Skip to content
2000
Volume 26, Issue 2
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Introduction

Doxorubicin (DOX) is one of the most potent anticancer drugs that has ubiquitous usage in oncology; however, its marked adverse effects, such as cardiotoxicity, are still a major clinical issue. Plant extracts have shown cardioprotective effects and reduced the risk of cardiovascular diseases.

Methods

The current study is intended to explore the cardioprotective effect of ethanolic extracts (MOE) leaves loaded into niosomes (MOE-NIO) against DOX-induced cardiotoxicity in rats. MOE niosomes nanoparticles (NIO-NPs) were prepared and characterized by TEM. Seventy male Wistar rats were randomly divided into seven groups: control, NIO, DOX, DOX+MOE, DOX+MOE-NIO, MOE+DOX, and MOE-NIO+DOX. DOX (4 mg/kg, IP) was injected once per week for 4 weeks with daily administration of MOE or MOE-NIO (250 mg/kg, PO) for 4 weeks; in the sixth and seventh groups, MOE or MOE-NIO (250 mg/kg, PO) was administered one week before DOX injection. Various parameters were assessed in serum and cardiac tissue. Pre and co-treatment with MOE-NIO have mitigated the cardiotoxicity induced by DOX as indicated by serum aspartate aminotransferase (AST), creatine kinase - MB(CK-MB) and lactate dehydrogenase (LDH), cardiac Troponin 1(cTn1) and lipid profile. MOE-NIO also alleviated lipid peroxidation (MDA), nitrosative status (NO), and inflammatory markers levels; myeloperoxidase (MPO) and tumor necrosis factor-alpha (TNF-α) obtained in DOX-treated animals. Additionally, ameliorated effects have been recorded in glutathione content and superoxide dismutase activity. MOE-NIO effectively neutralized the DOX-upregulated nuclear factor kappa B (NF-kB) and p38 mitogen-activated protein kinases (p38 MAPK), and DOX-downregulated nuclear factor-erythroid 2-related factor 2 (Nrf2) expressions in the heart.

Results

It is concluded that pre and co-treatment with MOE-NIO could protect the heart against DOX-induced cardiotoxicity by suppressing numerous pathways including oxidative stress, inflammation, and apoptosis and by the elevation of tissue antioxidant status.

Conclusion

Thus, it may be reasonable to suggest that pre and co-treatment with MOE-NIO can provide a potential cardioprotective effect when doxorubicin is used in the management of carcinoma.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010303097240605105013
2024-06-24
2024-12-26
Loading full text...

Full text loading...

References

  1. FriasM.A. LangU. WichtG.C. JamesR.W. Native and reconstituted HDL protect cardiomyocytes from doxorubicin-induced apoptosis.Cardiovasc. Res.201085111812610.1093/cvr/cvp28919700468
    [Google Scholar]
  2. Bustová, I. Risk of cardiotoxicity of combination treatment radiotherapy and chemotherapy of locally advanced breast carcinoma stage III.Klin. Onkol.2009221172119534435
    [Google Scholar]
  3. SingalP. LiT. KumarD. DanelisenI. IliskovicN. Adriamycin-induced heart failure: Mechanism and modulation.Mol. Cell. Biochem.20002071/2778610.1023/A:100709421446010888230
    [Google Scholar]
