Skip to content
2000
Volume 26, Issue 2
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Pancreatic cancer kills millions of people worldwide each year and is one of the most prevalent causes of mortality that requires prompt therapy. A large number of people suffering from pancreatic cancer are detected at an advanced stage, with incurable and drug-resistant tumor, hence the overall survival rate of pancreatic cancer is less. The advance phase of this cancer is generated because of expression of the cancer-causing gene, inactivation of the tumor-suppressing gene, and deregulation of molecules in different cellular signalling pathways. The prompt diagnosis through the biomarkers significantly evades the progress and accelerates the survival rates. The overexpression of Mesothelin, Urokinase plasminogen activator, IGFR, Epidermal growth factor receptor, Plectin-1, Mucin-1 and Zinc transporter 4 were recognized in the diagnosis of pancreatic cancer. Nanotechnology has led to the development of nanocarriers-based formulations (lipid, polymer, inorganic, carbon based and advanced nanocarriers) which overcome the hurdles of conventional therapy, chemotherapy and radiotherapy which causes toxicity to adjacent healthy tissues. The biocompatibility, toxicity and large-scale manufacturing are the hurdles associated with the nanocarriers-based approaches. Currently, Immunotherapy-based techniques emerged as an efficient therapeutic alternative for the prevention of cancer. Immunological checkpoint targeting techniques have demonstrated significant efficacy in human cancers. Recent advancements in checkpoint inhibitors, adoptive T cell therapies, and cancer vaccines have shown potential in overcoming the immune evasion mechanisms of pancreatic cancer cells. Combining these immunotherapeutic approaches with nanocarriers holds great promise in enhancing the antitumor response and improving patient survival.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010284407240212110745
2024-02-23
2024-12-26
Loading full text...

Full text loading...

References

  1. FerlayJ. ShinH.R. BrayF. FormanD. MathersC. ParkinD.M. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008.Int. J. Cancer2010127122893291710.1002/ijc.25516 21351269
    [Google Scholar]
  2. AnandP. KunnumakaraA.B. SundaramC. HarikumarK.B. TharakanS.T. LaiO.S. SungB. AggarwalB.B. Cancer is a preventable disease that requires major lifestyle changes.Pharm. Res.20082592097211610.1007/s11095‑008‑9661‑9 18626751
    [Google Scholar]
  3. WuS. ZhuW. ThompsonP. HannunY.A. Evaluating intrinsic and non-intrinsic cancer risk factors.Nat. Commun.201891349010.1038/s41467‑018‑05467‑z
    [Google Scholar]
  4. HeshamH. FayezA-K. GhishanK. The Pancreas.Textbook of Clinical Pediatrics.United StatesSpringer Link20121925193610.1007/978‑3‑642‑02202‑9_198
    [Google Scholar]
  5. SarlesH. The exocrine pancreas.Int. Rev. Physiol.19771217322110.4199/C00026ED1V01Y201102ISP014 190181
    [Google Scholar]
  6. AndersenD.K. KorcM. PetersenG.M. EiblG. LiD. RickelsM.R. ChariS.T. AbbruzzeseJ.L. Diabetes, Pancreatogenic Diabetes, and Pancreatic Cancer.Diabetes20176651103111010.2337/db16‑1477 28507210
    [Google Scholar]
  7. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.21660 33538338
    [Google Scholar]
  8. JemalA. BrayF. CenterM.M. FerlayJ. WardE. FormanD. Global cancer statistics.CA Cancer J. Clin.2011612699010.3322/caac.20107 21296855
    [Google Scholar]
  9. SiegelR.L. MillerK.D. FuchsH.E. JemalA. Cancer statistics, 2022.CA Cancer J. Clin.202272173310.3322/caac.21708 35020204
    [Google Scholar]
  10. MidhaS. ChawlaS. GargP.K. Modifiable and non-modifiable risk factors for pancreatic cancer: A review.Cancer Lett.2016381126927710.1016/j.canlet.2016.07.022 27461582
    [Google Scholar]
  11. ZhaoZ. LiuW. Pancreatic Cancer: A review of risk factors, diagnosis, and treatment.Technol. Cancer Res. Treat.20201910.1177/1533033820962117 33357065
    [Google Scholar]
  12. OjajärviI.A. PartanenT.J. AhlbomA. BoffettaP. HakulinenT. JourenkovaN. KauppinenT.P. KogevinasM. PortaM. VainioH.U. WeiderpassE. WesselingC.H. Occupational exposures and pancreatic cancer: A meta-analysis.Occup. Environ. Med.200057531632410.1136/oem.57.5.316 10769297
    [Google Scholar]
