Skip to content
2000
Volume 26, Issue 3
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Introduction

TP508 is a thrombin peptide that participates in the inflammatory response and wound healing. Its role in the molecular mechanism of distraction osteogenesis remains unclear. This study established a tibia distraction osteogenesis (DO) model in rats and investigated the role and mechanism of TP508 in bone regeneration during DO.

Methods

Micro-computed tomography (Micro-CT) and hematoxylin-eosin (HE) staining were used to track osteogenesis. Western blot and quantitative real-time polymerase chain reaction (qRT-PCR) were performed to measure the expression of osteoblast-related factors, Wnt/β-catenin signaling-related proteins and genes. Immunohistochemistry was used to measure the expression of β-catenin in the cytoplasm and nucleus.

Results

TP508 accelerated bone regeneration increased the expression of the osteoblast-related factors Alkaline phosphatase (ALP), runt-related transcription factor 2 (RUNX2), and osteocalcin (OCN). After the Wnt signaling was inhibited by LGK974, the expression of osteoblast-related factors was downregulated, leading to a decrease in bone regeneration ability. More importantly, TP508 upregulated β-catenin and its target CYCLIN-D1 and could reverse the decreased osteogenic ability caused by LGK974.

Conclusion

In conclusion, TP508 promotes bone regeneration in DO by activating the Wnt/β-catenin signaling pathway.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010289575240306033011
2024-03-11
2025-04-24
Loading full text...

Full text loading...

