Skip to content
2000
Volume 26, Issue 3
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Background

Lung Adenocarcinoma (LUAD), a common and aggressive form of lung cancer, poses significant treatment challenges due to its low survival rates.

Aim

To better understand the role of ferroptosis driver genes in LUAD, this study aimed to explore their diagnostic and prognostic significance, as well as their impact on treatment approaches and tumor immune function in LUAD.

Methods

To accomplish the defined goals, a comprehensive methodology incorporating both and wet lab experiments was employed. A comprehensive analysis was conducted on a total of 233 ferroptosis driver genes obtained from the FerrDB database. Utilizing various TCGA databases and the RT-qPCR technique, the expression profiles of 233 genes were examined. Among them, TP53, KRAS, PTEN, and HRAS were identified as hub genes with significant differential expression. Notably, TP53, KRAS, and HRAS exhibited substantial up-regulation, while PTEN demonstrated significant down-regulation at both the mRNA and protein levels in LUAD samples. The dysregulation of hub genes was further associated with poor overall survival in LUAD patients. Additionally, targeted bisulfite-sequencing (bisulfite-seq) analysis revealed aberrant promoter methylation patterns linked to the dysregulation of hub genes.

Results & Discussion

Furthermore, hub genes were found to participate in diverse oncogenic pathways, highlighting their involvement in LUAD tumorigenesis. By leveraging the diagnostic and prognostic potential of ferroptosis driver hub genes (TP53, KRAS, PTEN, and HRAS), significant advancements can be made in the understanding and management of LUAD pathogenesis.

Conclusion

Therapeutic targeting of these genes using specific drugs holds great promise for revolutionizing drug discovery and improving the overall survival of LUAD patients.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010293337240312051931
2024-03-20
2025-07-09
Loading full text...

Full text loading...