  13. WangS. ZhengY. YangF. ZhuL. ZhuX.Q. WangZ.F. WuX.L. ZhouC.H. YanJ.Y. HuB.Y. KongB. FuD.L. BrunsC. ZhaoY. QinL.X. DongQ.Z. The molecular biology of pancreatic adenocarcinoma: Translational challenges and clinical perspectives.Signal Transduct. Target. Ther.20216124910.1038/s41392‑021‑00659‑4
    [Google Scholar]
  14. CornishT.C. HrubanR.H. Pancreatic intraepithelial neoplasia.Surg. Pathol. Clin.20114252353510.1016/j.path.2011.03.005 26837486
    [Google Scholar]
  15. MaitraA. FukushimaN. TakaoriK. HrubanR.H. Precursors to invasive pancreatic cancer.Adv. Anat. Pathol.2005122819110.1097/01.pap.0000155055.14238.25 15731576
    [Google Scholar]
  16. FritzS. Küper-SteffenR. FeilhauerK. SommerC.M. RichterG.M. BosseA. HennigR. KöningerJ. Intraductal tubular papillary neoplasm (ITPN), a novel entity of pancreatic epithelial neoplasms and precursor of cancer: A case report and review of the literature.Int. J. Surg. Case Rep.20195518719110.1016/j.ijscr.2019.01.036 30753991
    [Google Scholar]
  17. AlmogueraC. ShibataD. ForresterK. MartinJ. ArnheimN. PeruchoM. Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes.Cell198853454955410.1016/0092‑8674(88)90571‑5 2453289
    [Google Scholar]
  18. GaoJ. LongB. WangZ. Role of Notch signaling pathway in pancreatic cancer.Am. J. Cancer Res.201772173186 28337369
    [Google Scholar]
  19. SarkarF. BanerjeeS. LiY. Pancreatic cancer: Pathogenesis, prevention and treatment.Toxicol. Appl. Pharmacol.2007224332633610.1016/j.taap.2006.11.007 17174370
    [Google Scholar]
  20. BiliranH.Jr WangY. BanerjeeS. XuH. HengH. ThakurA. BolligA. SarkarF.H. LiaoJ.D. Overexpression of cyclin D1 promotes tumor cell growth and confers resistance to cisplatin-mediated apoptosis in an elastase-myc transgene-expressing pancreatic tumor cell line.Clin. Cancer Res.200511166075608610.1158/1078‑0432.CCR‑04‑2419 16115953
    [Google Scholar]
  21. KarinM. Nuclear factor-κB in cancer development and progression.Nature2006441709243143610.1038/nature04870 16724054
    [Google Scholar]
  22. WarrenJ. XiaoY. LamarJ. YAP/TAZ Activation as a Target for Treating Metastatic Cancer.Cancers (Basel)201810411510.3390/cancers10040115 29642615
    [Google Scholar]
  23. ZhuL. StaleyC. KoobyD. El-RaysB. MaoH. YangL. Current status of biomarker and targeted nanoparticle development: The precision oncology approach for pancreatic cancer therapy.Cancer Lett.201738813914810.1016/j.canlet.2016.11.030 27916607
    [Google Scholar]
  24. SmytheW.R. HwangH.C. ElshamiA.A. AminK.M. EckS.L. DavidsonB.L. WilsonJ.M. KaiserL.R. AlbeidaS.M. Treatment of experimental human mesothelioma using adenovirus transfer of the herpes simplex thymidine kinase gene.Ann. Surg.19952221788610.1097/00000658‑199507000‑00013 7618973
    [Google Scholar]
  25. ChangC-L. WuT-C. HungC-F. Control of human mesothelin-expressing tumors by DNA vaccines.Gene Ther.200714161189119810.1038/sj.gt.3302974 17581599
    [Google Scholar]
  26. JohnstonF.M. TanM.C.B. TanB.R.Jr PorembkaM.R. BruntE.M. LinehanD.C. SimonP.O.Jr Plambeck-SuessS. EberleinT.J. HellstromK.E. HellstromI. HawkinsW.G. GoedegebuureP. Circulating mesothelin protein and cellular antimesothelin immunity in patients with pancreatic cancer.Clin. Cancer Res.200915216511651810.1158/1078‑0432.CCR‑09‑0565 19843662
    [Google Scholar]
  27. TangL. HanX. The urokinase plasminogen activator system in breast cancer invasion and metastasis.Biomed. Pharmacother.201367217918210.1016/j.biopha.2012.10.003 23201006
    [Google Scholar]
  28. DenduluriS.K. IdowuO. WangZ. LiaoZ. YanZ. MohammedM.K. YeJ. WeiQ. WangJ. ZhaoL. LuuH.H. Insulin-like growth factor (IGF) signaling in tumorigenesis and the development of cancer drug resistance.Genes Dis.201521132510.1016/j.gendis.2014.10.004 25984556
    [Google Scholar]
  29. RitterC.A. ArteagaC.L. The epidermal growth factor receptor–tyrosine kinase: A promising therapeutic target in solid tumors.Semin. Oncol.200330131110.1053/sonc.2003.50027 12644979
    [Google Scholar]
  30. DokalaA. ThakurS.S. Extracellular region of epidermal growth factor receptor: A potential target for anti-EGFR drug discovery.Oncogene201736172337234410.1038/onc.2016.393
    [Google Scholar]
  31. ArteagaC. Overview of epidermal growth factor receptor biology and its role as a therapeutic target in human neoplasia.Semin. Oncol.2002295Suppl. 143910.1016/S0093‑7754(02)70085‑7 12422308