References

  1. IlizarovG.A. The tension-stress effect on the genesis and growth of tissues. Part I. The influence of stability of fixation and soft-tissue preservation.Clin. Orthop. Relat. Res.198923823824928110.1097/00003086‑198901000‑000382910611
    [Google Scholar]
  2. KesslerP. MosgauS.S. NeukamF.W. WiltfangJ. Lengthening of the reconstructed mandible using extraoral distraction devices: Report of five cases.Plast. Reconstr. Surg.200311141400140410.1097/01.PRS.0000049115.87004.9212618598
    [Google Scholar]
  3. AlamN. St-ArnaudR. LauzierD. RosenV. HamdyR.C. Are endogenous BMPs necessary for bone healing during distraction osteogenesis?Clin. Orthop. Relat. Res.2009467123190319810.1007/s11999‑009‑1065‑619760469
    [Google Scholar]
  4. LiK. LiuL. LiuH. XingJ. HuP. SongJ. LATS1/YAP1 axis controls bone regeneration on distraction osteogenesis by activating wnt/β-catenin.Tissue Eng. Part A202337930731
    [Google Scholar]
  5. ZhangC. ZhangX. WuH. HanD. GuanJ. Direct compression as an appropriately mechanical environment in bone tissue reconstruction in vitro. Med. Hypotheses20066761414141810.1016/j.mehy.2006.05.04416846697
    [Google Scholar]
  6. Lazo-ZbikowskiJ. AguilarF. MozoF. Gonzalez-BuendiaR. LazoJ.M. Biocompression external fixation. Sliding external osteosynthesis.Clin. Orthop. Relat. Res.19862061691843708972
    [Google Scholar]
  7. OmiH. KusumiT. KijimaH. TohS. Locally administered low-dose alendronate increases bone mineral density during distraction osteogenesis in a rabbit model.J. Bone Joint Surg. Br.200789-B798498810.1302/0301‑620X.89B7.1898017673599
    [Google Scholar]
  8. WangX. LuoE. BiR. YeB. HuJ. ZouS. Wnt/β-catenin signaling is required for distraction osteogenesis in rats.Connect. Tissue Res.2018591455410.1080/03008207.2017.130015428346008
    [Google Scholar]
  9. JiangX. ZouS. YeB. ZhuS. LiuY. HuJ. bFGF-Modified BMMSCs enhance bone regeneration following distraction osteogenesis in rabbits.Bone20104641156116110.1016/j.bone.2009.12.01720036345
    [Google Scholar]
  10. StiernbergJ. NorfleetA.M. RedinW.R. WarnerW.S. FritzR.R. CarneyD.H. Acceleration of full‐thickness wound healing in normal rats by the synthetic thrombin peptide, TP508.Wound Repair Regen.20008320421510.1046/j.1524‑475x.2000.00204.x10886811
    [Google Scholar]
  11. FifeC. MaderJ.T. StoneJ. BrillL. SatterfieldK. NorfleetA. ZwernemannA. RyabyJ.T. CarneyD.H. Thrombin peptide Chrysalin® stimulates healing of diabetic foot ulcers in a placebo‐controlled phase I/II study.Wound Repair Regen.2007151233410.1111/j.1524‑475X.2006.00181.x17244316
    [Google Scholar]
  12. SchwartzZ. CarneyD.H. CrowtherR.S. RyabyJ.T. BoyanB.D. Thrombin peptide (TP508) treatment of rat growth plate cartilage cells promotes proliferation and retention of the chondrocytic phenotype while blocking terminal endochondral differentiation.J. Cell. Physiol.2005202233634310.1002/jcp.2014515534863
    [Google Scholar]
  13. ShellerM.R. CrowtherR.S. KinneyJ.H. YangJ. Di JorioS. BreunigT. CarneyD.H. RyabyJ.T. Repair of rabbit segmental defects with the thrombin peptide, TP508.J. Orthop. Res.20042251094109910.1016/j.orthres.2004.03.00915304284
    [Google Scholar]
  14. CakarerS. OlgacV. AksakalliN. TangA. KeskinC. Acceleration of consolidation period by thrombin peptide 508 in tibial distraction osteogenesis in rats.Br. J. Oral Maxillofac. Surg.201048863363610.1016/j.bjoms.2009.11.00920018416
    [Google Scholar]
  15. AmirL.R. LiG. SchoenmakerT. EvertsV. BronckersA.L.J.J. Effect of thrombin peptide 508 (TP508) on bone healing during distraction osteogenesis in rabbit tibia.Cell Tissue Res.20073301354410.1007/s00441‑007‑0448‑917636332
    [Google Scholar]
  16. LiG. RyabyJ.T. CarneyD.H. WangH. Bone formation is enhanced by thrombin‐related peptide TP508 during distraction osteogenesis.J. Orthop. Res.200523119620210.1016/j.orthres.2004.05.00615607893
    [Google Scholar]
  17. WangY WanC SzökeG RyabyJT LiG Local injection of thrombin-related peptide (TP508) in PPF/PLGA microparticles-enhanced bone formation during distraction osteogenesis.J Orthop Res.2008264539546
    [Google Scholar]
  18. LiK. LiuL. LiuH. LiuY. XingJ. SongJ. LuoE. Hippo/YAP1 promotes osteoporotic mice bone defect repair via the activating of Wnt signaling pathway.Cell. Signal.202411611103710.1016/j.cellsig.2024.11103738184268
    [Google Scholar]
  19. YinN. ZhuL. DingL. YuanJ. DuL. PanM. XueF. XiaoH. MiR-135-5p promotes osteoblast differentiation by targeting HIF1AN in MC3T3-E1 cells.Cell. Mol. Biol. Lett.20192415110.1186/s11658‑019‑0177‑631410089
    [Google Scholar]
  20. KonsavageW.M.Jr YochumG.S. Intersection of Hippo/YAP and Wnt/β-catenin signaling pathways.Acta Biochim. Biophys. Sin.2013452717910.1093/abbs/gms08423027379
    [Google Scholar]
  21. MoseleyC.F. Leg lengthening. A review of 30 years.Clin. Orthop. Relat. Res.198924738432676302
    [Google Scholar]
  22. StewartK.J. WeyandB. HofR.J. WhiteS.A. LvoffG.O. MaffulliN. PooleM.D. A quantitative analysis of the effect of insulin-like growth factor-1 infusion during mandibular distraction osteogenesis in rabbits.Br. J. Plast. Surg.199952534335010.1054/bjps.1999.310310618975
    [Google Scholar]
  23. SaghiehS. KhouryN.J. TawilA. MasrouhaK.Z. MusallamK.M. KhalafK. DoshL. JaouhariR.R. BirjawiG. FuleihanE.H.G. The impact of zoledronic acid on regenerate and native bone after consolidation and removal of the external fixator: An animal model study.Bone201046236336810.1016/j.bone.2009.10.01019837196
    [Google Scholar]
  24. NusseR. CleversH. Wnt/β-catenin signaling, disease, and emerging therapeutic modalities.Cell2017169698599910.1016/j.cell.2017.05.01628575679
    [Google Scholar]
  25. SteinhartZ. AngersS. Wnt signaling in development and tissue homeostasis.Development201814511dev14658910.1242/dev.14658929884654
    [Google Scholar]
  26. HaseebM. PirzadaR.H. AinQ.U. ChoiS. Wnt signaling in the regulation of immune cell and cancer therapeutics.Cells2019811138010.3390/cells811138031684152
    [Google Scholar]
  27. KarnerC.M. LongF. Wnt signaling and cellular metabolism in osteoblasts.Cell. Mol. Life Sci.20177491649165710.1007/s00018‑016‑2425‑527888287
    [Google Scholar]
  28. QinY. ChenM. YangY. ZhouX.R. ShaoS.Y. WangD.W. YuanG. Liraglutide improves hepatic insulin resistance via the canonical Wnt signaling pathway.Mol. Med. Rep.20181757372738010.3892/mmr.2018.873729568881
    [Google Scholar]
  29. KrishnamurthyN. KurzrockR. Targeting the Wnt/beta-catenin pathway in cancer: Update on effectors and inhibitors.Cancer Treat. Rev.201862506010.1016/j.ctrv.2017.11.00229169144
    [Google Scholar]
  30. SongX. WangS. LiL. New insights into the regulation of Axin function in canonical Wnt signaling pathway.Protein Cell20145318619310.1007/s13238‑014‑0019‑224474204
    [Google Scholar]
  31. ZamanG SuswilloRF ChengMZ TavaresIA LanyonLE Early responses to dynamic strain change and prostaglandins in bone-derived cells in culture.J Bone Miner Res.199712576977710.1359/jbmr.1997.12.5.769
    [Google Scholar]
  32. PitsillidesA.A. RawlinsonS.C. SuswilloR.F. BourrinS. ZamanG. LanyonL.E. Mechanical strain-induced NO production by bone cells: A possible role in adaptive bone (re)modeling?FASEB J.19959151614162210.1096/fasebj.9.15.85298418529841
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010289575240306033011
Loading
/content/journals/cpb/10.2174/0113892010289575240306033011
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test