Skip to content
2000
Volume 26, Issue 3
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Background

Deregulated DNA damage response (DDR) network is implicated in cancer progression and therapy resistance.

Objective

The present study was designed to investigate whether nimbolide, an anticancer neem limonoid, targets key components of the DDR signalling pathway in cellular and animal models of oral squamous cell carcinoma (OSCC).

Methods

OSCC cells (SCC-4 and SCC-9), 7,12-dimethylbenz[a]anthracene (DMBA)-induced hamster buccal pouch (HBP) carcinoma model, chemoresistant OSCC patient-derived xenograft (PDX) model established in athymic nude mice, and tissue sections from patients with oral premalignant/malignant disease were used for the study. Key molecules that orchestrate the DDR, including the MRN complex, ATM, DNA-PKcs, H2AX, and p53, were analysed by qRT-PCR, immunoblotting, immunofluorescence, and immunohistochemistry. Cell proliferation and apoptosis indices were evaluated.

Results

Nimbolide significantly reduced 8-oxodG levels, expression of MRN, ATMS1891, and γ-H2AX, with an increase in p-p53S15 in OSCC cells as well as in the HBP model. Nimbolide potentiated the effect of KU-55933 in ATM inhibition. In the PDX model, nimbolide suppressed tumor formation, stimulated DDR and apoptosis, inhibited cell proliferation, and enhanced sensitivity to cisplatin. Analysis of p-ATM expression revealed a significant increase during the sequential progression of hamster and human OSCC.

Conclusion

This study provides compelling evidence that nimbolide functions as a DDR inhibitor in cellular and hamster OSCC models and as a DDR activator in the PDX model primarily by targeting ATM. Small molecules like nimbolide that modulate DDR are of immense benefit in cancer therapy. The study has also unveiled p-ATM as a promising biomarker of tumour progression in human OSCCs.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010291998240321074920
2024-03-28
2025-05-13
Loading full text...

Full text loading...

