Skip to content
2000
Volume 26, Issue 3
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Background

Extracellular vesicles (EVs) are emerging as potential drug carriers in the fight against COVID-19. This study investigates the ability of EVs as drug carriers to target SARS-CoV-2-infected cells.

Methods

EVs were modified using Xstamp technology to carry the virus’s RBD, enhancing targeting ability to hACE2+ cells and improving drug delivery efficiency. Characterization confirmed EVs’ suitability as drug carriers. For tests, A549, Caco-2, and 4T1 cells were used to assess the targeting specificity of EVRs (EVs with membrane-surface enriched RBD). Moreover, we utilized an lung tissue model overexpressing hACE2 as an model to confirm the targeting capability of EVRs toward lung tissue. The study also evaluated drug loading efficiency and assessed the potential of the anti-inflammatory activity on A549 lung cancer cells exposed to lipopolysaccharide.

Results

The results demonstrate the successful construction of RBD-fused EVRs on the membrane-surface. In both and models, EVRs significantly enhance their targeting ability towards hACE2+ cells, rendering them a safe and efficient drug carrier. Furthermore, ultrasound loading efficiently incorporates IL-10 into EVRs, establishing an effective drug delivery system that ameliorates the pro-inflammatory response induced by LPS-stimulated A549 cells.

Conclusion

These findings indicate promising opportunities for engineered EVs as a novel nanomedicine carrier, offering valuable insights for therapeutic strategies against COVID-19 and other diseases.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010282251240324123038
2024-03-28
2025-04-25
Loading full text...

Full text loading...