References

  1. ChenX. MoS. YiB. The spatiotemporal dynamics of lung cancer: 30-year trends of epidemiology across 204 countries and territories.BMC Public Health202222198710.1186/s12889‑022‑13281‑y35578216
    [Google Scholar]
  2. TaucherE. MykoliukI. LindenmannJ. JuettnerS.F.M. Implications of the immune landscape in COPD and lung cancer: Smoking versus other causes.Front. Immunol.20221384660510.3389/fimmu.2022.84660535386685
    [Google Scholar]
  3. HuangJ. DengY. TinM.S. LokV. NgaiC.H. ZhangL. Lucero-PrisnoD.E.III XuW. ZhengZ.J. ElcarteE. WithersM. WongM.C.S. Distribution, risk factors, and temporal trends for lung cancer incidence and mortality: A global analysis.Chest202216141101111110.1016/j.chest.2021.12.65535026300
    [Google Scholar]
  4. EjazS. UllahL. HameedY. RaashidA. IqbalJ. UllahI. EjazS. Detection of novel infiltrating ductal carcinoma-associated BReast CAncer gene 2 mutations which alter the deoxyribonucleic acid-binding ability of BReast CAncer gene 2 protein.J. Cancer Res. Ther.20201661402140710.4103/jcrt.JCRT_861_1933342804
    [Google Scholar]
  5. CetinK. EttingerD.S. HeiY.J. O’MalleyC. Survival by histologic subtype in stage IV nonsmall cell lung cancer based on data from the surveillance, epidemiology and end results program.Clin. Epidemiol.2011313914810.2147/CLEP.S1719121607015
    [Google Scholar]
  6. ZhangL. SaharA.M. LiC. ChaudharyA. YousafI. SaeedahM.A. MubarakA. HarisM. NawazM. ReemM.A. RamadanF.A. MostafaA.A.M. FengW. HameedY. A detailed multi-omics analysis of GNB2 gene in human cancers.Braz. J. Biol.202484e26016910.1590/1519‑6984.26016935730811
    [Google Scholar]
  7. TravisW.D. Pathology of lung cancer.Clin. Chest Med.201132466969210.1016/j.ccm.2011.08.00522054879
    [Google Scholar]
  8. HerbstR.S. MorgenszternD. BoshoffC. The biology and management of non-small cell lung cancer.Nature2018553768944645410.1038/nature2518329364287
    [Google Scholar]
  9. DenisenkoT.V. BudkevichI.N. ZhivotovskyB. Cell death-based treatment of lung adenocarcinoma.Cell Death Dis.20189211710.1038/s41419‑017‑0063‑y29371589
    [Google Scholar]
  10. XieY. HouW. SongX. YuY. HuangJ. SunX. KangR. TangD. Ferroptosis: Process and function.Cell Death Differ.201623336937910.1038/cdd.2015.15826794443
    [Google Scholar]
  11. JiangX. StockwellB.R. ConradM. Ferroptosis: Mechanisms, biology and role in disease.Nat. Rev. Mol. Cell Biol.202122426628210.1038/s41580‑020‑00324‑833495651
    [Google Scholar]
  12. BagayokoS. MeunierE. Emerging roles of ferroptosis in infectious diseases.FEBS J.2022289247869789010.1111/febs.1624434670020
    [Google Scholar]
  13. RecalcatiS. GammellaE. CairoG. Dysregulation of iron metabolism in cancer stem cells.Free Radic. Biol. Med.201913321622010.1016/j.freeradbiomed.2018.07.01530040994
    [Google Scholar]
  14. ZhuJ. XiongY. ZhangY. WenJ. CaiN. ChengK. LiangH. ZhangW. The molecular mechanisms of regulating oxidative stress-induced ferroptosis and therapeutic strategy in tumors.Oxid. Med. Cell. Longev.2020202011410.1155/2020/881078533425217
    [Google Scholar]
  15. IngoldI BerndtC SchmittS DollS PoschmannG BudayK Selenium utilization by GPX4 is required to prevent hydroperoxide-induced ferroptosis.Cell.2018172340922. e2110.1016/j.cell.2017.11.048
    [Google Scholar]
  16. YangW.S. SriRamaratnamR. WelschM.E. ShimadaK. SkoutaR. ViswanathanV.S. CheahJ.H. ClemonsP.A. ShamjiA.F. ClishC.B. BrownL.M. GirottiA.W. CornishV.W. SchreiberS.L. StockwellB.R. Regulation of ferroptotic cancer cell death by GPX4.Cell20141561-231733110.1016/j.cell.2013.12.01024439385
    [Google Scholar]
  17. LiJ. XuL. ZuoY. ChangX. ChiH. Potential intervention target of atherosclerosis: Ferroptosis (Review).Mol. Med. Rep.202226534310.3892/mmr.2022.1285936148885
    [Google Scholar]