  4. HeH. WangL. QiaoY. ZhouQ. LiH. ChenS. YinD. HuangQ. HeM. Doxorubicin induces endotheliotoxicity and mitochondrial dysfunction via ROS/eNOS/NO pathway.Front. Pharmacol.202010153110.3389/fphar.2019.0153131998130
    [Google Scholar]
  5. SharmaG. TyagiA.K. SinghR.P. ChanD.C.F. AgarwalR. Synergistic anticancer effect of grape seed extract and conventional cytotoxic against human breast carcinoma cells.Breast Cancer Res. Treat.200485111210.1023/B:BREA.0000020991.55659.5915039593
    [Google Scholar]
  6. LadasE.J. JacobsonJ.S. KennedyD.D. TeelK. FleischauerA. KellyK.M. Antioxidants and cancer therapy: A systematic review.J. Clin. Oncol.200422351752810.1200/JCO.2004.03.08614752075
    [Google Scholar]
  7. LiY.J. LeiY.H. YaoN. WangC.R. HuN. YeW.C. LiG.F. Activation of p38 MAPK pathway contributes to the cardioprotective effect of Ginkgolide B against myocardial ischemia/reperfusion injury in rats.J. Ethnopharmacol.20121393815821
    [Google Scholar]
  8. IchikawaY. GhanefarM. BayevaM. WuR. KhechaduriA. PrasadS.V.N. MutharasanR.K. NaikT.J. ArdehaliH. Cardiotoxicity of doxorubicin is mediated through mitochondrial iron accumulation.J. Clin. Invest.2014124261763010.1172/JCI7293124382354
    [Google Scholar]
  9. ChenH. WuX. LiZ. LiJ. ZhaoJ. ChenX. Doxorubicin-induced cardiotoxicity: From bioenergetic failure and cell death to cardiomyopathy.Biochim. Biophys. Acta20181864619101919
    [Google Scholar]
  10. ZhangY. ZhangX. LiY. WangJ. HeY. WangY. ZhangJ. Doxorubicin-induced cardiotoxicity is mediated by interplay of ROS- and MAPK-dependent signaling pathways.J. Mol. Cell. Cardiol.2018118165176
    [Google Scholar]
  11. ZhangY. WuY. MaoP. LiF. HanX. ZhaoJ. ZhangJ. Doxorubicin enhances the autophagic flux in cardiomyocytes by disturbing the mTOR-STAT3-ATG5 pathway.Biochem. Pharmacol.201916498107
    [Google Scholar]
  12. DarwishM.M. ElneklawiM.S. MohamadE.A. Aloe vera coated dextran sulfate/chitosan nanoparticles (Aloe Vera @ DS/CS) encapsulating eucalyptus essential oil with antibacterial potent property.J. Biomater. Sci. Polym. Ed.202334681082710.1080/09205063.2022.214586936369795
    [Google Scholar]
  13. Abd-ElghanyA.A. AhmedS.M. MasoudM.A. AtiaT. WaggiallahH.A. El-SakhawyM.A. MohamadE.A. Annona squamosa L. extract-loaded niosome and its anti-ehrlich ascites’ carcinoma activity.ACS Omega2022743384363844710.1021/acsomega.2c0364936340141
    [Google Scholar]
  14. MohamadE.A. MohamedZ.N. HusseinM.A. ElneklawiM.S. GANE can improve Lung fibrosis by reducing inflammation via promoting p38MAPK/TGF-β1/NF-κB singling pathway down-regulation.ACS Omega2022733109312010.1021/acsomega.1c0659135097306
    [Google Scholar]
  15. ShaitoA. ThuanD.T.B. PhuH.T. NguyenT.H.D. HasanH. HalabiS. AbdelhadyS. NasrallahG.K. EidA.H. PintusG. Herbal medicine for cardiovascular diseases: Efficacy, mechanisms, and safety.Front. Pharmacol.20201142243210.3389/fphar.2020.0042232317975
    [Google Scholar]
  16. YangY. WeiS. ZhangB. LiW. Recent progress in environmental toxins-induced cardiotoxicity and protective potential of natural products.Front. Pharmacol.20211269919310.3389/fphar.2021.69919334305607
    [Google Scholar]
  17. AkterH. Mamunur RashidM. Shahidul IslamM. Amjad HossenM. Atiar RahmanM. AlgheshairyR.M. AlmujaydilM.S. AlharbiH.F. AlnajeebiA.M. Biometabolites of Tamarindus indica play a remarkable cardioprotective role as a functional food in doxorubicin-induced cardiotoxicity models.J. Funct. Foods20229610521210.1016/j.jff.2022.105212