References

  1. BorseV. KonwarA.N. BuragohainP. Oral cancer diagnosis and perspectives in India.Sensors International2020110004610.1016/j.sintl.2020.10004634766046
    [Google Scholar]
  2. SinghA.G. ChaukarD. GuptaS. PrameshC.S. SullivanR. ChaturvediP. BadweR. A prospective study to determine the cost of illness for oral cancer in India.Ecancermedicalscience202115125210.3332/ecancer.2021.125234267808
    [Google Scholar]
  3. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  4. IraniS. New insights into oral cancer—Risk factors and prevention: A review of literature.Int. J. Prev. Med.202011120210.4103/ijpvm.IJPVM_403_1833815726
    [Google Scholar]
  5. PomellaS. CassandriM. MelaiuO. MaramponF. GargariM. CampanellaV. RotaR. BarillariG. DNA damage response gene signature as potential treatment markers for oral squamous cell carcinoma.Int. J. Mol. Sci.2023243267310.3390/ijms2403267336768994
    [Google Scholar]
  6. TaghaviN. YazdiI. Prognostic factors of survival rate in oral squamous cell carcinoma: Clinical, histologic, genetic and molecular concepts.Arch. Iran Med.201518531431925959914
    [Google Scholar]
  7. NaginiS. ThiyagarajanP. RaoK.S. Interplay between reactive oxygen species and key players in the DNA damage response signaling network.Handbook of Oxidative Stress in Cancer: Mechanistic Aspects. ChakrabortiS. RayB.K. RoychoudhuryS. SingaporeSpringer202210.1007/978‑981‑15‑9411‑3_63
    [Google Scholar]
  8. BlackfordA.N. JacksonS.P. ATM, ATR, and DNA-PK: The trinity at the heart of the DNA damage response.Mol. Cell201766680181710.1016/j.molcel.2017.05.01528622525
    [Google Scholar]
  9. MerighiA. GionchigliaN. GranatoA. LossiL. The phosphorylated form of the histone H2AX (γH2AX) in the brain from embryonic life to old age.Molecules20212623719810.3390/molecules2623719834885784
    [Google Scholar]
  10. AbuetabhY. WuH.H. ChaiC. Al YousefH. PersadS. SergiC.M. LengR. DNA damage response revisited: the p53 family and its regulators provide endless cancer therapy opportunities.Exp. Mol. Med.202254101658166910.1038/s12276‑022‑00863‑436207426
    [Google Scholar]
  11. JurkovicovaD. NeophytouC.M. GašparovićA.Č. GonçalvesA.C. DNA damage response in cancer therapy and resistance: Challenges and opportunities.Int. J. Mol. Sci.202223231467210.3390/ijms23231467236499000
    [Google Scholar]
  12. Ovejero-SánchezM. González-SarmientoR. HerreroA.B. DNA damage response alterations in ovarian cancer: From molecular mechanisms to therapeutic opportunities.Cancers202315244810.3390/cancers1502044836672401
    [Google Scholar]
  13. PapaloukaC. AdamakiM. BatsakiP. ZoumpourlisP. TsintarakisA. GoulielmakiM. FortisS.P. BaxevanisC.N. ZoumpourlisV. DNA damage response mechanisms in head and neck cancer: Significant implications for therapy and survival.Int. J. Mol. Sci.2023243276010.3390/ijms2403276036769087
    [Google Scholar]
  14. ChoiW. LeeE.S. Therapeutic targeting of DNA damage response in cancer.Int. J. Mol. Sci.2022233170110.3390/ijms2303170135163621
    [Google Scholar]
  15. WoodsD. TurchiJ.J. Chemotherapy induced DNA damage response.Cancer Biol. Ther.201314537938910.4161/cbt.2376123380594
    [Google Scholar]
  16. DesaiA. YanY. GersonS.L. Advances in therapeutic targeting of the DNA damage response in cancer.DNA Repair201866-67242910.1016/j.dnarep.2018.04.00429715575
    [Google Scholar]
  17. GoldsteinM. KastanM.B. The DNA damage response: Implications for tumor responses to radiation and chemotherapy.Annu. Rev. Med.201566112914310.1146/annurev‑med‑081313‑12120825423595
    [Google Scholar]
  18. PiliéP.G. TangC. MillsG.B. YapT.A. State-of-the-art strategies for targeting the DNA damage response in cancer.Nat. Rev. Clin. Oncol.20191628110410.1038/s41571‑018‑0114‑z30356138
    [Google Scholar]
  19. SadoughiF. MirsafaeiL. DanaP.M. HallajzadehJ. AsemiZ. MansourniaM.A. MontazerM. HosseinpourM. YousefiB. The role of DNA damage response in chemo- and radio-resistance of cancer cells: Can DDR inhibitors sole the problem?DNA Repair202110110307410.1016/j.dnarep.2021.10307433640757