    [Google Scholar]
  32. WicheG. Osmanagic-MyersS. CastañónM.J. Networking and anchoring through plectin: A key to IF functionality and mechanotransduction.Curr. Opin. Cell Biol.201532212910.1016/j.ceb.2014.10.002 25460778
    [Google Scholar]
  33. SandbergT. CarlssonJ. Karlsson OttM. Interactions between human neutrophils and mucin-coated surfaces.J. Mater. Sci. Mater. Med.200920262163110.1007/s10856‑008‑3595‑y 18925363
    [Google Scholar]
  34. ElbannaK.Y. JangH.J. KimT.K. Imaging diagnosis and staging of pancreatic ductal adenocarcinoma: A comprehensive review.Insights Imaging20201115810.1186/s13244‑020‑00861‑y 32335790
    [Google Scholar]
  35. CantoM.I. HrubanR.H. FishmanE.K. KamelI.R. SchulickR. ZhangZ. TopazianM. TakahashiN. FletcherJ. PetersenG. KleinA.P. AxilbundJ. GriffinC. SyngalS. SaltzmanJ.R. MorteleK.J. LeeJ. TammE. VikramR. BhosaleP. MargolisD. FarrellJ. GogginsM. Frequent detection of pancreatic lesions in asymptomatic high-risk individuals.Gastroenterology2012142479680410.1053/j.gastro.2012.01.005 22245846
    [Google Scholar]
  36. SinghiA.D. KoayE.J. ChariS.T. MaitraA. Early detection of pancreatic cancer: Opportunities and challenges.Gastroenterology201915672024204010.1053/j.gastro.2019.01.259 30721664
    [Google Scholar]
  37. HaniU. OsmaniR.A.M. SiddiquaA. WahabS. BatoolS. AtherH. SherabaN. AlqahtaniA. A systematic study of novel drug delivery mechanisms and treatment strategies for pancreatic cancer.J. Drug Deliv. Sci. Technol.20216310253910.1016/j.jddst.2021.102539
    [Google Scholar]
  38. RahibL. FleshmanJ.M. MatrisianL.M. BerlinJ.D. Evaluation of pancreatic cancer clinical trials and benchmarks for clinically meaningful future trials.JAMA Oncol.2016291209121610.1001/jamaoncol.2016.0585 27270617
    [Google Scholar]
  39. Roacho-PérezJ.A. Garza-TreviñoE.N. Delgado-GonzalezP. G-Buentello, Z.; Delgado-Gallegos, J.L.; Chapa-Gonzalez, C.; Sánchez-Domínguez, M.; Sánchez-Domínguez, C.N.; Islas, J.F. Target nanoparticles against pancreatic cancer: Fewer side effects in therapy.Life (Basel)20211111118710.3390/life11111187 34833063
    [Google Scholar]
  40. Capecitabine tablets.2024Available From: https://my.clevelandclinic.org/health/drugs/18889-capecitabine-tablets
  41. Gemcitabine InjectionUses & Side Effects.2024Available From: https://my.clevelandclinic.org/health/drugs/19129-gemcitabine-injection
    [Google Scholar]
  42. Fluorouracil, 5-FU injection.2024Available From: https://my.clevelandclinic.org/health/drugs/18376-fluorouracil-5-fu-injection
  43. Mayo ClinicPaclitaxel (Intravenous Route) Side Effects.2024Available From: https://www.mayoclinic.org/drugs-supplements/paclitaxel-intravenous-route/side-effects/drg-20065247
    [Google Scholar]
  44. Chemocare. Cisplatin.2024Available From: https://chemocare.com/druginfo/cisplatin
  45. Chemocare. Oxaliplatin.2024Available From: https://chemocare.com/druginfo/oxaliplatin
  46. Chemocare. Irinotecan.2024Available From: https://chemocare.com/druginfo/irinotecan
  47. WangJ.P. WuC.Y. YehY.C. ShyrY.M. WuY.Y. KuoC.Y. HungY.P. ChenM.H. LeeW.P. LuoJ.C. ChaoY. LiC.P. Erlotinib is effective in pancreatic cancer with epidermal growth factor receptor mutations: A randomized, open-label, prospective trial.Oncotarget2015620181621817310.18632/oncotarget.4216 26046796
    [Google Scholar]
  48. UenoM. NagashimaF. UenoH. IkedaM. OhkawaS. MizunoN. IokaT. OmuroY. NakajimaT.E. FuruseJ. Phase I/II Study: Experience with the Late Onset of Acute Pancreatitis after the Start of Chemotherapy with Gemcitabine Plus nab-Paclitaxel for Metastatic Pancreatic Cancer.Intern. Med.201958202957296210.2169/internalmedicine.2362‑18 31243233
    [Google Scholar]
  49. PetrioliR. RovielloG. FiaschiA.I. LaeraL. MarrelliD. RovielloF. FranciniE. Gemcitabine, oxaliplatin, and capecitabine (GEMOXEL) compared with gemcitabine alone in metastatic pancreatic cancer: A randomized phase II study.Cancer Chemother. Pharmacol.201575468369010.1007/s00280‑015‑2683‑1 25618415
    [Google Scholar]
  50. ShermanW.H. ChuK. ChabotJ. AllendorfJ. SchropeB.A. HechtE. JinB. LeungD. RemottiH. AddeoG. PostolovI. TsaiW. FineR.L. Neoadjuvant gemcitabine, docetaxel, and capecitabine followed by gemcitabine and capecitabine/radiation therapy and surgery in locally advanced, unresectable pancreatic adenocarcinoma.Cancer2015121567368010.1002/cncr.29112 25492104