    [Google Scholar]
  18. AktayI. BitirimC.V. OlgarY. DurakA. TuncayE. BillurD. AkcaliK.C. TuranB. Cardioprotective role of a magnolol and honokiol complex in the prevention of doxorubicin-mediated cardiotoxicity in adult rats.Mol. Cell. Biochem.2024479233735010.1007/s11010‑023‑04728‑w37074505
    [Google Scholar]
  19. Zamora-RosR. KnazeV. RothwellJ.A. Polyphenol intake and cardiovascular risk: A review of human intervention studies.Nutrients2016810116
    [Google Scholar]
  20. MohammedH.S. HosnyE.N. KhadrawyY.A. MagdyM. AttiaY.S. SayedO.A. AbdElaal, M. Protective effect of curcumin nanoparticles against cardiotoxicity induced by doxorubicin in rat.Biochim. Biophys. Acta Mol. Basis Dis.20201866516566510.1016/j.bbadis.2020.16566531918005
    [Google Scholar]
  21. DasS. CordisG.A. MaulikN. DasD.K. Pharmacological preconditioning with resveratrol: role of CREB-dependent Bcl-2 signaling via adenosine A 3 receptor activation.Am. J. Physiol. Heart Circ. Physiol.20052881H328H33510.1152/ajpheart.00453.200415345477
    [Google Scholar]
  22. ShatiA.A. EidR.A. El-kottA.F. AlqahtaniY.A. ShatoorA.S. Ahmed ZakiM.S. Curcumin attenuates doxorubicin-induced cardiotoxicity via suppressing oxidative Stress, preventing inflammation and apoptosis: Ultrastructural and computational approaches.Heliyon2024105e2716410.1016/j.heliyon.2024.e2716438468941
    [Google Scholar]
  23. AzizT.A. Cardioprotective effect of quercetin and sitagliptin in doxorubicin-induced cardiac toxicity in rats.Cancer Manag. Res.2021132349235710.2147/CMAR.S30049533737832
    [Google Scholar]
  24. BeyazS. GöِkÖ. AslanA. The therapeutic effects and antioxidant properties of epigallocatechin-3 gallate: A new review.Int. J. Second. Metab.20229212513610.21448/ijsm.1017559
    [Google Scholar]
  25. DhakadA.K. IkramM. SharmaS. KhanS. PandeyV.V. SinghA. Biological, nutritional, and therapeutic significance of Moringa oleifera Lam.Phytother. Res.201933112870290310.1002/ptr.647531453658
    [Google Scholar]
  26. BancessiA. BancessiQ. BaldéA. CatarinoL. Present and potential uses of Moringa oleifera as a multipurpose plant in Guinea-Bissau.S. Afr. J. Bot.202012920620810.1016/j.sajb.2019.06.013
    [Google Scholar]
  27. HassanM.A. XuT. TianY. ZhongY. AliF.A.Z. YangX. LuB. Health benefits and phenolic compounds of Moringa oleifera leaves: A comprehensive review.Phytomedicine20219315377110.1016/j.phymed.2021.15377134700271
    [Google Scholar]
  28. RocchettiG. PagnossaJ.P. BlasiF. CossignaniL. PiccoliH.R. ZenginG. MontesanoD. CocconcelliP.S. LuciniL. Phenolic profiling and in vitro bioactivity of Moringa oleifera leaves as affected by different extraction solvents.Food Res. Int.202012710871210.1016/j.foodres.2019.10871231882101
    [Google Scholar]
  29. TilokeC. AnandK. GenganR.M. ChuturgoonA.A. Moringa oleifera and their phytonanoparticles: Potential antiproliferative agents against cancer.Biomed. Pharmacother.201810845746610.1016/j.biopha.2018.09.06030241049
    [Google Scholar]