  18. PonteL.G.S. PavanI.C.B. ManciniM.C.S. da SilvaL.G.S. MorelliA.P. SeverinoM.B. BezerraR.M.N. SimabucoF.M. The hallmarks of flavonoids in cancer.Molecules2021267202910.3390/molecules2607202933918290
    [Google Scholar]
  19. RodriguezVsGE GibsonSB Reactive oxygen species (ROS) regulates different types of cell death by acting as a rheostat.Oxid Med Cell Longev202120219912436
    [Google Scholar]
  20. ShaikhK. IqbalY. MaksoudA.M.A. MuradA. BadarN. AlarjaniK.M. SiddiquiK. ChandioK. AlmanaaT.N. JamilM. AliM. JabeenN. HusseinA.M. Characterization of ferroptosis driver gene signature in head and neck squamous cell carcinoma (HNSC).Am. J. Transl. Res.20231574829485037560204
    [Google Scholar]
  21. SzklarczykD. GableA.L. NastouK.C. LyonD. KirschR. PyysaloS. DonchevaN.T. LegeayM. FangT. BorkP. JensenL.J. von MeringC. The STRING database in 2021: Customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets.Nucleic Acids Res.202149D1D605D61210.1093/nar/gkaa107433237311
    [Google Scholar]
  22. ShannonP. MarkielA. OzierO. BaligaN.S. WangJ.T. RamageD. AminN. SchwikowskiB. IdekerT. Cytoscape: A software environment for integrated models of biomolecular interaction networks.Genome Res.200313112498250410.1101/gr.123930314597658
    [Google Scholar]
  23. ChinCH ChenSH WuHH HoCW KoMT LinCY cytoHubba: Identifying hub objects and sub-networks from complex interactome.BMC Syst Biol.20142014S411
    [Google Scholar]
  24. ChandrashekarD.S. BashelB. BalasubramanyaS.A.H. CreightonC.J. RodriguezP.I. ChakravarthiB.V.S.K. VaramballyS. UALCAN: A portal for facilitating tumor subgroup gene expression and survival analyses.Neoplasia201719864965810.1016/j.neo.2017.05.00228732212
    [Google Scholar]
  25. TangZ. LiC. KangB. GaoG. LiC. ZhangZ. GEPIA: A web server for cancer and normal gene expression profiling and interactive analyses.Nucleic Acids Res.201745W1W98W10210.1093/nar/gkx24728407145
    [Google Scholar]
  26. TangG ChoM WangX. OncoDB: An interactive online database for analysis of gene expression and viral infection in cancer.Nucleic Acids Res202250D1D1334D133910.1093/nar/gkab970
    [Google Scholar]
  27. NagyÁ. GyőrffyB. muTarget : A platform linking gene expression changes and mutation status in solid tumors.Int. J. Cancer2021148250251110.1002/ijc.3328332875562
    [Google Scholar]
  28. KochA. De MeyerT. JeschkeJ. Van CriekingeW. MEXPRESS: Visualizing expression, DNA methylation and clinical TCGA data.BMC Genomics201516163610.1186/s12864‑015‑1847‑z26306699
    [Google Scholar]
  29. GaoJ. AksoyB.A. DogrusozU. DresdnerG. GrossB. SumerS.O. SunY. JacobsenA. SinhaR. LarssonE. CeramiE. SanderC. SchultzN. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal.Sci. Signal.20136269pl110.1126/scisignal.200408823550210
    [Google Scholar]
  30. ThulPJ LindskogC The human protein atlas: A spatial map of the human proteome.Protein Sci201827123324410.1002/pro.3307
    [Google Scholar]
  31. ZhangZ. SunW. ZengZ. LuY. Identification of significant prognostic risk markers for pancreatic ductal adenocarcinoma: A bioinformatic analysis.Acta Biochim. Pol.202269232733310.18388/abp.2020_575835675627
    [Google Scholar]
  32. XuY. WangX. HuangY. YeD. ChiP. A LASSO-based survival prediction model for patients with synchronous colorectal carcinomas based on SEER.Transl. Cancer Res.20221182795280910.21037/tcr‑20‑186036093555
    [Google Scholar]
  33. ShermanBT HaoM QiuJ JiaoX BaselerMW LaneHC DAVID: A web server for functional enrichment analysis and functional annotation of gene lists (2021 update).Nucleic Acids Res202250W1W216W221
    [Google Scholar]
  34. LiT. FanJ. WangB. TraughN. ChenQ. LiuJ.S. LiB. LiuX.S. TIMER: A web server for comprehensive analysis of tumor-infiltrating immune cells.Cancer Res.20177721e108e11010.1158/0008‑5472.CAN‑17‑030729092952