    [Google Scholar]
  20. van StuijvenbergJ. ProkschP. FritzG. Targeting the DNA damage response (DDR) by natural compounds.Bioorg. Med. Chem.202028411527910.1016/j.bmc.2019.11527931980363
    [Google Scholar]
  21. BrinkmanJ.A. LiuY. KronS.J. Small-molecule drug repurposing to target DNA damage repair and response pathways.Semin. Cancer Biol.20216823024110.1016/j.semcancer.2020.02.01332113999
    [Google Scholar]
  22. ChenC.C. ChenC.Y. ChengS.F. ShiehT.M. LeuY.L. ChuangW.Y. LiuK.T. UengS.H. ShihY.H. ChouL.F. WangT.H. Hydroxygenkwanin increases the sensitivity of liver cancer cells to chemotherapy by inhibiting DNA damage response in mouse xenograft models.Int. J. Mol. Sci.20212218976610.3390/ijms2218976634575923
    [Google Scholar]
  23. GroellyF.J. FawkesM. DaggR.A. BlackfordA.N. TarsounasM. Targeting DNA damage response pathways in cancer.Nat. Rev. Cancer2023232789410.1038/s41568‑022‑00535‑536471053
    [Google Scholar]
  24. TianD. TangJ. GengX. LiQ. WangF. ZhaoH. NarlaG. YaoX. ZhangY. Targeting UHRF1-dependent DNA repair selectively sensitizes KRAS mutant lung cancer to chemotherapy.Cancer Lett.2020493809010.1016/j.canlet.2020.08.00832814087
    [Google Scholar]
  25. WangF. JinS. Mayca PozoF. TianD. TangX. DaiY. YaoX. TangJ. ZhangY. Chemical screen identifies shikonin as a broad DNA damage response inhibitor that enhances chemotherapy through inhibiting ATM and ATR.Acta Pharm. Sin. B20221231339135010.1016/j.apsb.2021.08.02535530159
    [Google Scholar]
  26. NaginiS. NivethaR. PalrasuM. MishraR. Nimbolide, a neem limonoid, is a promising candidate for the anticancer drug arsenal.J. Med. Chem.20216473560357710.1021/acs.jmedchem.0c0223933739088
    [Google Scholar]
  27. NaginiS. PalrasuM. BishayeeA. Limonoids from neem ( Azadirachta indica A. Juss.) are potential anticancer drug candidates.Med. Res. Rev.202444245749610.1002/med.2198837589457
    [Google Scholar]
  28. WangL. PhanD.D.K. ZhangJ. OngP.S. ThuyaW.L. SooR. WongA.L.A. YongW.P. LeeS.C. HoP.C.L. SethiG. GohB.C. Anticancer properties of nimbolide and pharmacokinetic considerations to accelerate its development.Oncotarget2016728447904480210.18632/oncotarget.831627027349
    [Google Scholar]
  29. HsuehK.C. LinC.L. TungJ.N. YangS.F. HsiehY.H. Nimbolide induced apoptosis by activating ERK‐mediated inhibition of c‐IAP1 expression in human hepatocellular carcinoma cells.Environ. Toxicol.201833991392210.1002/tox.2257629962003
    [Google Scholar]
  30. KowshikJ. MishraR. SophiaJ. RautrayS. AnbarasuK. ReddyG.D. DixitM. MahalingamS. NaginiS. Nimbolide upregulates RECK by targeting miR-21 and HIF-1α in cell lines and in a hamster oral carcinogenesis model.Sci. Rep.201771204510.1038/s41598‑017‑01960‑528515436
    [Google Scholar]
  31. MahmoudN. DawoodM. HuangQ. NgJ.P.L. RenF. WongV.K.W. EfferthT. Nimbolide inhibits 2D and 3D prostate cancer cells migration, affects microtubules and angiogenesis and suppresses B-RAF/p.ERK-mediated in vivo tumor growth.Phytomedicine20229415382610.1016/j.phymed.2021.15382634775358
    [Google Scholar]
  32. NathN. RanaA. NaginiS. MishraR. Glycogen synthase kinase‐3β inactivation promotes cervical cancer progression, invasion, and drug resistance.Biotechnol. Appl. Biochem.20226951929194110.1002/bab.225834554598
    [Google Scholar]
  33. ShinS.S. HwangB. MuhammadK. GhoY. SongJ.H. KimW.J. KimG. MoonS.K. Nimbolide represses the proliferation, migration, and invasion of bladder carcinoma cells via chk2-mediated G2/M phase cell cycle arrest, altered signaling pathways, and reduced transcription factors-associated MMP-9 expression.Evid. Based Complement. Alternat. Med.2019201911210.1155/2019/375358731391858
    [Google Scholar]
  34. SinghD. MohapatraP. KumarS. BeheraS. DixitA. SahooS.K. Nimbolide-encapsulated PLGA nanoparticles induces Mesenchymal-to-Epithelial Transition by dual inhibition of AKT and mTOR in pancreatic cancer stem cells.Toxicol. In vitro20227910529310.1016/j.tiv.2021.10529334883246