  30. AjuB.Y. RajalakshmiR. MiniS. Protective role of Moringa oleifera leaf extract on cardiac antioxidant status and lipid peroxidation in streptozotocin induced diabetic rats.Heliyon2019512e0293510.1016/j.heliyon.2019.e0293531872118
    [Google Scholar]
  31. XuY.B. ChenG.L. GuoM.Q. Antioxidant and anti-Inflammatory activities of the crude extracts of Moringa oleifera from Kenya and their correlations with flavonoids.Antioxidants20198829610.3390/antiox808029631404978
    [Google Scholar]
  32. MthiyaneF.T. DludlaP.V. ZiqubuK. MthembuS.X.H. MuvhulawaN. HlengwaN. NkambuleB.B. MbejeM.S.E. A review on the antidiabetic properties of Moringa oleifera extracts: Focusing on oxidative stress and inflammation as main therapeutic targets.Front. Pharmacol.20221394057210.3389/fphar.2022.94057235899107
    [Google Scholar]
  33. PatintinganC.G. LouisaM. JuniantitoV. ArozalW. HanifahS. WanandiS.I. ThandavarayanR. Moringa oleifera leaves extract ameliorates doxorubicin-induced cardiotoxicity via its mitochondrial biogenesis modulatory activity in rats.J. Exp. Pharmacol.20231530731910.2147/JEP.S41325637525636
    [Google Scholar]
  34. NayakG. RaoA. MullickP. MutalikS. KalthurS.G. AdigaS.K. KalthurG. Ethanolic extract of Moringa oleifera leaves alleviate cyclophosphamide-induced testicular toxicity by improving endocrine function and modulating cell specific gene expression in mouse testis.J. Ethnopharmacol.202025911292210.1016/j.jep.2020.11292232422360
    [Google Scholar]
  35. AhmadS. PandeyA.R. RaiA.K. SinghS.P. KumarP. SinghS. GulzarF. AhmadI. SashidharaK.V. TamrakarA.K. Moringa oleifera impedes protein glycation and exerts reno-protective effects in streptozotocin-induced diabetic rats.J. Ethnopharmacol.202330511611710.1016/j.jep.2022.11611736584917
    [Google Scholar]
  36. CorremansR. Adão, R.; De Keulenaer, G.W.; Leite-Moreira, A.F.; Brás-Silva, C. Update on pathophysiology and preventive strategies of anthracycline‐induced cardiotoxicity.Clin. Exp. Pharmacol. Physiol.201946320421510.1111/1440‑1681.1303630244497
    [Google Scholar]
  37. YooJ.W. IrvineD.J. DischerD.E. MitragotriS. Bio-inspired, bioengineered and biomimetic drug delivery carriers.Nat. Rev. Drug Discov.201110752153510.1038/nrd349921720407
    [Google Scholar]
  38. Abd-ElghanyA.A. MohamadE.A. Chitosan-coated niosomes loaded with ellagic acid present antiaging activity in a skin cell line.ACS Omega2023819166201662910.1021/acsomega.2c0725437214686
    [Google Scholar]
  39. MohamadE.A. RagehM.M. DarwishM.M. A sunscreen nanoparticles polymer based on prolonged period of protection.J. Bioact. Compat. Polym.2022371172710.1177/08839115211061741
    [Google Scholar]
  40. MohamadE.A. AhmedK.A. MohammedH.S. Evaluation of the skin protective effects of niosomal-entrapped annona squamosa against UVA irradiation.Photochem. Photobiol. Sci.202221122231224110.1007/s43630‑022‑00291‑336030490
    [Google Scholar]
  41. EbtesamM.A. FahmyH.M. Niosomes and liposomes as promising carriers for dermal delivery of Annona squamosa extract.Braz. J. Pharm. Sci.202055e18096
    [Google Scholar]
  42. RavalG. PatelJ. PatelA. ShethN. Niosomes: A potential drug carrier for cancer chemotherapy.J. Drug Deliv. Sci. Technol.201954101288
    [Google Scholar]
