Skip to content
2000
Volume 26, Issue 4
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Introduction

The aim of this study was to investigate the potential of dihydroartemisinin to augment the efficacy of cisplatin chemotherapy through the modulation of LASS2 expression.

Methods

TCMSP, CTR-DB, TCGA-BLC, and other databases were used to analyze the possibility of LASS2 as the target gene of dihydroartemisinin. Cell experiments revealed the synergistic effect of DDP and DHA. Animal experiments showed that DHA inhibited the growth of DDP-treated mice. In addition, WB, real-time PCR, and immunohistochemical analysis showed that DHA enhanced LASS2 (CERS2) expression in bladder cancer cells and DDP-treated mice.

Results

LASS2 is associated with cisplatin chemosensitivity. LASS2 expression levels are different between BLC tissues and normal tissues. COX analysis showed that patients with high LASS2 expression had a higher cumulative overall survival rate than those with low LASS2 expression. The Sankey plot showed that LASS2 expression is lower in BLC tissues with more advanced stage and distant metastasis. The docking score of DHA and LASS2 reached the maximum value of -5.5259, indicating that DHA had a strong binding affinity with LASS2 targets. CCK8 assay showed that the most effective concentration ratio of DHA to DDP was 2.5 µg/ml + 10µg/ml. experiments showed that DHA inhibited tumor growth in cisplatin-treated mice. In addition, WB, RT-qPCR, and immunohistochemical analysis showed that DHA was able to enhance LASS2 expression in BLC cells and DDP-treated mice.

Conclusion

The upregulation of LASS2 (CERS2) expression in bladder cancer cells by DHA has been found to enhance cisplatin chemosensitivity.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010305651240514100129
2024-05-16
2025-03-29
Loading full text...

Full text loading...

References

  1. LinH.Y. WangX. HeC. ZhouZ.L. YangM.K. WenZ.L. HanH.W. LuG.H. QiJ.L. YangY.H. Progress on biosynthesis and function of the natural products of Zi Cao as a traditional Chinese medicinal herb.Yi Chuan202143545947233972216
    [Google Scholar]
  2. GaoL. LiH. LiB. Traditional uses, phytochemistry, transformation of ingredients and pharmacology of the dried seeds of Raphanus sativus L. (Raphani Semen), A comprehensive review.J. Ethnopharmacol.202229411538710.1016/j.jep.2022.115387
    [Google Scholar]
  3. WeiJ. LiuZ. HeJ. LiuQ. LuY. HeS. YuanB. ZhangJ. DingY. Traditional Chinese medicine reverses cancer multidrug resistance and its mechanism.Clin. Transl. Oncol.202224347148210.1007/s12094‑021‑02716‑434643878
    [Google Scholar]
  4. MohtashamiL. AmiriM.S. AyatiZ. Ethnobotanical uses, phytochemistry and pharmacology of different rheum species (Polygonaceae): A review.Adv. Exp. Med. Biol.2021130830935210.1007/978‑3‑030‑64872‑5_22
    [Google Scholar]
  5. MansouriK. RasoulpoorS. DaneshkhahA. AbolfathiS. SalariN. MohammadiM. RasoulpoorS. ShabaniS. Clinical effects of curcumin in enhancing cancer therapy: A systematic review.BMC Cancer202020179110.1186/s12885‑020‑07256‑832838749
    [Google Scholar]
  6. MatloubiZ. HassanZ. HSA-curcumin nanoparticles: A promising substitution for curcumin as a cancer chemoprevention and therapy.Daru202028120921910.1007/s40199‑020‑00331‑232270402
