Skip to content
2000
Volume 26, Issue 2
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Background

Leishmaniasis is responsible for approximately 65,000 annual deaths. Various Leishmania species are the predominant cause of visceral, cutaneous, or mucocutaneous leishmaniasis, affecting millions worldwide. The lack of a vaccine, emergence of resistance, and undesirable side effects caused by antileishmanial medications have prompted researchers to look for novel therapeutic approaches to treat this disease. Antimicrobial peptides (AMPs) offer an alternative for promoting the discovery of new drugs.

Methods

In this study, we detail the synthesis process and investigate the antileishmanial activity against for peptides belonging to the dermaseptin (DS) family and their synthetic analogs. The MTT assay was performed to investigate the cytotoxicity of these peptides on the murine macrophage cell line RAW 264.7. Subsequently, we performed molecular modeling analysis to explore the structure-function correlation of the derivatives interacting with the parasitic membrane.

Results

All examined derivatives displayed concentration-dependent antileishmanial effect at low concentrations. Their effectiveness varied according to the peptide's proprieties. Notably, peptides with higher levels of charge demonstrated the most pronounced activities. Cytotoxicity assays showed that all the tested peptides were not cytotoxic compared to the tested conventional drug. The structure-function relationships demonstrated that the charged N-terminus could be responsible for the antileishmanial effect observed on promastigotes.

Conclusion

Collectively, these results propose that dermaseptins (DS) might offer potential as promising candidates for the development of effective antileishmanial therapies.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010296038240427050421
2024-09-10
2025-01-13
Loading full text...

Full text loading...

References

  1. WHO Leishmaniosis2019Available from: http://www.who.int/leishmaniasis/en/ (accessed on 01 November 2023).
  2. LeishmaniasisW.H.O. WHO Leishmaniosis.2017Available from: https://www.who.int/data/gho/data/themes/topics/gho-ntd-leishmaniasis/ (accessed on 23 November 2023).
    [Google Scholar]
  3. NeriF.S.M. JúniorD.B.C. FroesT.Q. da SilvaP.B.G. do EgitoM.S. MoreiraP.O.L. de Pilla VarottiF. CastilhoM.S. Teixeira-NetoR.G. de AlbuquerqueJ.F.C. LeiteF.H.A. Antileishmanial activity evaluation of thiazolidine-2,4-dione against Leishmania infantum and Leishmania braziliensis.Parasitol. Res.202011972263227410.1007/s00436‑020‑06706‑332462293
    [Google Scholar]
  4. BadirzadehA. Heidari-KharajiM. Fallah-OmraniV. DabiriH. AraghiA. Salimi ChiraniA. Antileishmanial activity of Urtica dioica extract against zoonotic cutaneous leishmaniasis.PLoS Negl. Trop. Dis.2020141e000784310.1371/journal.pntd.000784331929528
    [Google Scholar]
  5. FernandoC. Leishmaniasis. Imported Infectious Diseases; Woodhead.Publishing201422724210.1533/9781908818737.227
    [Google Scholar]
  6. FrézardF. DemicheliC. RibeiroR. Pentavalent antimonials: New perspectives for old drugs.Molecules20091472317233610.3390/molecules1407231719633606
    [Google Scholar]
  7. SunyotoT. PotetJ. BoelaertM. Why miltefosine—a life-saving drug for leishmaniasis—is unavailable to people who need it the most.BMJ Glob. Health201833e00070910.1136/bmjgh‑2018‑00070929736277
    [Google Scholar]
  8. RoattB.M. de Oliveira CardosoJ.M. De BritoR.C.F. Coura-VitalW. de Oliveira Aguiar-SoaresR.D. ReisA.B. Recent advances and new strategies on leishmaniasis treatment.Appl. Microbiol. Biotechnol.2020104218965897710.1007/s00253‑020‑10856‑w32875362
