Skip to content
2000
Volume 26, Issue 2
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Introduction

Honey possesses several positive properties, making it effective in wound healing mechanisms. However, very little information is available on the different honey types for wound healing activity.

Methods

In the first “Academy of Sciences”, a public engagement project with high school students, we assessed the properties of thirteen kinds of honey from the Piedmont area (Nord West Italy). In particular, we characterized the color intensity (by Pfund scale), total phenolic content (TPC), total flavonoid content (TFC), HO production, and wound closure rate.

Results

Then, we tried to verify the presence of a correlation between these parameters, finding a positive correlation between HO and wound closure rate.

Conclusion

These data pave the way to characterize different types of Italian honey to completely understand its potential.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010328741240828093859
2024-09-05
2024-12-26
Loading full text...

Full text loading...

References

  1. Eteraf-OskoueiT. NajafiM. Traditional and modern uses of natural honey in human diseases: A review.Iran. J. Basic Med. Sci.201316673174223997898
    [Google Scholar]
  2. Eteraf-OskoueiT. NajafiM. Uses of natural honey in cancer: An updated review.Adv. Pharm. Bull.202112224826110.34172/apb.2022.02635620330
    [Google Scholar]
  3. Abd JalilM.A. KasmuriA.R. HadiH. Stingless bee honey, the natural wound healer: A review.Skin Pharmacol. Physiol.2017302667510.1159/00045841628291965
    [Google Scholar]
  4. ZumlaA. LulatA. Honey--A remedy rediscovered.J. R. Soc. Med.198982738438510.1177/0141076889082007042685300
    [Google Scholar]
  5. AbdelatifM. YakootM. EtmaanM. Safety and efficacy of a new honey ointment on diabetic foot ulcers: A prospective pilot study.J. Wound Care200817310811010.12968/jowc.2008.17.3.2866718376651
    [Google Scholar]
  6. AjibolaA. ChamunorwaJ.P. ErlwangerK.H. Nutraceutical values of natural honey and its contribution to human health and wealth.Nutr. Metab. (Lond.)2012916110.1186/1743‑7075‑9‑6122716101
    [Google Scholar]
  7. MartinottiS. BonsignoreG. RanzatoE. Applications of beehive products for wound repair and skin care.Cosmetics202310512710.3390/cosmetics10050127
    [Google Scholar]
  8. da SilvaP.M. GaucheC. GonzagaL.V. CostaA.C.O. FettR. Honey: Chemical composition, stability and authenticity.Food Chem.201619630932310.1016/j.foodchem.2015.09.05126593496
    [Google Scholar]
  9. BucekovaM. SojkaM. ValachovaI. MartinottiS. RanzatoE. SzepZ. MajtanV. KlaudinyJ. MajtanJ. Bee-derived antibacterial peptide, defensin-1, promotes wound re-epithelialisation in vitro and in vivo.Sci. Rep.201771734010.1038/s41598‑017‑07494‑028779102
    [Google Scholar]
  10. AlbaridiN.A. Antibacterial Potency of Honey.Int. J. Microbiol.2019201911010.1155/2019/246450731281362
    [Google Scholar]
  11. LusbyP.E. CoombesA.L. WilkinsonJ.M. Bactericidal activity of different honeys against pathogenic bacteria.Arch. Med. Res.200536546446710.1016/j.arcmed.2005.03.03816099322
    [Google Scholar]
  12. Romário-SilvaD. AlencarS.M. Bueno-SilvaB. SardiJ.C.O. FranchinM. CarvalhoR.D.P. FerreiraT.E.S.A. RosalenP.L. Antimicrobial activity of honey against oral microorganisms: Current reality, methodological challenges and solutions.Microorganisms20221012232510.3390/microorganisms1012232536557578