  43. RangsimawongW. OpanasopitP. RojanarataT. DuangjitS. NgawhirunpatT. Skin transport of hydrophilic compound-loaded pegylated lipid nanocarriers: Comparative study of liposomes, niosomes, and solid lipid nanoparticles.Biol. Pharm. Bull.20163981254126210.1248/bpb.b15‑0098127476936
    [Google Scholar]
  44. PatelG. PrajapatiB. PathakY. Niosomes in tuberculosis.In: Tubercular Drug Delivery Systems. ShegokarR. PathakY. ChamSpringer202310.1007/978‑3‑031‑14100‑3_12
    [Google Scholar]
  45. PatelG.K. PrajapatiB. PathakY. Niosomes in Malaria.In: Malarial Drug Delivery Systems. ShegokarR. PathakY. ChamSpringer202310.1007/978‑3‑031‑15848‑3_12
    [Google Scholar]
  46. SathaliH. RajalakshmiG. Evaluation of transdermal targeted niosomal drug delivery of terbinafine hydrochloride.Int. J. Pharm. Tech. Res.20102320812089
    [Google Scholar]
  47. ZhangY.D. MaC.Y. Luteolin attenuates doxorubicin-induced cardiotoxicity by modulating the PHLPP1/AKT/Bcl-2 signaling pathway.PeerJ2020118e8845
    [Google Scholar]
  48. UchiyamaM. MiharaM. Determination of malonaldehyde precursor in tissues by thiobarbituric acid test.Anal. Biochem.197886127127810.1016/0003‑2697(78)90342‑1655387
    [Google Scholar]
  49. BeutlerE. DuronO. KellyB.M. Improved method for the determination of blood glutathione.J. Lab. Clin. Med.19636188288813967893
    [Google Scholar]
  50. NandiA. ChatterjeeI.B. Assay of superoxide dismutase activity in animal tissues.J. Biosci.198813330531510.1007/BF02712155
    [Google Scholar]
  51. BradleyP.P. PriebatD.A. ChristensenR.D. RothsteinG. Measurement of cutaneous inflammation: Estimation of neutrophil content with an enzyme marker.J. Invest. Dermatol.198278320620910.1111/1523‑1747.ep125064626276474
    [Google Scholar]
  52. MirandaK.M. EspeyM.G. WinkD.A. A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite.Nitric Oxide200151627110.1006/niox.2000.031911178938
    [Google Scholar]
  53. LowryO. RosebroughN. FarrA.L. RandallR. Protein measurement with the Folin phenol reagent.J. Biol. Chem.1951193126527510.1016/S0021‑9258(19)52451‑614907713
    [Google Scholar]
  54. LivakK.J. SchmittgenT.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)).Method. Methods200125440240810.1006/meth.2001.126211846609
    [Google Scholar]
  55. LonghiA. FerrariS. BacciG. SpecchiaS. Long-term follow-up of patients with doxorubicin-induced cardiac toxicity after chemotherapy for osteosarcoma.Anticancer Drugs200718673774410.1097/CAD.0b013e32803d36fe17762406
    [Google Scholar]
  56. FatimaN. ZamanM. HashmiA. KamalS. HameedA. Assessing adriamycin-induced early cardiotoxicity by estimating left ventricular ejection fraction using technetium-99m multiple-gated acquisition scan and echocardiography.Nucl. Med. Commun.201132538138510.1097/MNM.0b013e328343ceb921346663
    [Google Scholar]
  57. NebigilC.G. DésaubryL. Updates in anthracycline-mediated cardiotoxicity.Front. Pharmacol.20189126210.3389/fphar.2018.0126230483123
    [Google Scholar]
  58. AbdallaA.N. Hassan AlmalikiW. Hasan MukhtarM. AnwarF. ShahidI. MenshawiS.A. AlsulimaniT.S. Ameliorative influence of dietary dates on doxorubicin-induced cardiac toxicity.Pharmacol. Pharm.20167834335310.4236/pp.2016.78042
    [Google Scholar]