    [Google Scholar]
  51. HajatdoostL. SedaghatK. WalkerE. ThomasJ. KosariS. Chemotherapy in Pancreatic Cancer: A Systematic Review.Medicina (Kaunas)20185434810.3390/medicina54030048 30344279
    [Google Scholar]
  52. HodiF.S. O’DayS.J. McDermottD.F. WeberR.W. SosmanJ.A. HaanenJ.B. GonzalezR. RobertC. SchadendorfD. HasselJ.C. AkerleyW. van den EertweghA.J.M. LutzkyJ. LoriganP. VaubelJ.M. LinetteG.P. HoggD. OttensmeierC.H. LebbéC. PeschelC. QuirtI. ClarkJ.I. WolchokJ.D. WeberJ.S. TianJ. YellinM.J. NicholG.M. HoosA. UrbaW.J. Improved survival with ipilimumab in patients with metastatic melanoma.N. Engl. J. Med.2010363871172310.1056/NEJMoa1003466 20525992
    [Google Scholar]
  53. BengschF. KnoblockD.M. LiuA. McAllisterF. BeattyG.L. CTLA-4/CD80 pathway regulates T cell infiltration into pancreatic cancer.Cancer Immunol. Immunother.201766121609161710.1007/s00262‑017‑2053‑4 28856392
    [Google Scholar]
  54. Le MercierI. LinesJ.L. NoelleR.J. Beyond CTLA-4 and PD-1, the Generation Z of Negative Checkpoint Regulators.Front. Immunol.20156AUG41810.3389/fimmu.2015.00418 26347741
    [Google Scholar]
  55. RoyalR.E. LevyC. TurnerK. MathurA. HughesM. KammulaU.S. SherryR.M. TopalianS.L. YangJ.C. LowyI. RosenbergS.A. Phase 2 trial of single agent Ipilimumab (anti-CTLA-4) for locally advanced or metastatic pancreatic adenocarcinoma.J. Immunother.201033882883310.1097/CJI.0b013e3181eec14c 20842054
    [Google Scholar]
  56. KamathS.D. KalyanA. KircherS. NimeiriH. FoughtA.J. BensonA.III MulcahyM. Ipilimumab and Gemcitabine for Advanced Pancreatic Cancer: A Phase Ib Study.Oncologist2020255e808e81510.1634/theoncologist.2019‑0473 31740568
    [Google Scholar]
  57. RibasA. HansonD.C. NoeD.A. MillhamR. GuyotD.J. BernsteinS.H. CanniffP.C. SharmaA. Gomez-NavarroJ. Tremelimumab (CP-675,206), a cytotoxic T lymphocyte associated antigen 4 blocking monoclonal antibody in clinical development for patients with cancer.Oncologist200712787388310.1634/theoncologist.12‑7‑873 17673618
    [Google Scholar]
  58. AgliettaM. BaroneC. SawyerM.B. MooreM.J. MillerW.H.Jr BagalàC. ColombiF. CagnazzoC. GioeniL. WangE. HuangB. FlyK.D. LeoneF. A phase I dose escalation trial of tremelimumab (CP-675,206) in combination with gemcitabine in chemotherapy-naive patients with metastatic pancreatic cancer.Ann. Oncol.20142591750175510.1093/annonc/mdu205 24907635
    [Google Scholar]
  59. O’ReillyE.M. OhD.Y. DhaniN. RenoufD.J. LeeM.A. SunW. FisherG. HezelA. ChangS.C. VlahovicG. TakahashiO. YangY. FittsD. PhilipP.A. Durvalumab With or Without Tremelimumab for Patients With Metastatic Pancreatic Ductal Adenocarcinoma.JAMA Oncol.20195101431143810.1001/jamaoncol.2019.1588 31318392
    [Google Scholar]
  60. BrahmerJ.R. DrakeC.G. WollnerI. PowderlyJ.D. PicusJ. SharfmanW.H. StankevichE. PonsA. SalayT.M. McMillerT.L. GilsonM.M. WangC. SelbyM. TaubeJ.M. AndersR. ChenL. KormanA.J. PardollD.M. LowyI. TopalianS.L. PhaseI. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: Safety, clinical activity, pharmacodynamics, and immunologic correlates.J. Clin. Oncol.201028193167317510.1200/JCO.2009.26.7609 20516446
    [Google Scholar]
  61. GoldbergM.V. DrakeC.G. LAG-3 in Cancer Immunotherapy.Curr. Top. Microbiol. Immunol.201034426927810.1007/82_2010_114 21086108
    [Google Scholar]
  62. HuangC.T. WorkmanC.J. FliesD. PanX. MarsonA.L. ZhouG. HipkissE.L. RaviS. KowalskiJ. LevitskyH.I. PowellJ.D. PardollD.M. DrakeC.G. VignaliD.A.A. Role of LAG-3 in regulatory T cells.Immunity200421450351310.1016/j.immuni.2004.08.010 15485628
    [Google Scholar]
  63. SoaresK.C. ZhengL. EdilB. JaffeeE.M. Vaccines for pancreatic cancer.Cancer J.201218664265210.1097/PPO.0b013e3182756903 23187853
    [Google Scholar]
  64. ChaturvediV.K. SinghA. SinghV.K. SinghM.P. Cancer nanotechnology: A new revolution for cancer diagnosis and therapy.Curr. Drug Metab.201920641642910.2174/1389200219666180918111528 30227814
    [Google Scholar]
  65. MittalA. RoyI. GandhiS. Magnetic nanoparticles: An overview for biomedical applications.Magnet. Chem.20228910710.3390/magnetochemistry8090107
    [Google Scholar]
  66. HassanH. SharmaP. HasanM.R. SinghS. ThakurD. NarangJ. Gold nanomaterials – The golden approach from synthesis to applications.Mater. Sci. Energy Technol.2022537539010.1016/j.mset.2022.09.004
