity.WO2022/219599A12022
/content/journals/cpb/10.2174/0113892010296223240612050639
Loading
/content/journals/cpb/10.2174/0113892010296223240612050639
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test