  59. AbdoM.E.L.S. OsmanA.S. KhorshidO.A. El-FaroukL.O. KamelM.M. Comparative study of the protective effect of metformin and sitagliptin against doxorubicin-induced cardiotoxicity in rats.Clin. Pharmacol. Biopharm.20176174
    [Google Scholar]
  60. ZilinyiR. CzompaA. CzeglediA. GajtkoA. PitukD. LekliI. TosakiA. The cardioprotective effect of metformin in doxorubicin-induced cardiotoxicity: The role of autophagy.Molecules2018235118410.3390/molecules2305118429762537
    [Google Scholar]
  61. IkewuchiJ.C. IkewuchiC.C. IfeanachoM.O. JajaV.S. OkezueE.C. JamaboC.N. AdekuK.A. Attenuation of doxorubicin-induced cardiotoxicity in Wistar rats by aqueous leaf-extracts of Chromolaena odorata and Tridax procumbens.J. Ethnopharmacol.202127411400410.1016/j.jep.2021.11400433727109
    [Google Scholar]
  62. SandamaliJ.A.N. HewawasamR.P. JayatilakaK.A.P.W. MudduwaL.K.B. Cinnamomum zeylanicum Blume (Ceylon cinnamon) bark extract attenuates doxorubicin induced cardiotoxicity in Wistar rats.Saudi Pharm. J.202129882083210.1016/j.jsps.2021.06.00434408544
    [Google Scholar]
  63. LinH. ZhangJ. NiT. LinN. MengL. GaoF. LuoH. LiuX. ChiJ. GuoH. Yellow wine polyphenolic compounds prevents doxorubicin‐induced cardiotoxicity through activation of the Nrf2 signalling pathway.J. Cell. Mol. Med.20192396034604710.1111/jcmm.1446631225944
    [Google Scholar]
  64. Jabłońska-TrypućA. KrętowskiR. KalinowskaM. ŚwiderskiG. PaskoC.M. LewandowskiW. Possible mechanisms of the prevention of doxorubicin toxicity by cichoric acid‐antioxidant nutrient.Nutrients20181014410.3390/nu1001004429303987
    [Google Scholar]
  65. ZhaoL. QiY. XuL. TaoX. HanX. YinL. PengJ. MicroRNA-140-5p aggravates doxorubicin-induced cardiotoxicity by promoting myocardial oxidative stress via targeting Nrf2 and Sirt2.Redox Biol.20181528429610.1016/j.redox.2017.12.01329304479
    [Google Scholar]
  66. WuY. TanF. ZhangT. XieB. RanL. ZhaoX. The anti-obesity effect of lotus leaves on high-fat-diet-induced obesity by modulating lipid metabolism in C57BL/6J mice.Appl. Biol. Chem.20206316110.1186/s13765‑020‑00541‑x
    [Google Scholar]
  67. RäsänenM. DegermanJ. NissinenT.A. MiinalainenI. KerkeläR SiltanenA. BackmanJ.T. MervaalaE. HulmiJ.J. KiveläR. Alitalo, K. VEGF-B gene therapy inhibits doxorubicin-induced cardiotoxicity by endothelial protection.Proc. Natl. Acad. Sci.201611346131441314910.1073/pnas.161616811327799559
    [Google Scholar]
  68. YuJ. WangC. KongQ. WuX. LuJ.J. ChenX. Recent progress in doxorubicin-induced cardiotoxicity and protective potential of natural products.Phytomedicine20184012513910.1016/j.phymed.2018.01.00929496165
    [Google Scholar]
  69. Muñoz,, A.; Costa, M. Nutritionally mediated oxidative stress and inflammation.Oxid. Med. Cell. Longev.2013201311110.1155/2013/61095023844276
    [Google Scholar]
  70. WangG.Y. WangY.M. ZhangL.N. LiQ. YueH. SongC.M. FengJ.K. WangN. Effect of resveratrol on heart function of rats with adriamycin-induced heart failure.Chin. J. Chin. Mater. Medica.200732151563156517972590
    [Google Scholar]
  71. HamzaA.A. AhmedM.M. ElweyH.M. AminA. Melissa officinalis protects against doxorubicin-induced cardiotoxicity in rats and potentiates its anticancer activity on MCF-7 cells.PLoS One20161111e016704910.1371/journal.pone.016704927880817