    [Google Scholar]
  35. SophiaJ. KowshikJ. DwivediA. BhutiaS.K. ManavathiB. MishraR. NaginiS. Nimbolide, a neem limonoid inhibits cytoprotective autophagy to activate apoptosis via modulation of the PI3K/Akt/GSK-3β signalling pathway in oral cancer.Cell Death Dis.2018911108710.1038/s41419‑018‑1126‑430352996
    [Google Scholar]
  36. SophiaJ. Kiran Kishore TK. KowshikJ. MishraR. NaginiS. Nimbolide, a neem limonoid inhibits phosphatidyl inositol-3 kinase to activate glycogen synthase kinase-3β in a hamster model of oral oncogenesis.Sci. Rep.2016612219210.1038/srep2219226902162
    [Google Scholar]
  37. KavithaK. Vidya PriyadarsiniR. AnithaP. RamalingamK. SakthivelR. PurushothamanG. SinghA.K. KarunagaranD. NaginiS. Nimbolide, a neem limonoid abrogates canonical NF-κB and Wnt signaling to induce caspase-dependent apoptosis in human hepatocarcinoma (HepG2) cells.Eur. J. Pharmacol.20126811-361410.1016/j.ejphar.2012.01.02422327045
    [Google Scholar]
  38. PriyadarsiniR.V. MuruganR.S. SripriyaP. KarunagaranD. NaginiS. The neem limonoids azadirachtin and nimbolide induce cell cycle arrest and mitochondria-mediated apoptosis in human cervical cancer (HeLa) cells.Free Radic. Res.201044662463410.3109/1071576100369250320429769
    [Google Scholar]
  39. LiP. ZhenY. KimC. LiuZ. HaoJ. DengH. DengH. ZhouM. WangX.D. QinT. YuY. Nimbolide targets RNF114 to induce the trapping of PARP1 and synthetic lethality in BRCA -mutated cancer.Sci. Adv.2023943eadg775210.1126/sciadv.adg775237878693
    [Google Scholar]
  40. BundelaS. SharmaA. BisenP.S. Potential compounds for oral cancer treatment: resveratrol, nimbolide, lovastatin, bortezomib, vorinostat, berberine, pterostilbene, deguelin, andrographolide, and colchicine.PLoS One20151011e014171910.1371/journal.pone.014171926536350
    [Google Scholar]
  41. MosmannT. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays.J. Immunol. Methods1983651-2556310.1016/0022‑1759(83)90303‑46606682
    [Google Scholar]
  42. NivethaR. ArvindhS. BabaA.B. GadeD.R. GopalG. KC. ReddyK.P. ReddyG.B. NaginiS. Nimbolide, a neem limonoid, inhibits angiogenesis in breast cancer by abrogating aldose reductase mediated IGF-1/PI3K/Akt signalling.Anticancer. Agents Med. Chem.202222142619263610.2174/187152062266622020411515135125086
    [Google Scholar]
  43. LowryO. RosebroughN. FarrA.L. RandallR. Protein measurement with the folin phenol reagent.J. Biol. Chem.1951193126527510.1016/S0021‑9258(19)52451‑614907713
    [Google Scholar]
  44. GoriniF. ScalaG. CookeM.S. MajelloB. AmenteS. Towards a comprehensive view of 8-oxo-7,8-dihydro-2′-deoxyguanosine: Highlighting the intertwined roles of DNA damage and epigenetics in genomic instability.DNA Repair20219710302710.1016/j.dnarep.2020.10302733285475
    [Google Scholar]
  45. OdaK. ArakawaH. TanakaT. MatsudaK. TanikawaC. MoriT. NishimoriH. TamaiK. TokinoT. NakamuraY. TayaY. p53AIP1, a potential mediator of p53-dependent apoptosis, and its regulation by Ser-46-phosphorylated p53.Cell2000102684986210.1016/S0092‑8674(00)00073‑811030628
    [Google Scholar]
  46. MartoranaF. Da SilvaL.A. SessaC. ColomboI. Everything comes with a price: The toxicity profile of DNA-damage response targeting agents.Cancers202214495310.3390/cancers1404095335205700
    [Google Scholar]
  47. KaurJ. PolitisC. JacobsR. Salivary 8-hydroxy-2-deoxyguanosine, malondialdehyde, vitamin C, and vitamin E in oral pre-cancer and cancer: diagnostic value and free radical mechanism of action.Clin. Oral Investig.201620231531910.1007/s00784‑015‑1506‑426077895
    [Google Scholar]
  48. ZhangM. HouM. GeL. MiaoC. ZhangJ. JingX. ShiN. ChenT. TangX. Induction of peroxiredoxin 1 by hypoxia regulates heme oxygenase-1 via NF-κB in oral cancer.PLoS One201498e10599410.1371/journal.pone.010599425162226
    [Google Scholar]