    [Google Scholar]
  7. BorettiA. Quercetin as a cancer chemopreventive or chemotherapeutic agent: Where we stand.Phytother. Res.20233741227123110.1002/ptr.769936444390
    [Google Scholar]
  8. MaugeriA. CalderaroA. PatanèG.T. NavarraM. BarrecaD. CirmiS. FeliceM.R. Targets involved in the anti-cancer activity of quercetin in breast, colorectal and liver neoplasms.Int. J. Mol. Sci.2023243295210.3390/ijms2403295236769274
    [Google Scholar]
  9. ZengZ.W. ChenD. ChenL. A comprehensive overview of Artemisinin and its derivatives as anticancer agents.Eur. J. Med. Chem.202324711500010.1016/j.ejmech.2022.115000
    [Google Scholar]
  10. WangY. YuanX. RenM. WangZ. Ferroptosis: A new research direction of artemisinin and its derivatives in anti-cancer treatment.Am. J. Chin. Med.202452116118110.1142/S0192415X2450007138328829
    [Google Scholar]
  11. WangJ. ZhangJ. GuoZ. Targeting HSP70 chaperones by rhein sensitizes liver cancer to artemisinin derivatives.Phytomedicine202412215515610.1016/j.phymed.2023.155156
    [Google Scholar]
  12. TuY. Artemisinin: Ein Geschenk der traditionellen chinesischen Medizin an die Welt (Nobel‐Aufsatz).Angew. Chem.201612835103661038210.1002/ange.201601967
    [Google Scholar]
  13. MaN. ZhangZ. LiaoF. The birth of artemisinin.PHARMACOL THERAPEUT202021610765810.1016/j.pharmthera.2020.107658
    [Google Scholar]
  14. GaoX.N. KangJ.J. SunP. ZhaoY.F. ZhangD. YangL. MaY. GaoH.M. Microbial transformation of artemisinin and its derivatives.Zhongguo Zhongyao Zazhi202348112876289537381950
    [Google Scholar]
  15. HuangY. YangY. LiuG. XuM. New clinical application prospects of artemisinin and its derivatives: A scoping review.Infect. Dis. Poverty202312111510.1186/s40249‑023‑01152‑638072951
    [Google Scholar]
  16. DaiX. ZhangX. ChenW. ChenY. ZhangQ. MoS. LuJ. Dihydroartemisinin: A potential natural anticancer drug.Int. J. Biol. Sci.202117260362210.7150/ijbs.5036433613116
    [Google Scholar]
  17. ZhengJ. LiX. YangW. ZhangF. Dihydroartemisinin regulates apoptosis, migration, and invasion of ovarian cancer cells via mediating RECK.J. Pharmacol. Sci.20211462718110.1016/j.jphs.2021.02.00133941323
    [Google Scholar]
  18. GaoJ. MaF. WangX. LiG. Combination of dihydroartemisinin and resveratrol effectively inhibits cancer cell migration via regulation of the DLC1/TCTP/Cdc42 pathway.Food Funct.202011119573958410.1039/D0FO00996B33150340
    [Google Scholar]
  19. XiaoL. XuC. LinP. MuL. YangX. Novel dihydroartemisinin derivative Mito-DHA5 induces apoptosis associated with mitochondrial pathway in bladder cancer cells.BMC Pharmacol. Toxicol.20222311010.1186/s40360‑021‑00542‑635057867
    [Google Scholar]
  20. WangT. LuoR. LiW. YanH. XieS. XiaoW. WangY. ChenB. BaiP. XingJ. Dihydroartemisinin suppresses bladder cancer cell invasion and migration by regulating KDM3A and p21.J. Cancer20201151115112410.7150/jca.3617431956358
    [Google Scholar]
  21. ZhangS. FengR. YuanF. LuoQ. ChenX. LiN. YangS. The therapeutic effects of dihydroartemisinin on cisplatin-resistant gastric cancer cells.Curr. Pharm. Biotechnol.202223227628610.2174/138920102266621021711482533596797
    [Google Scholar]