    [Google Scholar]
  13. MartinottiS. BucekovaM. MajtanJ. RanzatoE. Honey: An effective regenerative medicine product in wound management.Curr. Med. Chem.201926275230524010.2174/092986732566618051014182429745320
    [Google Scholar]
  14. BucekovaM. BuriovaM. PekarikL. MajtanV. MajtanJ. Phytochemicals-mediated production of hydrogen peroxide is crucial for high antibacterial activity of honeydew honey.Sci. Rep.201881906110.1038/s41598‑018‑27449‑329899462
    [Google Scholar]
  15. BucekovaM. ValachovaI. KohutovaL. ProchazkaE. KlaudinyJ. MajtanJ. Honeybee glucose oxidase—its expression in honeybee workers and comparative analyses of its content and H2O2-mediated antibacterial activity in natural honeys.Naturwissenschaften2014101866167010.1007/s00114‑014‑1205‑z24969731
    [Google Scholar]
  16. BrudzynskiK. AbubakerK. LaurentM. CastleA. Re-examining the role of hydrogen peroxide in bacteriostatic and bactericidal activities of honey.Front. Microbiol.2011221310.3389/fmicb.2011.0021322046173
    [Google Scholar]
  17. SimonA. TraynorK. SantosK. BlaserG. BodeU. MolanP. Medical honey for wound care--still the ‘latest resort’?Evid. Based Complement. Alternat. Med.20096216517310.1093/ecam/nem17518955301
    [Google Scholar]
  18. MavricE. WittmannS. BarthG. HenleT. Identification and quantification of methylglyoxal as the dominant antibacterial constituent of Manuka (Leptospermum scoparium) honeys from New Zealand.Mol. Nutr. Food Res.200852448348910.1002/mnfr.20070028218210383
    [Google Scholar]
  19. AlmasaudiS. The antibacterial activities of honey.Saudi J. Biol. Sci.20212842188219610.1016/j.sjbs.2020.10.01733911935
    [Google Scholar]
  20. JohnstonM. McBrideM. DahiyaD. Owusu-ApentenR. Singh NigamP. Antibacterial activity of manuka honey and its components: An overview.AIMS Microbiol.20184465566410.3934/microbiol.2018.4.65531294240
    [Google Scholar]
  21. AhmedS. SulaimanS.A. BaigA.A. IbrahimM. LiaqatS. FatimaS. JabeenS. ShamimN. OthmanN.H. Honey as a potential natural antioxidant medicine: an insight into its molecular mechanisms of action.Oxid. Med. Cell. Longev.201820181836784610.1155/2018/836784629492183
    [Google Scholar]
  22. CianciosiD. Forbes-HernándezT.Y. AfrinS. GasparriniM. Reboredo-RodriguezP. MannaP.P. ZhangJ. Bravo LamasL. Martínez FlórezS. Agudo ToyosP. QuilesJ.L. GiampieriF. BattinoM. Phenolic compounds in honey and their associated health benefits: A review.Molecules2018239232210.3390/molecules2309232230208664
    [Google Scholar]
  23. Di MarcoG. GismondiA. PanzanellaL. CanutiL. ImpeiS. LeonardiD. CaniniA. Botanical influence on phenolic profile and antioxidant level of Italian honeys.J. Food Sci. Technol.201855104042405010.1007/s13197‑018‑3330‑830228402
    [Google Scholar]
  24. ContiM.E. StripeikisJ. CampanellaL. CucinaD. TudinoM.B. Characterization of italian honeys (Marche region) on the basis of their mineral content and some typical quality parameters.Chem. Cent. J.2007111410.1186/1752‑153X‑1‑1417880749
    [Google Scholar]
  25. RanzatoE. MartinottiS. BurlandoB. Epithelial mesenchymal transition traits in honey‐driven keratinocyte wound healing: Comparison among different honeys.Wound Repair Regen.201220577878510.1111/j.1524‑475X.2012.00825.x22882448