    [Google Scholar]
  9. MadusankaR.K. SilvaH. KarunaweeraN.D. Treatment of cutaneous leishmaniasis and insights into species-specific responses: A narrative review.Infect. Dis. Ther.202211269571110.1007/s40121‑022‑00602‑235192172
    [Google Scholar]
  10. BaharA. RenD. Antimicrobial peptides.Pharmaceuticals20136121543157510.3390/ph612154324287494
    [Google Scholar]
  11. MwangiJ. HaoX. LaiR. ZhangZ.Y. Antimicrobial peptides: New hope in the war against multidrug resistance.Zool. Res.201940648850510.24272/j.issn.2095‑8137.2019.06231592585
    [Google Scholar]
  12. El-DiranyR. ShahrourH. DiranyZ. Abdel-SaterF. Gonzalez-GaitanoG. BrandenburgK. Martinez de TejadaG. NguewaP.A. Activity of anti-microbial peptides (AMPs) against Leishmania and other parasites: An overview.Biomolecules202111798410.3390/biom1107098434356608
    [Google Scholar]
  13. MorA. DelfourA. Migliore-SamourD. NicolasP. NicolasP. Isolation, amino acid sequence and synthesis of dermaseptin, a novel antimicrobial peptide of amphibian skin.Biochemistry199130368824883010.1021/bi00100a0141909573
    [Google Scholar]
  14. AmicheM. LadramA. NicolasP. A consistent nomenclature of antimicrobial peptides isolated from frogs of the subfamily Phyllomedusinae.Peptides200829112074208210.1016/j.peptides.2008.06.01718644413
    [Google Scholar]
  15. NicolasP. El AmriC. The dermaseptin superfamily: A gene-based combinatorial library of antimicrobial peptides.Biochim. Biophys. Acta Biomembr.2009178881537155010.1016/j.bbamem.2008.09.00618929530
    [Google Scholar]
  16. ShaiY. Mode of action of membrane active antimicrobial peptides.Biopolymers200266423624810.1002/bip.1026012491537
    [Google Scholar]
  17. FederR. DaganA. MorA. Structure-activity relationship study of antimicrobial dermaseptin S4 showing the consequences of peptide oligomerization on selective cytotoxicity.J. Biol. Chem.200027564230423810.1074/jbc.275.6.423010660589
    [Google Scholar]
  18. EfronL. DaganA. GaidukovL. GinsburgH. MorA. Direct interaction of dermaseptin S4 aminoheptanoyl derivative with intraerythrocytic malaria parasite leading to increased specific antiparasitic activity in culture.J. Biol. Chem.200227727240672407210.1074/jbc.M20208920011937508
    [Google Scholar]
  19. DalyJ.W. CaceresJ. MoniR.W. GusovskyF. MoosM.Jr SeamonK.B. MiltonK. MyersC.W. Frog secretions and hunting magic in the upper Amazon: Identification of a peptide that interacts with an adenosine receptor.Proc. Natl. Acad. Sci. USA19928922109601096310.1073/pnas.89.22.109601438301
    [Google Scholar]
  20. van ZoggelH. CarpentierG. Dos SantosC. Hamma-KourbaliY. CourtyJ. AmicheM. DelbéJ. Antitumor and angiostatic activities of the antimicrobial peptide dermaseptin B2.PLoS One201279e4435110.1371/journal.pone.004435123028527
    [Google Scholar]
  21. MorA. AmicheM. NicolasP. Structure, synthesis, and activity of Dermaseptin b, a novel vertebrate defensive peptide from frog skin: Relationship with adenoregulin.Biochemistry199433216642665010.1021/bi00187a0348204601
    [Google Scholar]
  22. KückelhausC.S. KückelhausS.A.S. TostaC.E. Muniz-JunqueiraM.I. Pravastatin modulates macrophage functions of Leishmania (L.) amazonensis-infected BALB/c mice.Exp. Parasitol.20131341182510.1016/j.exppara.2013.01.02023402845
    [Google Scholar]
  23. AbdilleA.A. KimaniJ. WamunyokoliF. BulimoW. GavamukulyaY. MainaE.N. Dermaseptin B2’s anti-proliferative activity and down regulation of anti-proliferative, angiogenic and metastatic genes in rhabdomyosarcoma RD cells in vitro.Adv. Biosci. Biotechnol.2021121033735910.4236/abb.2021.1210022
    [Google Scholar]