  49. NandakumarA. NatarajP. JamesA. KrishnanR. K MM. Estimation of salivary 8-hydroxydeoxyguanosine (8-OHdG) as a potential biomarker in assessing progression towards malignancy: A case-control study.Asian Pac. J. Cancer Prev.20202182325232910.31557/APJCP.2020.21.8.232532856861
    [Google Scholar]
  50. NaginiS. LetchoumyP.V. AT. CrR. Of humans and hamsters: A comparative evaluation of carcinogen activation, DNA damage, cell proliferation, apoptosis, invasion, and angiogenesis in oral cancer patients and hamster buccal pouch carcinomas.Oral Oncol.2009456e31e3710.1016/j.oraloncology.2009.01.00619250857
    [Google Scholar]
  51. ChenY.C. YangC.W. ChanT.F. FarooqiA.A. ChangH.S. YenC.H. HuangM.Y. ChangH.W. Cryptocaryone promotes ROS-dependent antiproliferation and apoptosis in ovarian cancer cells.Cells202211464110.3390/cells1104064135203294
    [Google Scholar]
  52. TangJ.Y. HuangH.W. WangH.R. ChanY.C. HaungJ.W. ShuC.W. WuY.C. ChangH.W. 4β‐Hydroxywithanolide E selectively induces oxidative DNA damage for selective killing of oral cancer cells.Environ. Toxicol.201833329530410.1002/tox.2251629165875
    [Google Scholar]
  53. TangJ.Y. YuT.J. LinL.C. PengS.Y. WangC.L. Ou-YangF. ChengY.B. ChangH.W. Ethyl acetate extracts of Nepenthes ventricosa x sibuyanensis leaves cause growth inhibition against oral cancer cells via oxidative stress.OncoTargets Ther.2019125227523910.2147/OTT.S19046031308694
    [Google Scholar]
  54. WangQ. ZhangL. XiaoY. GhaemnezhadA. Diosgenin promotes cisplatin‐induced apoptosis through oxidative DNA damage in A549 non‐small cell lung cells.Cell Biol. Int.202246101571157610.1002/cbin.1186235870171
    [Google Scholar]
  55. YenC.J. HungC.H. TsaiW.M. ChengH.C. YangH.L. LuY.J. TsaiK.L. Effect of exercise training on exercise tolerance and level of oxidative stress for head and neck cancer patients following chemotherapy.Front. Oncol.202010153610.3389/fonc.2020.0153633014797
    [Google Scholar]
  56. Darling-ReedS.F. Nkrumah-ElieY. FergusonD.T. Flores-RozasH. MendoncaP. MessehaS. HudsonA. BadisaR.B. TilghmanS.L. WombleT. DayA. JettM. HammamiehR. SolimanK.F.A. Diallyl sulfide attenuation of carcinogenesis in mammary epithelial cells through the inhibition of ROS formation, and DNA strand breaks.Biomolecules2021119131310.3390/biom1109131334572526
    [Google Scholar]
  57. De MouraC.F.G. SoaresG.R. RibeiroF.A.P. SilvaM.J.D. VilegasW. SantamarinaA.B. PisaniL.P. EstadellaD. RibeiroD.A. Evaluation of the chemopreventive activity of grape skin extract using medium-term oral carcinogenesis assay induced by 4-nitroquinoline 1-oxide.Anticancer Res.201939117718210.21873/anticanres.1309530591456
    [Google Scholar]
  58. WangY.Y. ChenY.K. LoS. ChiT.C. ChenY.H. HuS.C.S. ChenY.W. JiangS.S. TsaiF.Y. LiuW. LiR.N. HsiehY.C. HuangC.J. YuanS.S.F. MRE11 promotes oral cancer progression through RUNX2/CXCR4/AKT/FOXA2 signaling in a nuclease-independent manner.Oncogene202140203510353210.1038/s41388‑021‑01698‑533927349
    [Google Scholar]
  59. WangY.Y. HungA.C. LoS. HsiehY.C. YuanS.S.F. MRE11 as a molecular signature and therapeutic target for cancer treatment with radiotherapy.Cancer Lett.202151411110.1016/j.canlet.2021.05.01334022282
    [Google Scholar]
  60. HeY. ChenQ. LiB. ATM in oral carcinogenesis: Association with clinicopathological features.J. Cancer Res. Clin. Oncol.200813491013102010.1007/s00432‑008‑0365‑718288488
    [Google Scholar]
  61. ColtonS.L. XuX.S. WangY.A. WangG. The involvement of ataxia-telangiectasia mutated protein activation in nucleotide excision repair-facilitated cell survival with cisplatin treatment.J. Biol. Chem.200628137271172712510.1074/jbc.M60282620016849332
    [Google Scholar]
  62. KhadelaA. PostwalaH. RanaD. DaveH. RanchK. BodduS.H.S. A review of recent advances in the novel therapeutic targets and immunotherapy for lung cancer.Med. Oncol.202340515210.1007/s12032‑023‑02005‑w37071269
    [Google Scholar]