  22. CuiW. FangT. DuanZ. Dihydroartemisinin sensitizes esophageal squamous cell carcinoma to cisplatin by inhibiting sonic hedgehog signaling.Front. Cell Dev. Biol.2020859678810.3389/fcell.2020.596788
    [Google Scholar]
  23. RaoQ. LiR. YuH. XiangL. HeB. WuF. ZhaoG. Effects of dihydroartemisinin combined with cisplatin on proliferation, apoptosis and migration of HepG2 cells.Oncol. Lett.202224227510.3892/ol.2022.1339535782905
    [Google Scholar]
  24. DuJ. WangX. LiY. RenX. ZhouY. HuW. ZhouC. JingQ. YangC. WangL. LiH. FangL. ZhouY. TongX. WangY. DHA exhibits synergistic therapeutic efficacy with cisplatin to induce ferroptosis in pancreatic ductal adenocarcinoma via modulation of iron metabolism.Cell Death Dis.202112770510.1038/s41419‑021‑03996‑y34262021
    [Google Scholar]
  25. ZhangJ. LiY. WangJ.G. FengJ.Y. HuangG.D. LuoC.G. Dihydroartemisinin affects STAT3/DDA1 signaling pathway and reverses breast cancer resistance to cisplatin.Am. J. Chin. Med.202351244545910.1142/S0192415X2350023436891981
    [Google Scholar]
  26. NiL. ZhuX. ZhaoQ. Dihydroartemisinin, a potential PTGS1 inhibitor, potentiated cisplatin-induced cell death in non-small cell lung cancer through activating ROS-mediated multiple signaling pathways.Neoplasia20245110099110.1016/j.neo.2024.100991
    [Google Scholar]
  27. LevyM. FutermanA.H. Mammalian ceramide synthases.IUBMB Life201062534735610.1002/iub.31920222015
    [Google Scholar]
  28. StibanJ. TidharR. FutermanA.H. Ceramide synthases: Roles in cell physiology and signaling.Adv. Exp. Med. Biol.20106886071
    [Google Scholar]
  29. TaniguchiM. OkazakiT. The role of sphingomyelin and sphingomyelin synthases in cell death, proliferation and migration—from cell and animal models to human disorders.Biochim. Biophys. Acta Mol. Cell Biol. Lipids20141841569270310.1016/j.bbalip.2013.12.00324355909
    [Google Scholar]
  30. AlizadehJ. da Silva RosaS.C. WengX. JacobsJ. LorzadehS. RavandiA. VitorinoR. PecicS. ZivkovicA. StarkH. ShojaeiS. GhavamiS. Ceramides and ceramide synthases in cancer: Focus on apoptosis and autophagy.Eur. J. Cell Biol.2023102315133710.1016/j.ejcb.2023.15133737392580
    [Google Scholar]
  31. SheridanM. OgretmenB. The role of ceramide metabolism and signaling in the regulation of mitophagy and cancer therapy.Cancers (Basel)20211310247510.3390/cancers1310247534069611
    [Google Scholar]
  32. BrachtendorfS. El-HindiK. GröschS. Ceramide synthases in cancer therapy and chemoresistance.Prog. Lipid Res.20197416018510.1016/j.plipres.2019.04.002
    [Google Scholar]
  33. ZhangM. LiZ. LiuY. DingX. WangY. FanS. The ceramide synthase (CERS/LASS) family: Functions involved in cancer progression.Cell. Oncol.202346482584510.1007/s13402‑023‑00798‑636947340
    [Google Scholar]
  34. QiD. SongX. XueC. AKT1/FOXP3 axis-mediated expression of CerS6 promotes p53 mutant pancreatic tumorigenesis.Cancer Lett.202152210511810.1016/j.canlet.2021.06.024
    [Google Scholar]
  35. GrbčićP. CarE.P.M. SedićM. Targeting ceramide metabolism in hepatocellular carcinoma: New points for therapeutic intervention.Curr. Med. Chem.202027396611662710.2174/092986732666619091111572231544710
    [Google Scholar]