  24. Antimicrobial peptide databases.2016Available from: http://aps.unmc.edu/AP/ (accessed on 03 July 2023).
  25. CharpentierS. AmicheM. MesterJ. VouilleV. Le CaerJ.P. NicolasP. DelfourA. Structure, synthesis, and molecular cloning of dermaseptins B, a family of skin peptide antibiotics.J. Biol. Chem.199827324146901469710.1074/jbc.273.24.14690
    [Google Scholar]
  26. AuvynetC. El AmriC. LacombeC. BrustonF. BourdaisJ. NicolasP. RosensteinY. Structural requirements for antimicrobial versus chemoattractant activities for dermaseptin S9.FEBS J.2008275164134415110.1111/j.1742‑4658.2008.06554.x18637027
    [Google Scholar]
  27. GautierR. DouguetD. AntonnyB. DrinG. HELIQUEST: A web server to screen sequences with specific α-helical properties.Bioinformatics200824182101210210.1093/bioinformatics/btn39218662927
    [Google Scholar]
  28. Fernández-EscamillaA.M. RousseauF. SchymkowitzJ. SerranoL. Prediction of sequence-dependent and mutational effects on the aggregation of peptides and proteins.Nat. Biotechnol.200422101302130610.1038/nbt101215361882
    [Google Scholar]
  29. MuñozV. SerranoL. Elucidating the folding problem of helical peptides using empirical parameters.Nat. Struct. Mol. Biol.19941639940910.1038/nsb0694‑3997664054
    [Google Scholar]
  30. RodriguesK.A.F. AmorimL.V. DiasC.N. MoraesD.F.C. CarneiroS.M.P. CarvalhoF.A.A. Syzygium cumini (L.) Skeels essential oil and its major constituent α-pinene exhibit anti-Leishmania activity through immunomodulation in vitro.J. Ethnopharmacol.2015160324010.1016/j.jep.2014.11.02425460590
    [Google Scholar]
  31. LamiableA. ThévenetP. ReyJ. VavrusaM. DerreumauxP. TufféryP. PEP-FOLD3: Faster de novo structure prediction for linear peptides in solution and in complex.Nucleic Acids Res.201644W1W449W45410.1093/nar/gkw32927131374
    [Google Scholar]
  32. DuZ. SuH. WangW. YeL. WeiH. PengZ. AnishchenkoI. BakerD. YangJ. The trRosetta server for fast and accurate protein structure prediction.Nat. Protoc.202116125634565110.1038/s41596‑021‑00628‑934759384
    [Google Scholar]
  33. JurrusE. EngelD. StarK. MonsonK. BrandiJ. FelbergL.E. BrookesD.H. WilsonL. ChenJ. LilesK. ChunM. LiP. GoharaD.W. DolinskyT. KonecnyR. KoesD.R. NielsenJ.E. Head-GordonT. GengW. KrasnyR. WeiG.W. HolstM.J. McCammonJ.A. BakerN.A. Improvements to the APBS biomolecular solvation software suite.Protein Sci.201827111212810.1002/pro.328028836357
    [Google Scholar]
  34. KustanovichI. ShalevD.E. MikhlinM. GaidukovL. MorA. Structural requirements for potent versus selective cytotoxicity for antimicrobial dermaseptin S4 derivatives.J. Biol. Chem.200227719169411695110.1074/jbc.M11107120011847217
    [Google Scholar]
  35. OngZ.Y. WiradharmaN. YangY.Y. Strategies employed in the design and optimization of synthetic antimicrobial peptide amphiphiles with enhanced therapeutic potentials.Adv. Drug Deliv. Rev.201478284510.1016/j.addr.2014.10.01325453271
    [Google Scholar]
  36. MaZ. WeiD. YanP. ZhuX. ShanA. BiZ. Characterization of cell selectivity, physiological stability and endotoxin neutralization capabilities of α-helix-based peptide amphiphiles.Biomaterials20155251753010.1016/j.biomaterials.2015.02.06325818457
    [Google Scholar]
  37. LyuY. YangY. LyuX. DongN. ShanA. Antimicrobial activity, improved cell selectivity and mode of action of short PMAP-36-derived peptides against bacteria and Candida.Sci. Rep.2016612725810.1038/srep2725827251456
    [Google Scholar]
  38. DongN. ZhuX. ChouS. ShanA. LiW. JiangJ. Antimicrobial potency and selectivity of simplified symmetric-end peptides.Biomaterials201435278028803910.1016/j.biomaterials.2014.06.00524952979
    [Google Scholar]
  39. IrazazabalL.N. PortoW.F. RibeiroS.M. CasaleS. HumblotV. LadramA. FrancoO.L. Selective amino acid substitution reduces cytotoxicity of the antimicrobial peptide mastoparan.Biochim. Biophys. Acta Biomembr.20161858112699270810.1016/j.bbamem.2016.07.00127423268