    [Google Scholar]
  67. VasileC. Polymeric nanomaterials: Recent developments, properties and medical applications.Polymeric Nanomaterials in Nanotherapeutics.AmsterdamElsevier201916610.1016/B978‑0‑12‑813932‑5.00001‑7
    [Google Scholar]
  68. NsairatH. KhaterD. SayedU. OdehF. Al BawabA. AlshaerW. Liposomes: Structure, composition, types, and clinical applications.Heliyon202285e0939410.1016/j.heliyon.2022.e09394 35600452
    [Google Scholar]
  69. LuY. ZhangE. YangJ. CaoZ. Strategies to improve micelle stability for drug delivery.Nano Res.201811104985499810.1007/s12274‑018‑2152‑3 30370014
    [Google Scholar]
  70. MahajanS. PatharkarA. KucheK. MaheshwariR. DebP.K. KaliaK. TekadeR.K. Functionalized carbon nanotubes as emerging delivery system for the treatment of cancer.Int. J. Pharm.2018548154055810.1016/j.ijpharm.2018.07.027 29997043
    [Google Scholar]
  71. CaoJ. HuangD. PeppasN.A. Advanced engineered nanoparticulate platforms to address key biological barriers for delivering chemotherapeutic agents to target sites.Adv. Drug Deliv. Rev.202016717018810.1016/j.addr.2020.06.030 32622022
    [Google Scholar]
  72. GreishK. Enhanced permeability and retention (EPR) effect for anticancer nanomedicine drug targeting.Methods Mol. Biol.2010624253710.1007/978‑1‑60761‑609‑2_3 20217587
    [Google Scholar]
  73. CooperD.L. ConderC.M. HarirforooshS. Nanoparticles in drug delivery: Mechanism of action, formulation and clinical application towards reduction in drug-associated nephrotoxicity.Expert Opin. Drug Deliv.201411101661168010.1517/17425247.2014.938046 25054316
    [Google Scholar]
  74. LiuL. KshirsagarP. ChristiansenJ. GautamS.K. AithalA. GulatiM. KumarS. SolheimJ.C. BatraS.K. JainM. WannemuehlerM.J. NarasimhanB. Polyanhydride nanoparticles stabilize pancreatic cancer antigen MUC4β.J. Biomed. Mater. Res. A2021109689390210.1002/jbm.a.37080 32776461
    [Google Scholar]
  75. DamanZ. FaghihiH. MontazeriH. Salinomycin nanoparticles interfere with tumor cell growth and the tumor microenvironment in an orthotopic model of pancreatic cancer.Drug Dev. Ind. Pharm.20184491434144210.1080/03639045.2018.1459674 29619850
    [Google Scholar]
  76. ShenE. KipperM.J. DziadulB. LimM.K. NarasimhanB. Mechanistic relationships between polymer microstructure and drug release kinetics in bioerodible polyanhydrides.J. Control. Release200282111512510.1016/S0168‑3659(02)00125‑6 12106982
    [Google Scholar]
  77. ZhangY. WuY. DuH. LiZ. BaiX. WuY. LiH. ZhouM. CaoY. ChenX. Nano-drug delivery systems in oral cancer therapy: Recent developments and prospective.Pharmaceutics2023161710.3390/pharmaceutics16010007
    [Google Scholar]
  78. KumarV. MundraV. PengY. WangY. TanC. MahatoR.I. Pharmacokinetics and biodistribution of polymeric micelles containing miRNA and small-molecule drug in orthotopic pancreatic tumor-bearing mice.Theranostics20188154033404910.7150/thno.24945 30128034
    [Google Scholar]
  79. PittellaF. CabralH. MaedaY. MiP. WatanabeS. TakemotoH. KimH.J. NishiyamaN. MiyataK. KataokaK. Systemic siRNA delivery to a spontaneous pancreatic tumor model in transgenic mice by PEGylated calcium phosphate hybrid micelles.J. Control. Release20141781182410.1016/j.jconrel.2014.01.008 24440662
    [Google Scholar]
  80. SampathkumarS-G. YaremaK.J. Dendrimers in Cancer Treatment and Diagnosis.Nanotechnologies for the Life Sciences.Hoboken, New JerseyWiley200710.1002/9783527610419.ntls0071
    [Google Scholar]
  81. ÖztürkK. EsendağlıG. GürbüzM.U. TülüM. ÇalışS. Effective targeting of gemcitabine to pancreatic cancer through PEG-cored Flt-1 antibody-conjugated dendrimers.Int. J. Pharm.20175171-215716710.1016/j.ijpharm.2016.12.009 27965135
    [Google Scholar]
  82. SadekarS. ThiagarajanG. BartlettK. HubbardD. RayA. McGillL.D. GhandehariH. Poly(amido amine) dendrimers as absorption enhancers for oral delivery of camptothecin.Int. J. Pharm.2013456117518510.1016/j.ijpharm.2013.07.071 23933439
    [Google Scholar]
  83. PremanN.K. JainS. JohnsonR.P. “Smart” Polymer Nanogels as Pharmaceutical Carriers: A Versatile Platform for Programmed Delivery and Diagnostics.ACS Omega2021685075509010.1021/acsomega.0c05276 33681548
    [Google Scholar]