References

  1. ZhouF. YuT. DuR. FanG. LiuY. LiuZ. XiangJ. WangY. SongB. GuX. GuanL. WeiY. LiH. WuX. XuJ. TuS. ZhangY. ChenH. CaoB. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study.Lancet2020395102291054106210.1016/S0140‑6736(20)30566‑332171076
    [Google Scholar]
  2. LukH.K.H. LiX. FungJ. LauS.K.P. WooP.C.Y. Molecular epidemiology, evolution and phylogeny of SARS coronavirus.Infect. Genet. Evol.201971213010.1016/j.meegid.2019.03.00130844511
    [Google Scholar]
  3. WiersingaW.J. RhodesA. ChengA.C. PeacockS.J. PrescottH.C. Pathophysiology, transmission, diagnosis, and treatment of coronavirus disease 2019 (COVID-19).JAMA2020324878279310.1001/jama.2020.1283932648899
    [Google Scholar]
  4. BuzasE.I. The roles of extracellular vesicles in the immune system.Nat. Rev. Immunol.202323423625010.1038/s41577‑022‑00763‑835927511
    [Google Scholar]
  5. ZhengJ. WongL.Y.R. LiK. VermaA.K. OrtizM.E. Wohlford-LenaneC. LeidingerM.R. KnudsonC.M. MeyerholzD.K. McCrayP.B.Jr PerlmanS. COVID-19 treatments and pathogenesis including anosmia in K18-hACE2 mice.Nature2021589784360360710.1038/s41586‑020‑2943‑z33166988
    [Google Scholar]
  6. HanP. LiL. LiuS. WangQ. ZhangD. XuZ. HanP. LiX. PengQ. SuC. HuangB. LiD. ZhangR. TianM. FuL. GaoY. ZhaoX. LiuK. QiJ. GaoG.F. WangP. Receptor binding and complex structures of human ACE2 to spike RBD from omicron and delta SARS-CoV-2.Cell20221854630640.e1010.1016/j.cell.2022.01.00135093192
    [Google Scholar]
  7. TikellisC. JohnstonC.I. ForbesJ.M. BurnsW.C. BurrellL.M. RisvanisJ. CooperM.E. Characterization of renal angiotensin-converting enzyme 2 in diabetic nephropathy.Hypertension200341339239710.1161/01.HYP.0000060689.38912.CB12623933
    [Google Scholar]
  8. XuH. ZhongL. DengJ. PengJ. DanH. ZengX. LiT. ChenQ. High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa.Int. J. Oral Sci.2020121810.1038/s41368‑020‑0074‑x32094336
    [Google Scholar]
  9. ZouX. ChenK. ZouJ. HanP. HaoJ. HanZ. Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection.Front. Med.202014218519210.1007/s11684‑020‑0754‑032170560
    [Google Scholar]
  10. ZhouP. YangX.L. WangX.G. HuB. ZhangL. ZhangW. SiH.R. ZhuY. LiB. HuangC.L. ChenH.D. ChenJ. LuoY. GuoH. JiangR.D. LiuM.Q. ChenY. ShenX.R. WangX. ZhengX.S. ZhaoK. ChenQ.J. DengF. LiuL.L. YanB. ZhanF.X. WangY.Y. XiaoG.F. ShiZ.L. A pneumonia outbreak associated with a new coronavirus of probable bat origin.Nature2020579779827027310.1038/s41586‑020‑2012‑732015507
    [Google Scholar]
  11. GeeP. LungM.S.Y. OkuzakiY. SasakawaN. IguchiT. MakitaY. HozumiH. MiuraY. YangL.F. IwasakiM. WangX.H. WallerM.A. ShiraiN. AbeY.O. FujitaY. WatanabeK. KagitaA. IwabuchiK.A. YasudaM. XuH. NodaT. KomanoJ. SakuraiH. InukaiN. HottaA. Extracellular nanovesicles for packaging of CRISPR-Cas9 protein and sgRNA to induce therapeutic exon skipping.Nat. Commun.2020111133410.1038/s41467‑020‑14957‑y32170079
    [Google Scholar]
  12. LiG. FanY. LaiY. HanT. LiZ. ZhouP. PanP. WangW. HuD. LiuX. ZhangQ. WuJ. Coronavirus infections and immune responses.J. Med. Virol.202092442443210.1002/jmv.2568531981224
    [Google Scholar]
  13. GreinJ. OhmagariN. ShinD. DiazG. AspergesE. CastagnaA. FeldtT. GreenG. GreenM.L. LescureF.X. NicastriE. OdaR. YoK. Quiros-RoldanE. StudemeisterA. RedinskiJ. AhmedS. BernettJ. ChelliahD. ChenD. ChiharaS. CohenS.H. CunninghamJ. D’Arminio MonforteA. IsmailS. KatoH. LapadulaG. L’HerE. MaenoT. MajumderS. MassariM. Mora-RilloM. MutohY. NguyenD. VerweijE. ZoufalyA. OsinusiA.O. DeZureA. ZhaoY. ZhongL. ChokkalingamA. ElboudwarejE. TelepL. TimbsL. HenneI. SellersS. CaoH. TanS.K. WinterbourneL. DesaiP. MeraR. GaggarA. MyersR.P. BrainardD.M. ChildsR. FlaniganT. Compassionate use of remdesivir for patients with severe covid-19.N. Engl. J. Med.2020382242327233610.1056/NEJMoa200701632275812
    [Google Scholar]
  14. WangY. ZhangD. DuG. DuR. ZhaoJ. JinY. FuS. GaoL. ChengZ. LuQ. HuY. LuoG. WangK. LuY. LiH. WangS. RuanS. YangC. MeiC. WangY. DingD. WuF. TangX. YeX. YeY. LiuB. YangJ. YinW. WangA. FanG. ZhouF. LiuZ. GuX. XuJ. ShangL. ZhangY. CaoL. GuoT. WanY. QinH. JiangY. JakiT. HaydenF.G. HorbyP.W. CaoB. WangC. Remdesivir in adults with severe COVID-19: A randomised, double-blind, placebo-controlled, multicentre trial.Lancet2020395102361569157810.1016/S0140‑6736(20)31022‑932423584
    [Google Scholar]
  15. PegtelD.M. GouldS.J. Exosomes.Annu. Rev. Biochem.201988148751410.1146/annurev‑biochem‑013118‑11190231220978
    [Google Scholar]
  16. WengZ. ZhangB. WuC. YuF. HanB. LiB. LiL. Therapeutic roles of mesenchymal stem cell-derived extracellular vesicles in cancer.J. Hematol. Oncol.202114113610.1186/s13045‑021‑01141‑y34479611
    [Google Scholar]
  17. ElsharkasyO.M. NordinJ.Z. HageyD.W. de JongO.G. SchiffelersR.M. AndaloussiS.E.L. VaderP. Extracellular vesicles as drug delivery systems: Why and how?Adv. Drug Deliv. Rev.202015933234310.1016/j.addr.2020.04.00432305351