    [Google Scholar]
  40. Navon-VeneziaS. FederR. GaidukovL. CarmeliY. MorA. Antibacterial properties of dermaseptin S4 derivatives with in vivo activity.Antimicrob. Agents Chemother.200246368969410.1128/AAC.46.3.689‑694.200211850249
    [Google Scholar]
  41. KrugliakM. FederR. ZolotarevV.Y. GaidukovL. DaganA. GinsburgH. MorA. Antimalarial activities of dermaseptin S4 derivatives.Antimicrob. Agents Chemother.20004492442245110.1128/AAC.44.9.2442‑2451.200010952593
    [Google Scholar]
  42. GalanthC. AbbassiF. LequinO. Ayala-SanmartinJ. LadramA. NicolasP. AmicheM. Mechanism of antibacterial action of dermaseptin B2: Interplay between helix-hinge-helix structure and membrane curvature strain.Biochemistry200948231332710.1021/bi802025a19113844
    [Google Scholar]
  43. HazimeN. BelguesmiaY. BarrasA. AmicheM. BoukherroubR. DriderD. Enhanced antibacterial activity of dermaseptin through its immobilization on alginate nanoparticles—effects of menthol and lactic acid on its potentialization.Antibiotics202211678710.3390/antibiotics1106078735740193
    [Google Scholar]
  44. WalterR. NeidleA. MarksN. Significant differences in the degradation of pro-leu-gly-nH2 by human serum and that of other species (38484).Exp. Biol. Med.197514819810310.3181/00379727‑148‑384841168915
    [Google Scholar]
  45. HongS.Y. OhJ.E. LeeK.H. Effect of d-amino acid substitution on the stability, the secondary structure, and the activity of membrane-active peptide.Biochem. Pharmacol.199958111775178010.1016/S0006‑2952(99)00259‑210571252
    [Google Scholar]
  46. BraunsteinA. PapoN. ShaiY. In vitro activity and potency of an intravenously injected antimicrobial peptide and its DL amino acid analog in mice infected with bacteria.Antimicrob. Agents Chemother.20044883127312910.1128/AAC.48.8.3127‑3129.200415273131
    [Google Scholar]
  47. ZhaoY. ZhangM. QiuS. WangJ. PengJ. ZhaoP. ZhuR. WangH. LiY. WangK. YanW. WangR. Antimicrobial activity and stability of the d-amino acid substituted derivatives of antimicrobial peptide polybia-MPI.AMB Express20166112210.1186/s13568‑016‑0295‑827900727
    [Google Scholar]
  48. VaeziZ. BortolottiA. LucaV. PerilliG. MangoniM.L. Khosravi-FarR. BoboneS. StellaL. Aggregation determines the selectivity of membrane-active anticancer and antimicrobial peptides: The case of killerFLIP.Biochim. Biophys. Acta Biomembr.20201862218310710.1016/j.bbamem.2019.18310731678022
    [Google Scholar]
  49. Al MusaimiO. ValenzoO.M.M. WilliamsD.R. Prediction of peptides retention behavior in reversed‐phase liquid chromatography based on their hydrophobicity.J. Sep. Sci.2023462220074310.1002/jssc.20220074336349538
    [Google Scholar]
  50. EisenbergD. WeissR.M. TerwilligerT.C. The hydrophobic moment detects periodicity in protein hydrophobicity.Proc. Natl. Acad. Sci. USA198481114014410.1073/pnas.81.1.1406582470
    [Google Scholar]
  51. EisenbergD. WeissR.M. TerwilligerT.C. The helical hydrophobic moment: A measure of the amphiphilicity of a helix.Nature1982299588137137410.1038/299371a07110359
    [Google Scholar]
  52. DennisonS.R. PhoenixD.A. Influence of C-terminal amidation on the efficacy of modelin-5.Biochemistry20115091514152310.1021/bi101687t21241054
    [Google Scholar]
  53. Sánchez-AcostaY.A. Castillo VargasJ.A. Ramírez QuinteroK.J. Orduz PeraltaS. Camargo RodríguezD.O. Peptide derivatives of dermaseptin S4 in fresh bovine semen for bacterial contamination control: Physicochemical and structural characterization, antibacterial potency, and effects on red blood and sperm cells.Reprod. Domest. Anim.202055890591410.1111/rda.1370132406577
    [Google Scholar]