    [Google Scholar]
  35. HuangD.P. ZengY.H. YuanW.Q. HuangX.F. ChenS.Q. WangM.Y. QiuY.J. TongG.D. Bioinformatics analyses of potential miRNA-mRNA regulatory axis in HBV-related hepatocellular carcinoma.Int. J. Med. Sci.202118233534610.7150/ijms.5012633390802
    [Google Scholar]
  36. FreshourS.L. KiwalaS. CottoK.C. CoffmanA.C. McMichaelJ.F. SongJ.J. GriffithM. GriffithO.L. WagnerA.H. Integration of the drug–gene interaction database (DGIdb 4.0) with open crowdsource efforts.Nucleic Acids Res.202149D1D1144D115110.1093/nar/gkaa108433237278
    [Google Scholar]
  37. GuptaN. DNA extraction and polymerase chain reaction.J. Cytol.201936211611710.4103/JOC.JOC_110_1830992648
    [Google Scholar]
  38. RioDC AresMJr HannonGJ NilsenTW Purification of RNA using TRIzol (TRI reagent).Cold Spring Harbor protocols.201020106pdb.prot5439
    [Google Scholar]
  39. JafriH.S.M.O. MushtaqS. BaigS. Detection of kras gene in colorectal cancer patients through liquid biopsy: A cost-effective method.J. Coll. Physicians Surg. Pak.202131101174117810.29271/jcpsp.2021.10.117434601837
    [Google Scholar]
  40. SadiaH. BhinderA.M. IrshadA. ZahidB. AhmedR. AshiqS. MalikK. RiazM. NadeemT. AshiqK. AkbarA. Determination of expression profile of p53 gene in different grades of breast cancer tissues by real time PCR.Afr. Health Sci.20202031273128210.4314/ahs.v20i3.3233402975
    [Google Scholar]
  41. IoffeY.J. ChiappinelliK.B. MutchD.G. ZighelboimI. GoodfellowP.J. Phosphatase and tensin homolog (PTEN) pseudogene expression in endometrial cancer: A conserved regulatory mechanism important in tumorigenesis?Gynecol. Oncol.2012124234034610.1016/j.ygyno.2011.10.01122005521
    [Google Scholar]
  42. TetsuO PhuchareonJ ChouA CoxDP EiseleDW JordanRCK Mutations in the c-kit gene disrupt mitogen-activated protein kinase signaling during tumor development in adenoid cystic carcinoma of the salivary glands.Neoplasia201012970871710.1593/neo.10356
    [Google Scholar]
  43. KimH.Y. Statistical notes for clinical researchers: Chi-squared test and Fisher’s exact test.Restor. Dent. Endod201742215215510.5395/rde.2017.42.2.15228503482
    [Google Scholar]
  44. AnichiniA. PerottiV.E. SgambelluriF. MortariniR. Immune escape mechanisms in non small cell lung cancer.Cancers20201212360510.3390/cancers1212360533276569
    [Google Scholar]
  45. YasirM. NawazA. GhazanfarS. OklaM.K. ChaudharyA. AlW.H. AjmalM.N. AbdElgawadH. AhmadZ. AbbasF. WadoodA. ManzoorZ. AkhtarN. DinM. HameedY. ImranM. Anti-bacterial activity of essential oils against multidrug-resistant foodborne pathogens isolated from raw milk.Braz. J. Biol.202484e25944910.1590/1519‑6984.25944935544793
    [Google Scholar]
  46. NooreldeenR. BachH. Current and future development in lung cancer diagnosis.Int. J. Mol. Sci.20212216866110.3390/ijms2216866134445366
    [Google Scholar]
  47. LuL. LiuL.P. ZhaoQ.Q. GuiR. ZhaoQ.Y. Identification of a ferroptosis-related LncRNA signature as a novel prognosis model for lung adenocarcinoma.Front. Oncol.20211167554510.3389/fonc.2021.67554534249715
    [Google Scholar]
  48. CajalR.Y.S. SeséM. CapdevilaC. AasenT. De ArrudaM.L. CanoD.S.J. LosaH.J. CastellvíJ. Clinical implications of intratumor heterogeneity: Challenges and opportunities.J. Mol. Med.202098216117710.1007/s00109‑020‑01874‑231970428
    [Google Scholar]
  49. BradyC.A. AttardiL.D. p53 at a glance.J. Cell Sci.2010123152527253210.1242/jcs.06450120940128
    [Google Scholar]
  50. KhalilT. OklaM.K. QahtaniA.W.H. AliF. ZahraM. ShakeelaQ. AhmedS. AkhtarN. AbdElgawadH. AsifR. HameedY. AdetunjiC.O. FaridA. GhazanfarS. Tracing probiotic producing bacterial species from gut of buffalo (Bubalus bubalis), South-East-Asia.Braz. J. Biol.202484e25909410.1590/1519‑6984.25909435293480
    [Google Scholar]