  36. TrayssacM. ClarkeC.J. StithJ.L. SniderJ.M. NewenN. GaultC.R. HannunY.A. ObeidL.M. Targeting sphingosine kinase 1 (SK1) enhances oncogene-induced senescence through ceramide synthase 2 (CerS2)-mediated generation of very-long-chain ceramides.Cell Death Dis.20211212710.1038/s41419‑020‑03281‑433414460
    [Google Scholar]
  37. ImgrundS. HartmannD. FarwanahH. EckhardtM. SandhoffR. DegenJ. GieselmannV. SandhoffK. WilleckeK. Adult ceramide synthase 2 (CERS2)-deficient mice exhibit myelin sheath defects, cerebellar degeneration, and hepatocarcinomas.J. Biol. Chem.200928448335493356010.1074/jbc.M109.03197119801672
    [Google Scholar]
  38. ZhangX. SakamotoW. CanalsD. IshibashiM. MatsudaM. NishidaK. ToyoshimaM. ShigetaS. TaniguchiM. SenkalC.E. OkazakiT. YaegashiN. HannunY.A. NabeT. KitataniK. Ceramide synthase 2‐C 24:1 ‐ceramide axis limits the metastatic potential of ovarian cancer cells.FASEB J.2021352e2128710.1096/fj.202001504RR33423335
    [Google Scholar]
  39. ZhaoQ. WangH. YangM. YangD. ZuoY. WangJ. Expression of a tumor-associated gene, LASS2, in the human bladder carcinoma cell lines BIU-87, T24, EJ and EJ-M3.Exp. Ther. Med.20135394294610.3892/etm.2013.89223407876
    [Google Scholar]
  40. LuanT. ZouR. HuangL. LiN. FuS. HuangY. WangH. WangJ. Hsa-miR-3658 promotes cell proliferation, migration and invasion by effecting LASS2 in bladder cancer.Clin. Lab.6404/201851552510.7754/Clin.Lab.2017.171026297390792018
    [Google Scholar]
  41. LiuJ. WangH. WangY. Repression of the miR-93-enhanced sensitivity of bladder carcinoma to chemotherapy involves the regulation of LASS2.OncoTargets Ther.2016918131822
    [Google Scholar]
  42. WangH. ZhangW. ZuoY. DingM. KeC. YanR. ZhanH. LiuJ. WangJ. miR-9 promotes cell proliferation and inhibits apoptosis by targeting LASS2 in bladder cancer.Tumour Biol.201536129631964010.1007/s13277‑015‑3713‑726150338
    [Google Scholar]
  43. HuangL. LuanT. ChenY. BaoX. HuangY. FuS. WangH. WangJ. LASS2 regulates invasion and chemoresistance via ERK/Drp1 modulated mitochondrial dynamics in bladder cancer cells.J. Cancer2018961017102410.7150/jca.2308729581781
    [Google Scholar]
  44. HuQ. WangZ. ChaoN. Advances in the mechanisms of resistance to platinum-based antineoplastic drugs.Advances in Pharmacy201710769774
    [Google Scholar]
  45. RottenbergS. DislerC. PeregoP. The rediscovery of platinum-based cancer therapy.Nat. Rev. Cancer2021211375010.1038/s41568‑020‑00308‑y33128031
    [Google Scholar]
  46. QiaoX. TanZ. ShiF. The inhibitory effect of dihydroartemisinin combined with cisplatin on the proliferation of bladder cancer cells.Chongqing Yike Daxue Xuebao202302130135
    [Google Scholar]
  47. LivakK.J. SchmittgenT.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)).Method. Methods200125440240810.1006/meth.2001.126211846609
    [Google Scholar]
  48. HuangS. HuangY. LiC. Efficacy and safety of neoadjuvant PD-1 inhibitors or PD-L1 inhibitors for muscle invasive bladder cancer: A systematic review and meta-analysis.Front. Immunol.2023141332213
    [Google Scholar]
  49. PatelV.G. OhW.K. GalskyM.D. Treatment of muscle‐invasive and advanced bladder cancer in 2020.CA Cancer J. Clin.202070540442310.3322/caac.2163132767764
    [Google Scholar]
  50. GuoC. ShaoT. WeiD. Bioinformatic identification of potential hub genes in muscle-invasive bladder urothelial carcinoma.Cell Transplant.202029213895788210.1177/0963689720965178