  84. SoniK.S. ThomasD. CaffreyT. MehlaK. LeiF. O’ConnellK.A. SagarS. LeleS.M. HollingsworthM.A. RadhakrishnanP. BronichT.K. A Polymeric nanogel-based treatment regimen for enhanced efficacy and sequential administration of synergistic drug combination in pancreatic cancer.J. Pharmacol. Exp. Ther.2019370389490110.1124/jpet.118.255372 30683666
    [Google Scholar]
  85. BriggerI. DubernetC. CouvreurP. Nanoparticles in cancer therapy and diagnosis.Adv. Drug Deliv. Rev.200254563165110.1016/S0169‑409X(02)00044‑3 12204596
    [Google Scholar]
  86. BozzutoG. MolinariA. Liposomes as nanomedical devices.Int. J. Nanomedicine20151097599910.2147/IJN.S68861 25678787
    [Google Scholar]
  87. WangX. WangM. CaiM. ShaoR. XiaG. ZhaoW. Miriplatin-loaded liposome, as a novel mitophagy inducer, suppresses pancreatic cancer proliferation through blocking POLG and TFAM-mediated mtDNA replication.Acta Pharm. Sin. B202313114477450110.1016/j.apsb.2023.07.009 37969736
    [Google Scholar]
  88. YangW. HuQ. XuY. LiuH. ZhongL. Antibody fragment-conjugated gemcitabine and paclitaxel-based liposome for effective therapeutic efficacy in pancreatic cancer.Mater. Sci. Eng. C20188932833510.1016/j.msec.2018.04.011 29752104
    [Google Scholar]
  89. MarengoA. ForcinitiS. DandoI. Dalla PozzaE. StellaB. TsapisN. YagoubiN. FanelliG. FattalE. HeeschenC. PalmieriM. ArpiccoS. Pancreatic cancer stem cell proliferation is strongly inhibited by diethyldithiocarbamate-copper complex loaded into hyaluronic acid decorated liposomes.Biochim. Biophys. Acta, Gen. Subj.201918631617210.1016/j.bbagen.2018.09.018 30267751
    [Google Scholar]
  90. SilliE.K. LiM. ShaoY. ZhangY. HouG. DuJ. LiangJ. WangY. Liposomal nanostructures for Gemcitabine and Paclitaxel delivery in pancreatic cancer.Eur. J. Pharm. Biopharm.2023192132410.1016/j.ejpb.2023.09.014 37758121
    [Google Scholar]
  91. KanugoA. GautamR.K. KamalM.A. Recent advances of nanotechnology in the diagnosis and therapy of Triple- Negative Breast Cancer (TNBC).Curr. Pharm. Biotechnol.202223131581159510.2174/1389201023666211230113658 34967294
    [Google Scholar]
  92. SheoranS. AroraS. SamsonrajR. GovindaiahP. vuree, S. Lipid-based nanoparticles for treatment of cancer.Heliyon202285e0940310.1016/j.heliyon.2022.e09403 35663739
    [Google Scholar]
  93. SutariaD. GrandhiB.K. ThakkarA. WangJ. PrabhuS. Chemoprevention of pancreatic cancer using solid-lipid nanoparticulate delivery of a novel aspirin, curcumin and sulforaphane drug combination regimen.Int. J. Oncol.20124162260226810.3892/ijo.2012.1636 23007664
    [Google Scholar]
  94. ObeidM.A. TateR.J. MullenA.B. FerroV.A. Lipid-based nanoparticles for cancer treatment.Lipid Nanocarriers Drug Target.AmsterdamElsevier201831335910.1016/B978‑0‑12‑813687‑4.00008‑6
    [Google Scholar]
  95. Giner-CasaresJ.J. Henriksen-LaceyM. Coronado-PuchauM. Liz-MarzánL.M. Inorganic nanoparticles for biomedicine: Where materials scientists meet medical research.Mater. Today2016191192810.1016/j.mattod.2015.07.004
    [Google Scholar]
  96. MateaC. MocanT. TabaranF. PopT. MosteanuO. PuiaC. IancuC. MocanL. Quantum dots in imaging, drug delivery and sensor applications.Int. J. Nanomedicine2017125421543110.2147/IJN.S138624 28814860
    [Google Scholar]
  97. YongK.T. DingH. RoyI. LawW.C. BergeyE.J. MaitraA. PrasadP.N. Imaging pancreatic cancer using bioconjugated InP quantum dots.ACS Nano20093350251010.1021/nn8008933 19243145
    [Google Scholar]
  98. HamiduA. PittW.G. HusseiniG.A. Recent breakthroughs in using quantum dots for cancer imaging and drug delivery purposes.Nanomaterials (Basel)20231318256610.3390/nano13182566
    [Google Scholar]
  99. ChangS. DaiY. KangB. HanW. MaoL. ChenD. UV-enhanced cytotoxicity of thiol-capped CdTe quantum dots in human pancreatic carcinoma cells.Toxicol. Lett.2009188210411110.1016/j.toxlet.2009.03.013 19446242
    [Google Scholar]
  100. YangZ. WangD. ZhangC. LiuH. HaoM. KanS. LiuD. LiuW. The applications of gold nanoparticles in the diagnosis and treatment of gastrointestinal cancer.Front. Oncol.20221181932910.3389/fonc.2021.819329 35127533
    [Google Scholar]
  101. SpadavecchiaJ. MoviaD. MooreC. Manus MaguireC. MoustaouiH. CasaleS. VolkovY. Prina-MelloA. Targeted polyethylene glycol gold nanoparticles for the treatment of pancreatic cancer: From synthesis to proof-of-concept in vitro studies.Int. J. Nanomedicine20161179182210.2147/IJN.S97476 27013874