  54. BartelsE.J.H. DekkerD. AmicheM. Dermaseptins, multifunctional antimicrobial peptides: A review of their pharmacology, effectivity, mechanism of action, and possible future directions.Front. Pharmacol.201910142110.3389/fphar.2019.0142131849670
    [Google Scholar]
  55. ZouR. ZhuX. TuY. WuJ. LandryM.P. Activity of antimicrobial peptide aggregates decreases with increased cell membrane embedding free energy cost.Biochemistry201857182606261010.1021/acs.biochem.8b0005229638118
    [Google Scholar]
  56. TorresM.D.T. SothiselvamS. LuT.K. de la Fuente-NunezC. Peptide design principles for antimicrobial applications.J. Mol. Biol.2019431183547356710.1016/j.jmb.2018.12.01530611750
    [Google Scholar]
  57. HuangY. HeL. LiG. ZhaiN. JiangH. ChenY. Role of helicity of α-helical antimicrobial peptides to improve specificity.Protein Cell20145863164210.1007/s13238‑014‑0061‑024805306
    [Google Scholar]
  58. ZelezetskyI. TossiA. Alpha-helical antimicrobial peptides—Using a sequence template to guide structure–activity relationship studies.Biochim. Biophys. Acta Biomembr.2006175891436144910.1016/j.bbamem.2006.03.02116678118
    [Google Scholar]
  59. BernC. Adler-MooreJ. BerenguerJ. BoelaertM. BoerM. DavidsonR.N. FiguerasC. GradoniL. KafetzisD.A. RitmeijerK. RosenthalE. RoyceC. RussoR. SundarS. AlvarJ. Liposomal amphotericin B for the treatment of visceral leishmaniasis.Clin. Infect. Dis.200643791792410.1086/50753016941377
    [Google Scholar]
  60. PalmaE. PasquaA. GagliardiA. BrittiD. FrestaM. CoscoD. Antileishmanial activity of amphotericin B-loaded-PLGA nanoparticles: An overview.Materials2018117116710.3390/ma1107116729987206
    [Google Scholar]
  61. WilliamsonP. SchlegelR.A. Back and forth.Mol. Membr. Biol.199411419921610.3109/096876894091604307711830
    [Google Scholar]
  62. PintoE.G. PimentaD.C. AntoniazziM.M. JaredC. TemponeA.G. Antimicrobial peptides isolated from Phyllomedusa nordestina (Amphibia) alter the permeability of plasma membrane of Leishmania and Trypanosoma cruzi.Exp. Parasitol.2013135465566010.1016/j.exppara.2013.09.01624113627
    [Google Scholar]
  63. ChavesR.X. QuelemesP.V. LeiteL.M. AquinoD.S.A. AmorimL.V. RodriguesK.A.F. CampeloY.D.M. VerasL.M.C. BemquererM.P. Ramos-JesusJ. ArcanjoD.D.R. CarvalhoF.A.A. KückelhausS.A.S. LeiteJ.R.S.A. Antileishmanial and immunomodulatory effects of Dermaseptin-01, A promising peptide against leishmania amazonensis.Curr. Bioact. Compd.201713430531110.2174/1573407212666161014131415
    [Google Scholar]
  64. BelaidA. BraiekA. AlibiS. HassenW. BeltifaA. NefziA. MansourH.B. Evaluating the effect of dermaseptin S4 and its derivatives on multidrug-resistant bacterial strains and on the colon cancer cell line SW620.Environ. Sci. Pollut. Res. Int.20212830409084091610.1007/s11356‑021‑13683‑233774792
    [Google Scholar]
  65. BrandG. SantosR. ArakeL. SilvaV. VerasL. CostaV. CostaC. KuckelhausS. AlexandreJ. FeioM. LeiteJ. The skin secretion of the amphibian Phyllomedusa nordestina: A source of antimicrobial and antiprotozoal peptides.Molecules20131867058707010.3390/molecules1806705823774944
    [Google Scholar]
  66. SundarS. SinghB. Emerging therapeutic targets for treatment of leishmaniasis.Expert Opin. Ther. Targets201822646748610.1080/14728222.2018.147224129718739
    [Google Scholar]
  67. Pérez-CorderoJ.J. LozanoJ.M. CortésJ. DelgadoG. Leishmanicidal activity of synthetic antimicrobial peptides in an infection model with human dendritic cells.Peptides201132468369010.1016/j.peptides.2011.01.01121262294
    [Google Scholar]
  68. DabirianS. TaslimiY. ZahedifardF. GholamiE. DoustdariF. MotamediradM. KhatamiS. AzadmaneshK. NylenS. RafatiS. Human neutrophil peptide-1 (HNP-1): A new anti-leishmanial drug candidate.PLoS Negl. Trop. Dis.2013710e249110.1371/journal.pntd.000249124147170
    [Google Scholar]