    [Google Scholar]
  26. RanzatoE. MartinottiS. BurlandoB. Honey exposure stimulates wound repair of human dermal fibroblasts.Burns Trauma201311323810.4103/2321‑3868.11333327574620
    [Google Scholar]
  27. RanzatoE. BonsignoreG. PatroneM. MartinottiS. Endothelial and vascular Health: A tale of honey, H2O2 and calcium.Cells2021105107110.3390/cells1005107133946572
    [Google Scholar]
  28. ScepankovaH. Combarros-FuertesP. FresnoJ.M. TornadijoM.E. DiasM.S. PintoC.A. SaraivaJ.A. EstevinhoL.M. Role of honey in advanced wound care.Molecules20212616478410.3390/molecules2616478434443372
    [Google Scholar]
  29. Kunat-BudzyńskaM. RysiakA. WiaterA. GrązM. AndrejkoM. BudzyńskiM. BryśM.S. SudzińskiM. TomczykM. GancarzM. RusinekR. PtaszyńskaA.A. Chemical composition and antimicrobial activity of new honey varietals.Int. J. Environ. Res. Public Health2023203245810.3390/ijerph2003245836767825
    [Google Scholar]
  30. WhiteJ.W. BeatyM.R. EatonW.G. HartB. HuserW. KillionE. LamssiesR.R. LeeT. MoenW.E. NelsonS.L. O’NealR. ProbstJ. ShepardG.H. StevensonW.V. TeasJ. Instrumental color classification of honey: Collaborative study.J. Assoc. Off. Anal. Chem.19846761129113110.1093/jaoac/67.6.1129
    [Google Scholar]
  31. LawagI.L. IslamM.K. SostaricT. LimL.Y. HammerK. LocherC. Antioxidant activity and phenolic compound identification and quantification in Western Australian honeys.Antioxidants202312118910.3390/antiox1201018936671051
    [Google Scholar]
  32. MohammedM.E.A. ShatiA.A. AlfaifiM.Y. ElbehairiS.E.I. AlshehriM.A. AlhagS.K. SuleimanM.H.A. GhramhH.A. IbrahimA. AlshehriA.M. Al-MosaA.A.A. ALaerjani, W.M.A. Acacia honey from different altitudes: Total phenols and flavonoids, laser-induced fluorescence (LIF) spectra, and anticancer activity.J. Int. Med. Res.202048810.1177/030006052094345132776800
    [Google Scholar]
  33. MartinottiS. LaforenzaU. PatroneM. MocciaF. RanzatoE. Honey-mediated wound healing: H2O2 Entry through aqp3 determines extracellular Ca2+ influx.Int. J. Mol. Sci.201920376410.3390/ijms2003076430754672
    [Google Scholar]
  34. MartinottiS. PellavioG. LaforenzaU. RanzatoE. Propolis induces AQP3 expression: A possible way of action in wound healing.Molecules2019248154410.3390/molecules2408154431010117
    [Google Scholar]
  35. MartinottiS. PellavioG. PatroneM. LaforenzaU. RanzatoE. Manuka honey induces apoptosis of epithelial cancer cells through aquaporin-3 and calcium signaling.Life (Basel)2020101125610.3390/life1011025633120979
    [Google Scholar]
  36. TedescoR. ScalabrinE. MalagniniV. StrojnikL. OgrincN. CapodaglioG. Characterization of botanical origin of italian honey by carbohydrate composition and volatile organic compounds (VOCs).Foods20221116244110.3390/foods1116244136010441
    [Google Scholar]
  37. Codex Alimentarius Commission—Procedural.manual twenty-seventh edition2019Available from: https://openknowledge.fao.org/server/api/core/bitstreams/3e8f13a7-671c-4418-af79-1a8cfd1d0d14/content
    [Google Scholar]
  38. Becerril-SánchezA.L. Quintero-SalazarB. Dublán-GarcíaO. Escalona-BuendíaH.B. Phenolic Compounds in honey and their relationship with antioxidant activity, botanical origin, and color.Antioxidants20211011170010.3390/antiox1011170034829570