    [Google Scholar]
  51. StroggilosR. MokouM. LatosinskaA. MakridakisM. LygirouV. MavrogeorgisE. DrekoliasD. FrantziM. MullenW. FragkoulisC. StasinopoulosK. PapadopoulosG. StathourosG. LazarisA.C. MakrythanasisP. NtoumasK. MischakH. ZoidakisJ. VlahouA. Proteome‐based classification of nonmuscle invasive bladder cancer.Int. J. Cancer2020146128129410.1002/ijc.3255631286493
    [Google Scholar]
  52. RouprêtM. PignotG. Masson-LecomteA. CompératE. AudenetF. RoumiguiéM. HouédéN. LarréS. BrunelleS. XylinasE. NeuzilletY. MéjeanA. French ccAFU guidelines - update 2020-2022: Bladder cancer.Prog. Urol.20203012SS78S13533349431
    [Google Scholar]
  53. TodenhöferT. BoegemannM. Immunotherapy in bladder cancer-quo vadis? Update on current trials and developments.Urologe A202059781081632468092
    [Google Scholar]
  54. GhoshS. Cisplatin: The first metal based anticancer drug.Bioorg. Chem.20198810292510.1016/j.bioorg.2019.10292531003078
    [Google Scholar]
  55. NdagiU. MhlongoN. SolimanM.E. Metal complexes in cancer therapy - An update from drug design perspective.Drug Des. Devel. Ther.20171159961610.2147/DDDT.S119488
    [Google Scholar]
  56. Kumar SinghA. KumarA. SinghH. SonawaneP. PathakP. GrishinaM. Pal YadavJ. VermaA. KumarP. Metal complexes in cancer treatment: Journey so far.Chem. Biodivers.2023204e20230006110.1002/cbdv.20230006136824028
    [Google Scholar]
  57. FuertesM.A. AlonsoC. PérezJ.M. Biochemical modulation of Cisplatin mechanisms of action: enhancement of antitumor activity and circumvention of drug resistance.Chem. Rev.2003103364566210.1021/cr020010d12630848
    [Google Scholar]
  58. XiaoY. LinF.T. LinW.C. ACTL6A promotes repair of cisplatin-induced DNA damage, a new mechanism of platinum resistance in cancer.Proc. Natl. Acad. Sci. USA20211183e201580811810.1073/pnas.201580811833408251
    [Google Scholar]
  59. LiY. ZhangS. WangY. PengJ. FangF. YangX. MLH1 enhances the sensitivity of human endometrial carcinoma cells to cisplatin by activating the MLH1/c-Abl apoptosis signaling pathway.BMC Cancer2018181129410.1186/s12885‑018‑5218‑430594176
    [Google Scholar]
  60. MahapatraE. SenguptaD. KumarR. Phenethylisothiocyanate potentiates platinum therapy by reversing cisplatin resistance in cervical cancer.Front. Pharmacol.20221380311410.3389/fphar.2022.803114
    [Google Scholar]
  61. AldossaryS.A. Review on pharmacology of cisplatin: Clinical use, toxicity and mechanism of resistance of cisplatin.Biomed. Pharmacol. J.201912171510.13005/bpj/1608
    [Google Scholar]
  62. GongT.T. LiuX.D. ZhanZ.P. WuQ.J. Sulforaphane enhances the cisplatin sensitivity through regulating DNA repair and accumulation of intracellular cisplatin in ovarian cancer cells.Exp. Cell Res.2020393211206110.1016/j.yexcr.2020.11206132437713
    [Google Scholar]
  63. WitjesJ.A. BruinsH.M. CathomasR. CompératE.M. CowanN.C. GakisG. HernándezV. Linares EspinósE. LorchA. NeuzilletY. RouanneM. ThalmannG.N. VeskimäeE. RibalM.J. van der HeijdenA.G. European association of urology guidelines on muscle-invasive and metastatic bladder cancer: Summary of the 2020 guidelines.Eur. Urol.20217918210410.1016/j.eururo.2020.03.05532360052
    [Google Scholar]