  51. EjazS. HameedY. TP53 lacks tetramerization and N-terminal domains due to novel inactivating mutations detected in leukemia patients.J. Cancer Res. Ther.202117493193710.4103/jcrt.JCRT_536_1934528544
    [Google Scholar]
  52. RoydsJ.A. IacopettaB. p53 and disease: When the guardian angel fails.Cell Death Differ.20061361017102610.1038/sj.cdd.440191316557268
    [Google Scholar]
  53. KhanM. HameedY. Discovery of novel six genes-based cervical cancer-associated biomarkers that are capable to break the heterogeneity barrier and applicable at the global level.J. Cancer Res. Ther.20232023
    [Google Scholar]
  54. UsmanM HameedY AhmadM Does human papillomavirus cause human colorectal cancer? Applying Bradford Hill criteria postulates.Ecancermedicalscience2020141107
    [Google Scholar]
  55. LiuY. GuW. p53 in ferroptosis regulation: the new weapon for the old guardian.Cell Death Differ.202229589591010.1038/s41418‑022‑00943‑y35087226
    [Google Scholar]
  56. JiangL. KonN. LiT. WangS.J. SuT. HibshooshH. BaerR. GuW. Ferroptosis as a p53-mediated activity during tumour suppression.Nature20155207545576210.1038/nature1434425799988
    [Google Scholar]
  57. JyotsanaN. TaK.T. DelGiornoK.E. The role of cystine/glutamate antiporter SLC7A11/xCT in the pathophysiology of cancer.Front. Oncol.20221285846210.3389/fonc.2022.85846235280777
    [Google Scholar]
  58. SunJ. YangX. ZhangR. LiuS. GanX. XiX. ZhangZ. FengY. SunY. GOLPH3 induces epithelial–mesenchymal transition via Wnt/ β ‐catenin signaling pathway in epithelial ovarian cancer.Cancer Med.20176483484410.1002/cam4.104028332316
    [Google Scholar]
  59. AhmadM. KhanM. AsifR. SialN. AbidU. ShamimT. HameedZ. IqbalM.J. SarfrazU. SaeedH. AsgharZ. AkramM. UllahQ. YounasQ.A. RaufL. HadiA. MaryamS. HameedY. KhanM.R. TariqE. SaeedS. Expression characteristics and significant diagnostic and prognostic values of ANLN in human cancers.Int. J. Gen. Med.2022151957197210.2147/IJGM.S343975
    [Google Scholar]
  60. HuangL. GuoZ. WangF. FuL. KRAS mutation: From undruggable to druggable in cancer.Signal Transduct. Target. Ther.20216138610.1038/s41392‑021‑00780‑434776511
    [Google Scholar]
  61. KarachaliouN. MayoC. CostaC. MagríI. Gimenez-CapitanA. Molina-VilaM.A. RosellR. KRAS mutations in lung cancer.Clin. Lung Cancer201314320521410.1016/j.cllc.2012.09.00723122493
    [Google Scholar]
  62. WangT. GongM. CaoY. ZhaoC. LuY. ZhouY. YaoS. ChenJ. ZhaoC. JuR. Persistent ferroptosis promotes cervical squamous intraepithelial lesion development and oncogenesis by regulating KRAS expression in patients with high risk-HPV infection.Cell Death Discov.20228120110.1038/s41420‑022‑01013‑535422066
    [Google Scholar]
  63. YeZ. HuQ. ZhuoQ. ZhuY. FanG. LiuM. SunQ. ZhangZ. LiuW. XuW. JiS. YuX. XuX. QinY. Abrogation of ARF6 promotes RSL3-induced ferroptosis and mitigates gemcitabine resistance in pancreatic cancer cells.Am. J. Cancer Res.20201041182119332368394
    [Google Scholar]
  64. WangK. ZhangZ. WangM. CaoX. QiJ. WangD. GongA. ZhuH. Role of GRP78 inhibiting artesunate-induced ferroptosis in KRAS mutant pancreatic cancer cells.Drug Des. Devel. Ther.2019132135214410.2147/DDDT.S19945931456633
    [Google Scholar]
  65. ViswanathanV.S. RyanM.J. DhruvH.D. GillS. EichhoffO.M. LudlowS.B. KaffenbergerS.D. EatonJ.K. ShimadaK. AguirreA.J. ViswanathanS.R. ChattopadhyayS. TamayoP. YangW.S. ReesM.G. ChenS. BoskovicZ.V. JavaidS. HuangC. WuX. TsengY.Y. RoiderE.M. GaoD. ClearyJ.M. WolpinB.M. MesirovJ.P. HaberD.A. EngelmanJ.A. BoehmJ.S. KotzJ.D. HonC.S. ChenY. HahnW.C. LevesqueM.P. DoenchJ.G. BerensM.E. ShamjiA.F. ClemonsP.A. StockwellB.R. SchreiberS.L. Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway.Nature2017547766445345710.1038/nature2300728678785
    [Google Scholar]