    [Google Scholar]
  102. JainS. HirstD.G. O’SullivanJ.M. Gold nanoparticles as novel agents for cancer therapy.Br. J. Radiol.201285101010111310.1259/bjr/59448833 22010024
    [Google Scholar]
  103. ZielinskaE. Zauszkiewicz-PawlakA. WojcikM. Inkielewicz-StepniakI. Silver nanoparticles of different sizes induce a mixed type of programmed cell death in human pancreatic ductal adenocarcinoma.Oncotarget2018944675469710.18632/oncotarget.22563 29435134
    [Google Scholar]
  104. ManzurA. OluwasanmiA. MossD. CurtisA. HoskinsC. Nanotechnologies in Pancreatic Cancer Therapy.Pharmaceutics2017943910.3390/pharmaceutics9040039 28946666
    [Google Scholar]
  105. TrabuloS. AiresA. AicherA. HeeschenC. CortajarenaA.L. Multifunctionalized iron oxide nanoparticles for selective targeting of pancreatic cancer cells.Biochim. Biophys. Acta, Gen. Subj.2017186161597160510.1016/j.bbagen.2017.01.035 28161480
    [Google Scholar]
  106. ArachchigeM.P. LahaS.S. NaikA.R. LewisK.T. NaikR. JenaB.P. Functionalized nanoparticles enable tracking the rapid entry and release of doxorubicin in human pancreatic cancer cells.Micron201792253110.1016/j.micron.2016.10.005 27846432
    [Google Scholar]
  107. RautiR. MustoM. BosiS. PratoM. BalleriniL. Properties and behavior of carbon nanomaterials when interfacing neuronal cells: How far have we come?Carbon201914343044610.1016/j.carbon.2018.11.026
    [Google Scholar]
  108. AndreoliE. SuzukiR. OrbaekA.W. BhutaniM.S. HaugeR.H. AdamsW. FlemingJ.B. BarronA.R. Preparation and evaluation of polyethyleneimine-single walled carbon nanotube conjugates as vectors for pancreatic cancer treatment.J. Mater. Chem. B Mater. Biol. Med.20142294740474710.1039/c4tb00778f 32262286
    [Google Scholar]
  109. MocanT. MateaC.T. CojocaruI. IlieI. TabaranF.A. ZaharieF. IancuC. BartosD. MocanL. Photothermal treatment of human pancreatic cancer using PEGylated multi-walled carbon nanotubes induces apoptosis by triggering mitochondrial membrane depolarization mechanism.J. Cancer20145867968810.7150/jca.9481 25258649
    [Google Scholar]
  110. Gnana kumar, G.; Amala, G.; Gowtham, S.M. Recent advancements, key challenges and solutions in non-enzymatic electrochemical glucose sensors based on graphene platforms.RSC Advances2017759369493697610.1039/C7RA02845H
    [Google Scholar]
  111. KortelM. MansuriyaB.D. Vargas SantanaN. AltintasZ. Graphene Quantum Dots as Flourishing Nanomaterials for Bio-Imaging, Therapy Development, and Micro-Supercapacitors.Micromachines (Basel)202011986610.3390/mi11090866 32962061
    [Google Scholar]
  112. WangY. LiJ. LiX. ShiJ. JiangZ. ZhangC.Y. Graphene-based nanomaterials for cancer therapy and anti-infections.Bioact. Mater.20221433534910.1016/j.bioactmat.2022.01.045 35386816
    [Google Scholar]
  113. GavasS. QuaziS. KarpińskiT.M. Nanoparticles for Cancer Therapy: Current progress and challenges.Nanoscale Res. Lett.202116117310.1186/s11671‑021‑03628‑6 34866166
    [Google Scholar]
  114. MaklerA. AsgharW. Exosomal biomarkers for cancer diagnosis and patient monitoring.Expert Rev. Mol. Diagn.202020438740010.1080/14737159.2020.1731308 32067543
    [Google Scholar]
  115. GangadaranP. MadhyasthaH. MadhyasthaR. RajendranR.L. NakajimaY. WatanabeN. VelikkakathA.K.G. HongC.M. GopiR.V. MuthukaliananG.K. Valsala GopalakrishnanA. JeyaramanM. AhnB.C. The emerging role of exosomes in innate immunity, diagnosis and therapy.Front. Immunol.202313108505710.3389/fimmu.2022.1085057 36726968
    [Google Scholar]
  116. AlharbiW.S. AlmughemF.A. AlmehmadyA.M. JarallahS.J. AlsharifW.K. AlzahraniN.M. AlshehriA.A. Phytosomes as an Emerging Nanotechnology Platform for the Topical Delivery of Bioactive Phytochemicals.Pharmaceutics2021139147510.3390/pharmaceutics13091475 34575551
    [Google Scholar]
  117. PastorelliD. FabricioA.S.C. GiovanisP. D’IppolitoS. FiducciaP. SoldàC. BudaA. SpertiC. BardiniR. Da DaltG. RainatoG. GionM. UrsiniF. Phytosome complex of curcumin as complementary therapy of advanced pancreatic cancer improves safety and efficacy of gemcitabine: Results of a prospective phase II trial.Pharmacol. Res.2018132727910.1016/j.phrs.2018.03.013 29614381
    [Google Scholar]
  118. PsarrouM. KothriM.G. VamvakakiM. Photo- and acid-degradable polyacylhydrazone–doxorubicin conjugates.Polymers (Basel)20211315246110.3390/polym13152461 34372064