    [Google Scholar]
  72. SunZ. YanB. YuW.Y. YaoX. MaX. ShengG. MaQ. Vitexin attenuates acute doxorubicin cardiotoxicity in rats via the suppression of oxidative stress, inflammation and apoptosis and the activation of FOXO3a.Exp. Ther. Med.20161231879188410.3892/etm.2016.3518
    [Google Scholar]
  73. Bin JardanY.A. AnsariM.A. RaishM. AlkharfyK.M. AhadA. Al-JenoobiF.I. HaqN. KhanM.R. AhmadA. Sinapic acid ameliorates oxidative stress, inflammation, and apoptosis in acute doxorubicin-induced cardiotoxicity via the NF-KB-mediated pathway.BioMed Res. Int.2020202011010.1155/2020/392179632258120
    [Google Scholar]
  74. van der HeidenK. CuhlmannS. LuongL.A. ZakkarM. EvansP.C. Role of nuclear factor κB in cardiovascular health and disease.Clin. Sci.20101181059360510.1042/CS2009055720175746
    [Google Scholar]
  75. CuendaA. RousseauS. p38 MAP-kinases pathway regulation, function and role in human diseases.Biochim. Biophys. Acta Mol. Cell Res.20071773813581375
    [Google Scholar]
  76. HanJ. WuJ. SilkeJ. An overview of mammalian p38 mitogen-activated protein kinases, central regulators of cell stress and receptor signaling.F1000 Res.2020965310.12688/f1000research.22092.132612808
    [Google Scholar]
  77. RuanY. DongC. PatelJ. DuanC. WangX. WuX. CaoY. PuL. LuD. ShenT. LiJ. SIRT1 suppresses doxorubicin-induced cardiotoxicity by regulating the oxidative stress and p38MAPK pathways.Cell. Physiol. Biochem.20153531116112410.1159/00037393725766524
    [Google Scholar]
  78. Lódi, M.; Priksz, D.; Fülöp, G.Á.; Bódi, B.; Gyöngyösi, A.; Nagy, L.; Kovács, Á.; Kertész, A.B.; Kocsis, J.; Édes, I.; Csanádi, Z.; Czuriga, I.; Kisvárday, Z.; Juhász, B.; Lekli, I.; Bai, P.; Tóth, A.; Papp, Z.; Czuriga, D. Advantages of prophylactic versus conventionally scheduled heart failure therapy in an experimental model of doxorubicin-induced cardiomyopathy.J. Transl. Med.201917122910.1186/s12967‑019‑1978‑031324258
    [Google Scholar]
  79. KhalilS.R. MotalA.S.M. ElsalamA.M. HameedA.E.N.E. Awad, A Restoring strategy of ethanolic extract of Moringa oleifera leaves against tilmicosin-induced cardiac injury in rats: Targeting cell apoptosis-mediated pathways.Gene2020730144272
    [Google Scholar]
  80. Abdel-DaimM.M. KhalilS.R. AwadA. Abu ZeidE.H. El-AzizR.A. El-SerehyH.A. Ethanolic extract of Moringa oleifera leaves influences NF-κB signaling pathway to restore kidney tissue from cobalt-mediated oxidative injury and inflammation in rats.Nutrients2020124103110.3390/nu1204103132283757
    [Google Scholar]
  81. SolimanM.M. AldhahraniA. AlkhedaideA. NassanM.A. AlthobaitiF. MohamedW.A. The ameliorative impacts of Moringa oleifera leaf extract against oxidative stress and methotrexate-induced hepato-renal dysfunction.Biomed. Pharmacother.202012811025910.1016/j.biopha.2020.11025932485567
    [Google Scholar]
  82. Abou-ZeidS.M. AhmedA.I. AwadA. MohammedW.A. MetwallyM.M. AlmeerR. Abdel-DaimM.M. KhalilS.R. Moringa oleifera ethanolic extract attenuates tilmicosin-induced renal damage in male rats via suppression of oxidative stress, inflammatory injury, and intermediate filament proteins mRNA expression.Biomed. Pharmacother.202113311099710.1016/j.biopha.2020.110997