  66. AbdulkareemIH BlairM Phosphatase and tensin homologue deleted on chromosome 10.Niger J Med201354279
    [Google Scholar]
  67. Bermúdez BritoM. GoulielmakiE. PapakonstantiE.A. Focus on PTEN regulation.Front. Oncol.2015516610.3389/fonc.2015.0016626284192
    [Google Scholar]
  68. YehiaL. KeelE. EngC. The clinical spectrum of PTEN mutations.Annu. Rev. Med.202071110311610.1146/annurev‑med‑052218‑12582331433956
    [Google Scholar]
  69. LiZ. ChenL. ChenC. ZhouY. HuD. YangJ. ChenY. ZhuoW. MaoM. ZhangX. XuL. WangL. ZhouJ. Targeting ferroptosis in breast cancer.Biomark. Res.2020815810.1186/s40364‑020‑00230‑333292585
    [Google Scholar]
  70. RohJ.L. KangS.K. MinnI.L. CalifanoJ.A. SidranskyD. KochW.M. p53-Reactivating small molecules induce apoptosis and enhance chemotherapeutic cytotoxicity in head and neck squamous cell carcinoma.Oral Oncol.201147181510.1016/j.oraloncology.2010.10.01121109480
    [Google Scholar]
  71. ChenD WuM LiY ChangI YuanQ SalvoE.M argeting BMI1+ cancer stem cells overcomes chemoresistance and inhibits metastases in squamous cell carcinoma.Cell stem cell.201720562134.e6
    [Google Scholar]
  72. ColicelliJ. Human RAS superfamily proteins and related GTPases.Sci. STKE20042004250RE1310.1126/stke.2502004re1315367757
    [Google Scholar]
  73. SimanshuD.K. NissleyD.V. McCormickF. RAS proteins and their regulators in human disease.Cell20171701173310.1016/j.cell.2017.06.00928666118
    [Google Scholar]
  74. ChioseaS.I. MillerM. SeethalaR.R. HRAS mutations in epithelial-myoepithelial carcinoma.Head Neck Pathol.20148214615010.1007/s12105‑013‑0506‑424277618
    [Google Scholar]
  75. LiangC. ZhangX. YangM. DongX. Recent progress in ferroptosis inducers for cancer therapy.Adv. Mater.20193151190419710.1002/adma.20190419731595562
    [Google Scholar]
  76. ImaiH. MatsuokaM. KumagaiT. SakamotoT. KoumuraT. Lipid peroxidation-dependent cell death regulated by GPx4 and ferroptosis.Curr Top Microbiol Immunol2017403143170
    [Google Scholar]
  77. ChenY.T. HuangZ.Y. TangH.H. KuoW.T. WuS.Y. LanS.H. ChangK.H. LinP.L. LeeM.F. ChengH.C. LiuH.S. HuangC.Y.F. HuangG.C. SuC.L. Pterostilbene sensitizes cisplatin-resistant human bladder cancer cells with oncogenic HRAS.Cancers20201210286910.3390/cancers1210286933036162
    [Google Scholar]
  78. MantovaniA AllavenaP SicaA BalkwillF. Cancer-related inflammation.Nature.20084547203436444
    [Google Scholar]
  79. HuX. LiY.Q. LiQ.G. MaY.L. PengJ.J. CaiS.J. Osteoglycin-induced VEGF inhibition enhances T lymphocytes infiltrating in colorectal cancer.EBioMedicine201834354510.1016/j.ebiom.2018.07.02130037719
    [Google Scholar]
  80. ZhongG. LouW. YaoM. DuC. WeiH. FuP. Identification of novel mRNA-miRNA-lncRNA competing endogenous RNA network associated with prognosis of breast cancer.Epigenomics201911131501151810.2217/epi‑2019‑020931502865
    [Google Scholar]
  81. PliakouE. LampropoulouD.I. DovrolisN. ChrysikosD. FilippouD. PapadimitriouC. VezakisA. AravantinosG. GazouliM. Circulating miRNA expression profiles and machine learning models in association with response to irinotecan-based treatment in metastatic colorectal cancer.Int. J. Mol. Sci.20222414610.3390/ijms2401004636613487
    [Google Scholar]
  82. SalehiR. SimonianM. SharifiM. NedaeiniaR. MosallaieM. KhosraviS. AvanA. MobarhanG.M. BagheriH. Evaluation of miR-21 inhibition and its impact on cancer susceptibility candidate 2 long noncoding RNA in colorectal cancer cell line.Adv. Biomed. Res.2018711410.4103/abr.abr_214_1629456985
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010293337240312051931
Loading
/content/journals/cpb/10.2174/0113892010293337240312051931
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): biomarker; chemotherapy; ferroptosis; LUAD; overall survival; prognosis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test