  69. PereiraA.V. de BarrosG. PintoE.G. TemponeA.G. OrsiR.O. dos SantosL.D. CalviS. FerreiraR.S.Jr PimentaD.C. BarravieraB. Melittin induces in vitro death of Leishmania (Leishmania) infantum by triggering the cellular innate immune response.J. Venom. Anim. Toxins Incl. Trop. Dis.2016221110.1186/s40409‑016‑0055‑x26752985
    [Google Scholar]
  70. KatzS. BarbiériC.L. SolerF.P.M. SoaresA.M. ChavantesM.C. ZamunerS.R. Effect of isolated proteins from crotalus durissus terrificus venom on Leishmania (Leishmania) amazonensis-infected macrophages.Protein Pept. Lett.202027871872410.2174/092986652766620012915295431994997
    [Google Scholar]
  71. LequinO. LadramA. ChabbertL. BrustonF. ConvertO. VanhoyeD. ChassaingG. NicolasP. AmicheM. Dermaseptin S9, an alpha-helical antimicrobial peptide with a hydrophobic core and cationic termini.Biochemistry200645246848010.1021/bi051711i16401077
    [Google Scholar]
  72. HernandezC. MorA. DaggerF. NicolasP. HernandezA. BenedettiE.L. DuniaI. Functional and structural damage in Leishmania mexicana exposed to the cationic peptide dermaseptin.Eur. J. Cell Biol.19925924144241493807
    [Google Scholar]
  73. GaidukovL. FishA. MorA. Analysis of membrane-binding properties of dermaseptin analogues: Relationships between binding and cytotoxicity.Biochemistry20034244128661287410.1021/bi034514x14596600
    [Google Scholar]
  74. SavoiaD. GuerriniR. MarzolaE. SalvadoriS. Synthesis and antimicrobial activity of dermaseptin S1 analogues.Bioorg. Med. Chem.200816178205820910.1016/j.bmc.2008.07.03218676150
    [Google Scholar]
  75. EatonP. BittencourtC.R. Costa SilvaV. VérasL.M.C. CostaC.H.N. FeioM.J. LeiteJ.R.S.A. Anti-leishmanial activity of the antimicrobial peptide DRS 01 observed in Leishmania infantum (syn. Leishmania chagasi) cells.Nanomedicine 201410248349010.1016/j.nano.2013.09.00324096030
    [Google Scholar]
  76. YeamanM.R. YountN.Y. Mechanisms of antimicrobial peptide action and resistance.Pharmacol. Rev.2003551275510.1124/pr.55.1.212615953
    [Google Scholar]
  77. HuangH.W. Molecular mechanism of antimicrobial peptides: The origin of cooperativity.Biochim. Biophys. Acta Biomembr.2006175891292130210.1016/j.bbamem.2006.02.00116542637
    [Google Scholar]
  78. RoutierF.H. HigsonA.P. IvanovaI.A. RossA.J. TsvetkovY.E. YashunskyD.V. BatesP.A. NikolaevA.V. FergusonM.A.J. Characterization of the elongating alpha-D-mannosyl phosphate transferase from three species of Leishmania using synthetic acceptor substrate analogues.Biochemistry200039278017802510.1021/bi000371s10891083
    [Google Scholar]
  79. MangoniM.L. ShaiY. Short native antimicrobial peptides and engineered ultrashort lipopeptides: Similarities and differences in cell specificities and modes of action.Cell. Mol. Life Sci.201168132267228010.1007/s00018‑011‑0718‑221573781
    [Google Scholar]
  80. AndréS. RajaZ. HumblotV. PiesseC. FoulonT. SerenoD. OuryB. LadramA. Functional characterization of Temporin-SHe, a new broad-spectrum antibacterial and leishmanicidal temporin-SH paralog from the sahara frog (pelophylax saharicus).Int. J. Mol. Sci.20202118671310.3390/ijms2118671332933215
    [Google Scholar]
  81. LerouxM. Luquain-CostazC. LawtonP. Azzouz-MaacheS. DeltonI. Fatty acid composition and metabolism in Leishmania parasite species: Potential biomarkers or drug targets for leishmaniasis?Int. J. Mol. Sci.2023245470210.3390/ijms2405470236902138
    [Google Scholar]
  82. WaghuF.H. BaraiR.S. GurungP. Idicula-ThomasS. CAMPR3: A database on sequences, structures and signatures of antimicrobial peptides: Table 1.Nucleic Acids Res.201644D1D1094D109710.1093/nar/gkv105126467475
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010296038240427050421
Loading
/content/journals/cpb/10.2174/0113892010296038240427050421
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test