    [Google Scholar]
  83. TumerT.B. Rojas-SilvaP. PoulevA. RaskinI. WatermanC. Direct and indirect antioxidant activity of polyphenol-and isothiocyanate-enriched fractions from Moringa oleifera.J. Agric. Food Chem.201563515051513
    [Google Scholar]
  84. BarbozaJ.N. da Silva FilhoM.B.C. SilvaR.O. MedeirosJ.V.R. de SousaD.P. An overview on the anti-inflammatory potential and antioxidant profile of eugenol.Oxid. Med. Cell. Longev.201820181910.1155/2018/395726230425782
    [Google Scholar]
  85. RaniA.N.Z. HusainK. Kumolosasi, E Moringa genus: A review of phytochemistry and pharmacology.Front. Pharmacol.2018910810.3389/fphar.2018.00108
    [Google Scholar]
  86. ImbabyS. EwaisM. EssawyS. FaragN. Cardioprotective effects of curcumin and nebivolol against doxorubicin-induced cardiac toxicity in rats.Hum. Exp. Toxicol.201433880081310.1177/096032711452762824648241
    [Google Scholar]
  87. SergazyS. ShulgauZ. FedotovskikhG. ChulenbayevaL. NurgozhinaA. NurgaziyevM. KrivyhE. KamyshanskiyY. KushugulovaA. GulyayevA. Cardioprotective effect of grape polyphenol extract against doxorubicin induced cardiotoxicity.Sci. Rep.202010112
    [Google Scholar]
  88. IkewuchiC.C. IkewuchiJ.C. IfeanachoM.O. JackD.P. IkpeC.N. EhiosunS. AjayiT.B. Protective effect of aqueous leaf extracts of Chromolaena odorata and Tridax procumbens on doxorubicin-induced hepatotoxicity in Wistar rats.Porto Biomed. J.202166e14310.1097/j.pbj.000000000000014334881354
    [Google Scholar]
  89. PandaS. KarA. SharmaP. SharmaA. Cardioprotective potential of N,α-l-rhamnopyranosyl vincosamide, an indole alkaloid, isolated from the leaves of Moringa oleifera in isoproterenol induced cardiotoxic rats: In vivo and in vitro studies.Bioorg. Med. Chem. Lett.201323495996210.1016/j.bmcl.2012.12.06023321560
    [Google Scholar]
  90. OseniO.A. OgunmoyoleT. IdowuK.A. Lipid profile and cardio-protective effects of aqueous extract of Moringa oleifera (lam) leaf on bromate-induced cardiotoxicity on Wistar albino rats.Eur. J. Adv. Res. Biol. Life Sci.2015325266
    [Google Scholar]
  91. SharmaM. TuaineJ. McLarenB. WatersD.L. BlackK. JonesL.M. McCormickS.P.A. Chemotherapy agents alter plasma lipids in breast cancer patients and show differential effects on lipid metabolism genes in liver cells.PLoS One2016111e014804910.1371/journal.pone.014804926807857
    [Google Scholar]
  92. KimD.S. ChoiM.H. ShinH.J. Extracts of Moringa oleifera leaves from different cultivation regions show both antioxidant and antiobesity activities.J. Food Biochem.2020447e1328210.1111/jfbc.1328232436270
    [Google Scholar]
  93. WuW.Y. CuiY.K. HongY.X. LiY.D. WuY. LiG. LiG.R. WangY. Doxorubicin cardiomyopathy is ameliorated by acacetin via Sirt1-mediated activation of AMPK/Nrf2 signal molecules.J. Cell. Mol. Med.20202420121411215310.1111/jcmm.1585932918384
    [Google Scholar]
  94. OwoadeA.O. AdetutuA. AborisadeA.B. Protective effects of Moringa oleifera leaves against oxidative stress in diabetic rats.World J. Pharmaceut. Sci.201716471
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010303097240605105013
Loading
/content/journals/cpb/10.2174/0113892010303097240605105013
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test