  63. GoldingS.E. RosenbergE. ValerieN. HussainiI. FrigerioM. CockcroftX.F. ChongW.Y. HummersoneM. RigoreauL. MenearK.A. O’ConnorM.J. PovirkL.F. van MeterT. ValerieK. Improved ATM kinase inhibitor KU-60019 radiosensitizes glioma cells, compromises insulin, AKT and ERK prosurvival signaling, and inhibits migration and invasion.Mol. Cancer Ther.20098102894290210.1158/1535‑7163.MCT‑09‑051919808981
    [Google Scholar]
  64. HicksonI. ZhaoY. RichardsonC.J. GreenS.J. MartinN.M.B. OrrA.I. ReaperP.M. JacksonS.P. CurtinN.J. SmithG.C.M. Identification and characterization of a novel and specific inhibitor of the ataxia-telangiectasia mutated kinase ATM.Cancer Res.200464249152915910.1158/0008‑5472.CAN‑04‑272715604286
    [Google Scholar]
  65. ChiuL.Y. SunQ. ZenkeF.T. BlaukatA. VassilevL.T. Selective ATM inhibition augments radiation-induced inflammatory signaling and cancer cell death.Aging202215249251210.18632/aging.20448736656721
    [Google Scholar]
  66. DurantS. T. ZhengL. WangY. ChenK. ZhangL. ZhangT. YangZ. RichesL. TrinidadA. G. FokJ. H. L. HuntT. PikeK. G. WilsonJ. SmithA. ColcloughN. ReddyV. P. SykesA. JanefeldtA. JohnströmP. PassM. The brain-penetrant clinical ATM inhibitor AZD1390 radiosensitizes and improves survival of preclinical brain tumor models.Sci Adv.201846eaat171910.1126/sciadv.aat1719
    [Google Scholar]
  67. PikeK.G. BarlaamB. CadoganE. CampbellA. ChenY. ColcloughN. DaviesN.L. de-AlmeidaC. DegorceS.L. DidelotM. DishingtonA. DucrayR. DurantS.T. HassallL.A. HolmesJ. HughesG.D. MacFaulP.A. MulhollandK.R. McGuireT.M. Al-HunitiN. The identification of potent, selective, and orally available inhibitors of ataxia telangiectasia mutated (ATM) kinase: The discovery of AZD0156 (8-{6-[3-(dimethylamino)propoxy]pyridin-3-yl}-3-methyl-1-(tetrahydro-2 H -pyran-4-yl)-1,3-dihydro-2 H -imidazo[4,5- c ]quinolin-2-one).J. Med. Chem.20186193823384110.1021/acs.jmedchem.7b0189629683659
    [Google Scholar]
  68. PanS.T. HuangG. WangQ. QiuJ.X. Plumbagin enhances the radiosensitivity of tongue squamous cell carcinoma cells via downregulating ATM.J. Oncol.2021202111110.1155/2021/823998434484337
    [Google Scholar]
  69. LowG.M. ThylurD.S. YamamotoV. SinhaU.K. The effect of human papillomavirus on DNA repair in head and neck squamous cell carcinoma.Oral Oncol.201661273010.1016/j.oraloncology.2016.08.00227688101
    [Google Scholar]
  70. NikitakisN.G. RassidakisG.Z. TasoulasJ. GkouverisI. KamperosG. DaskalopoulosA. SklavounouA. Alterations in the expression of DNA damage response-related molecules in potentially preneoplastic oral epithelial lesions.Oral Surg. Oral Med. Oral Pathol. Oral Radiol.2018125663764910.1016/j.oooo.2018.03.00629705090
    [Google Scholar]
  71. Oliveira-CostaJ.P. OliveiraL.R. ZanettiJ.S. SilveiraG.G. BuimM.E.C. ZucolotoS. Ribeiro-SilvaA. SoaresF.A. SoaresF.A. BRCA1 and γH2AX as independent prognostic markers in oral squamous cell carcinoma.Oncoscience20141538339110.18632/oncoscience.4725594033
    [Google Scholar]
  72. GanesanS. BhattacharyaP. KeatingA.F. 7,12-Dimethylbenz[a]anthracene exposure induces the DNA repair response in neonatal rat ovaries.Toxicol. Appl. Pharmacol.2013272369069610.1016/j.taap.2013.08.01323969067
    [Google Scholar]
  73. LindemannA. TakahashiH. PatelA.A. OsmanA.A. MyersJ.N. Targeting the DNA damage response in OSCC with TP53 mutations.J. Dent. Res.201897663564410.1177/002203451875906829489434
    [Google Scholar]
  74. LiuY. TavanaO. GuW. p53 modifications: Exquisite decorations of the powerful guardian.J. Mol. Cell Biol.201911756457710.1093/jmcb/mjz06031282934
    [Google Scholar]
  75. YogosawaS. YoshidaK. Tumor suppressive role for kinases phosphorylating p53 in DNA damage‐induced apoptosis.Cancer Sci.2018109113376338210.1111/cas.1379230191640
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010291998240321074920
Loading
/content/journals/cpb/10.2174/0113892010291998240321074920
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test