  64. QiaoX. Preliminary study on the effect of dihydroartemisinin combined with cisplatin on bladder cancer cells.Kunming Medical University2022
    [Google Scholar]
  65. AghaeiM. PoupelF. MovahedianA. JafariS. ShahrestanakiM. Dihydroartemisinin induces apoptosis in human bladder cancer cell lines through reactive oxygen species, mitochondrial membrane potential, and cytochrome C pathway.Int. J. Prev. Med.2017817810.4103/ijpvm.IJPVM_258_1729114376
    [Google Scholar]
  66. MaX. HuM. WangH. Discovery of traditional Chinese medicine monomers and their synthetic intermediates, analogs or derivatives for battling P-gp-mediated multi-drug resistance.Eur. J. Med. Chem.201815938139210.1016/j.ejmech.2018.09.061
    [Google Scholar]
  67. LiN. ZhangS. LuoQ. YuanF. FengR. ChenX. YangS. The effect of dihydroartemisinin on the malignancy and epithelial-mesenchymal transition of gastric cancer cells.Curr. Pharm. Biotechnol.201920971972610.2174/138920102066619061112464431187708
    [Google Scholar]
  68. CoffettiG. MoraschiM. FacchettiG. RimoldiI. The challenging treatment of cisplatin-resistant tumors: State of the art and future perspectives.Molecules2023288340710.3390/molecules2808340737110640
    [Google Scholar]
  69. WangH. WangJ. ZuoY. DingM. YanR. YangD. KeC. Expression and prognostic significance of a new tumor metastasis suppressor gene LASS2 in human bladder carcinoma.Med. Oncol.20122931921192710.1007/s12032‑011‑0026‑621755371
    [Google Scholar]
  70. XiaoS. ChenY. LuanT. HuangY. FuS. ZuoY. WangH. WangJ. MicroRNA-20a targeting LASS2 promotes the proliferation, invasiveness and migration of bladder cancer.Clin. Lab.2021670810.7754/Clin.Lab.2020.20103034383404
    [Google Scholar]
  71. WangH. ZuoY. DingM. KeC. YanR. ZhanH. LiuJ. WangW. LiN. WangJ. LASS2 inhibits growth and invasion of bladder cancer by regulating ATPase activity.Oncol. Lett.201713266166810.3892/ol.2016.551428356943
    [Google Scholar]
  72. Garcia-VallicrosaC. Falcon-PerezJ.M. RoyoF. The role of longevity assurance homolog 2/ceramide synthase 2 in bladder cancer.Int. J. Mol. Sci.202324211566810.3390/ijms24211566837958652
    [Google Scholar]
  73. FuS. LuanT. JiangC. miR-3622a promotes proliferation and invasion of bladder cancer cells by downregulating LASS2.Gene2019701233110.1016/j.gene.2019.02.083
    [Google Scholar]
  74. YangB. MaoJ. GaoB. LuX. Computer-assisted drug virtual screening based on the natural product databases.Curr. Pharm. Biotechnol.201920429330110.2174/138920102066619032811541130919773
    [Google Scholar]
  75. AinQ. BatoolM. ChoiS. TLR4-targeting therapeutics: Structural basis and computer-aided drug discovery approaches.Molecules202025362710.3390/molecules2503062732023919
    [Google Scholar]
  76. TaoX. HuangY. WangC. ChenF. YangL. LingL. CheZ. ChenX. Recent developments in molecular docking technology applied in food science: A review.Int. J. Food Sci. Technol.2020551334510.1111/ijfs.14325
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010305651240514100129
Loading
/content/journals/cpb/10.2174/0113892010305651240514100129
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): bladder cancer; ceramide synthase 2; cisplatin; DDP-treated mice; Dihydroartemisinin; LASS2
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test