    [Google Scholar]
  18. TianT. ZhangH.X. HeC.P. FanS. ZhuY.L. QiC. HuangN.P. XiaoZ.D. LuZ.H. TannousB.A. GaoJ. Surface functionalized exosomes as targeted drug delivery vehicles for cerebral ischemia therapy.Biomaterials201815013714910.1016/j.biomaterials.2017.10.01229040874
    [Google Scholar]
  19. RichterM. VaderP. FuhrmannG. Approaches to surface engineering of extracellular vesicles.Adv. Drug Deliv. Rev.202117341642610.1016/j.addr.2021.03.02033831479
    [Google Scholar]
  20. TsaiH. WuY. LiuX. XuZ. LiuL. WangC. ZhangH. HuangY. WangL. ZhangW. SuD. KhanF.U. ZhuX. YangR. PangY. ErikssonJ.E. ZhuH. WangD. JiaB. ChengF. ChenH. Engineered small extracellular vesicles as a fgl1/pd‐l1 dual‐targeting delivery system for alleviating immune rejection.Adv. Sci.202293210263410.1002/advs.20210263434738731
    [Google Scholar]
  21. XiaoY. TianJ. WuW.C. GaoY.H. GuoY.X. SongS.J. GaoR. WangL.B. WuX.Y. ZhangY. LiX. Targeting central nervous system extracellular vesicles enhanced triiodothyronine remyelination effect on experimental autoimmune encephalomyelitis.Bioact. Mater.2022937338410.1016/j.bioactmat.2021.07.01734820577
    [Google Scholar]
  22. WuX.Y. LiaoB.Y. XiaoD. WuW.C. XiaoY. AlexanderT. SongS.J. ZhaoZ.H. ZhangY. WangZ.H. WangL.B. LiX. Encapsulation of bryostatin-1 by targeted exosomes enhances remyelination and neuroprotection effects in the cuprizone-induced demyelinating animal model of multiple sclerosis.Biomater. Sci.202210371472710.1039/D1BM01142A34928285
    [Google Scholar]
  23. XiaoY. ZhangY. GaoY.H. ZhaoZ.H. HeJ. GaoR. GuoY.X. WangL.B. LiX. A targeted extracellular vesicles loaded with montelukast in the treatment of demyelinating diseases.Biochem. Biophys. Res. Commun.2022594313710.1016/j.bbrc.2022.01.05135066377
    [Google Scholar]
  24. WuW.C. TianJ. XiaoD. GuoY.X. XiaoY. WuX.Y. CasellaG. RasouliJ. YanY.P. RostamiA. WangL.B. ZhangY. LiX. Engineered extracellular vesicles encapsulated Bryostatin-1 as therapy for neuroinflammation.Nanoscale20221462393241010.1039/D1NR05517H35088795
    [Google Scholar]
  25. ShaoJ. ZaroJ. ShenY. Advances in exosome-based drug delivery and tumor targeting: From tissue distribution to intracellular fate.Int. J. Nanomedicine2020159355937110.2147/IJN.S28189033262592
    [Google Scholar]
  26. FuY. XiongS. Tagged extracellular vesicles with the RBD of the viral spike protein for delivery of antiviral agents against SARS-COV-2 infection.J. Control. Release202133558459510.1016/j.jconrel.2021.05.04934089793
    [Google Scholar]
  27. WangZ. PopowskiK.D. ZhuD. de Juan AbadB.L. WangX. LiuM. LutzH. De NaeyerN. DeMarcoC.T. DennyT.N. DinhP.U.C. LiZ. ChengK. Exosomes decorated with a recombinant SARS-CoV-2 receptor-binding domain as an inhalable COVID-19 vaccine.Nat. Biomed. Eng.20226779180510.1038/s41551‑022‑00902‑535788687
    [Google Scholar]
  28. GalisovaA. ZahradnikJ. Allouche-ArnonH. MorandiM.I. Abou KaramP. FislerM. AvinoamO. Regev-RudzkiN. SchreiberG. Bar-ShirA. Genetically engineered MRI-trackable extracellular vesicles as SARS-CoV-2 mimetics for mapping ACE2 binding in vivo.ACS Nano2022168122761228910.1021/acsnano.2c0311935921522
    [Google Scholar]
  29. El KarouiK. De VrieseA.S. COVID-19 in dialysis: Clinical impact, immune response, prevention, and treatment.Kidney Int.2022101588389410.1016/j.kint.2022.01.02235176326
    [Google Scholar]
  30. HerrmannI.K. WoodM.J.A. FuhrmannG. Extracellular vesicles as a next-generation drug delivery platform.Nat. Nanotechnol.202116774875910.1038/s41565‑021‑00931‑234211166
    [Google Scholar]
  31. Alvarez-ErvitiL. SeowY. YinH. BettsC. LakhalS. WoodM.J.A. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes.Nat. Biotechnol.201129434134510.1038/nbt.180721423189
    [Google Scholar]
  32. MentkowskiK.I. LangJ.K. Exosomes engineered to express a cardiomyocyte binding peptide demonstrate improved cardiac retention in vivo.Sci. Rep.2019911004110.1038/s41598‑019‑46407‑131296886
    [Google Scholar]
  33. CasellaG. ColomboF. FinardiA. DescampsH. Ill-RagaG. SpinelliA. PodiniP. BastoniM. MartinoG. MuzioL. FurlanR. Extracellular vesicles containing IL-4 modulate neuroinflammation in a mouse model of multiple sclerosis.Mol. Ther.20182692107211810.1016/j.ymthe.2018.06.02430017878
    [Google Scholar]
  34. WangQ. YuJ. KadungureT. BeyeneJ. ZhangH. LuQ. ARMMs as a versatile platform for intracellular delivery of macromolecules.Nat. Commun.20189196010.1038/s41467‑018‑03390‑x29511190
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010282251240324123038
Loading
/content/journals/cpb/10.2174/0113892010282251240324123038
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keyword(s): COVID-19; drug-targeted delivery; Extracellular vesicles; hACE2; SARS-CoV-2; Xstamp
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test