    [Google Scholar]
  39. HoughtonP.J. HylandsP.J. MensahA.Y. HenselA. DetersA.M. In vitro tests and ethnopharmacological investigations: Wound healing as an example.J. Ethnopharmacol.20051001-210010710.1016/j.jep.2005.07.00116040217
    [Google Scholar]
  40. GovernaP. CarulloG. BiagiM. RagoV. AielloF. Evaluation of the in vitro wound-healing activity of Calabrian honeys.Antioxidants2019823610.3390/antiox802003630736314
    [Google Scholar]
  41. Puścion-JakubikA. KarpińskaE. MoskwaJ. SochaK. Content of phenolic acids as a marker of polish honey varieties and relationship with selected honey-quality-influencing variables.Antioxidants2022117131210.3390/antiox1107131235883803
    [Google Scholar]
  42. Puścion-JakubikA. BieleckaJ. GrabiaM. Markiewicz-ŻukowskaR. SoroczyńskaJ. TeperD. SochaK. Comparative analysis of antioxidant properties of honey from Poland, Italy, and Spain based on the declarations of producers and their results of melissopalinological analysis.Nutrients20221413269410.3390/nu1413269435807873
    [Google Scholar]
  43. WhiteJ.W.Jr SubersM.H. SchepartzA.I. The identification of inhibine, the antibacterial factor in honey, as hydrogen peroxide and its origin in a honey glucose-oxidase system.Biochim. Biophys. Acta (BBA)1963731577010.1016/0926‑6569(63)90108‑114000328
    [Google Scholar]
  44. AlzahraniH.A. BoukraaL. BellikY. AbdellahF. BakhotmahB.A. KolayliS. SahinH. Evaluation of the antioxidant activity of three varieties of honey from different botanical and geographical origins.Glob. J. Health Sci.20124619119610.5539/gjhs.v4n6p19123121756
    [Google Scholar]
  45. Sant’AnaL.D.O. SousaJ.P.L.M. SalgueiroF.B. LorenzonM.C.A. CastroR.N. Characterization of monofloral honeys with multivariate analysis of their chemical profile and antioxidant activity.J. Food Sci.2012771C135C14010.1111/j.1750‑3841.2011.02490.x22133147
    [Google Scholar]
  46. LeoniV. GiupponiL. PavlovicR. GianoncelliC. CecatiF. RanzatoE. MartinottiS. PedraliD. GiorgiA. PanseriS. Multidisciplinary analysis of Italian Alpine wildflower honey reveals criticalities, diversity and value.Sci. Rep.20211111931610.1038/s41598‑021‑98876‑y34588574
    [Google Scholar]
  47. OryanA. AlemzadehE. MoshiriA. Biological properties and therapeutic activities of honey in wound healing: A narrative review and meta-analysis.J. Tissue Viability20162529811810.1016/j.jtv.2015.12.00226852154
    [Google Scholar]
  48. ZhangY. SongW. LuY. XuY. WangC. YuD.G. KimI. Recent Advances in Poly(α-L-glutamic acid)-Based nanomaterials for drug delivery.Biomolecules202212563610.3390/biom1205063635625562
    [Google Scholar]
  49. ZhangY. LuY. XuY. ZhouZ. LiY. LingW. SongW. Bio-inspired drug delivery systems: from synthetic polypeptide vesicles to outer membrane vesicles.Pharmaceutics202315236810.3390/pharmaceutics1502036836839691
    [Google Scholar]
  50. SongW. ZhangY. YuD.G. TranC.H. WangM. VaryambathA. KimJ. KimI. Efficient synthesis of folate-conjugated hollow polymeric capsules for accurate drug delivery to cancer cells.Biomacromolecules202122273274210.1021/acs.biomac.0c0152033331770
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010328741240828093859
Loading
/content/journals/cpb/10.2174/0113892010328741240828093859
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test