    [Google Scholar]
  119. AlmawashS.A. MondalG. MahatoR.I. Coadministration of Polymeric Conjugates of Docetaxel and Cyclopamine Synergistically Inhibits Orthotopic Pancreatic Cancer Growth and Metastasis.Pharm. Res.20183511710.1007/s11095‑017‑2303‑3 29305793
    [Google Scholar]
  120. MosianeK.S. NwekeE.E. BalogunM. FruP.N. Polyethyleneglycol-Betulinic Acid (PEG-BA) Polymer-Drug Conjugate Induces Apoptosis and Antioxidation in a Biological Model of Pancreatic Cancer.Polymers (Basel)202315244810.3390/polym15020448 36679328
    [Google Scholar]
  121. MalikB. GhatolA. Understanding How Monoclonal Antibodies Work.Treasure Island, FLStatPearls2023
    [Google Scholar]
  122. OlajubutuO. OgundipeO.D. AdebayoA. AdesinaS.K. Drug delivery strategies for the treatment of pancreatic cancer.Pharmaceutics2023155131810.3390/pharmaceutics15051318
    [Google Scholar]
  123. BuJ. NairA. IidaM. JeongW. PoellmannM.J. MuddK. KubiatowiczL.J. LiuE.W. WheelerD.L. HongS. An Avidity-Based PD-L1 Antagonist Using Nanoparticle-Antibody Conjugates for Enhanced Immunotherapy.Nano Lett.20202074901490910.1021/acs.nanolett.0c00953 32510959
    [Google Scholar]
  124. HouY. SunZ. RaoW. LiuJ. Nanoparticle-mediated cryosurgery for tumor therapy.Nanomedicine201814249350610.1016/j.nano.2017.11.018 29197593
    [Google Scholar]
  125. LiuJ. DengZ.S. Nano-Cryosurgery: Advances and Challenges.J. Nanosci. Nanotechnol.2009984521454210.1166/jnn.2009.1264 19928115
    [Google Scholar]
  126. DiD.R. HeZ.Z. SunZ.Q. LiuJ. A new nano-cryosurgical modality for tumor treatment using biodegradable MgO nanoparticles.Nanomedicine2012881233124110.1016/j.nano.2012.02.010 22406189
    [Google Scholar]
  127. ChuaK.J. ChouS.K. HoJ.C. An analytical study on the thermal effects of cryosurgery on selective cell destruction.J. Biomech.200740110011610.1016/j.jbiomech.2005.11.005 16368100
    [Google Scholar]
  128. TosiG. DuskeyJ.T. KreuterJ. Nanoparticles as carriers for drug delivery of macromolecules across the blood-brain barrier.Expert Opin. Drug Deliv.2020171233210.1080/17425247.2020.1698544 31774000
    [Google Scholar]
  129. LiuY. CrawfordB.M. Vo-DinhT. Gold nanoparticles-mediated photothermal therapy and immunotherapy.Immunotherapy201810131175118810.2217/imt‑2018‑0029 30236026
    [Google Scholar]
  130. LolloG. MathaK. BocchiardoM. BejaudJ. MarigoI. Virgone-CarlottaA. DehouxT. RivièreC. RieuJ.P. BriançonS. PerrierT. MeyerO. BenoitJ.P. Drug delivery to tumours using a novel 5-FU derivative encapsulated into lipid nanocapsules.J. Drug Target.2019275-663464510.1080/1061186X.2018.1547733 30461322
    [Google Scholar]
  131. ParsianM. MutluP. YalcinS. GunduzU. Characterization of gemcitabine loaded polyhydroxybutyrate coated magnetic nanoparticles for targeted drug delivery.Anticancer. Agents Med. Chem.202020101233124010.2174/1871520620666200310091026 32156242
    [Google Scholar]
  132. LiY. XuP. HeD. XuB. TuJ. ShenY. Long-Circulating Thermosensitive Liposomes for the Targeted Drug Delivery of Oxaliplatin.Int. J. Nanomedicine2020156721673410.2147/IJN.S250773 32982229
    [Google Scholar]
  133. PartikelK. KorteR. SteinN.C. MulacD. HerrmannF.C. HumpfH.U. LangerK. Effect of nanoparticle size and PEGylation on the protein corona of PLGA nanoparticles.Eur. J. Pharm. Biopharm.2019141708010.1016/j.ejpb.2019.05.006 31082511
    [Google Scholar]
  134. DongY. SiegwartD.J. AndersonD.G. Strategies, design, and chemistry in siRNA delivery systems.Adv. Drug Deliv. Rev.201914413314710.1016/j.addr.2019.05.004 31102606
    [Google Scholar]
  135. PushalkarS. HundeyinM. DaleyD. ZambirinisC.P. KurzE. MishraA. MohanN. AykutB. UsykM. TorresL.E. WerbaG. ZhangK. GuoY. LiQ. AkkadN. LallS. WadowskiB. GutierrezJ. Kochen RossiJ.A. HerzogJ.W. DiskinB. Torres-HernandezA. LeinwandJ. WangW. TaunkP.S. SavadkarS. JanalM. SaxenaA. LiX. CohenD. SartorR.B. SaxenaD. MillerG. The pancreatic cancer microbiome promotes oncogenesis by induction of innate and adaptive immune suppression.Cancer Discov.20188440341610.1158/2159‑8290.CD‑17‑1134 29567829
    [Google Scholar]
  136. WangM. HuQ. HuangJ. ZhaoX. ShaoS. ZhangF. YaoZ. PingY. LiangT. Engineered a dual-targeting biomimetic nanomedicine for pancreatic cancer chemoimmunotherapy.J. Nanobiotechnology20222018510.1186/s12951‑022‑01282‑3 35177078
    [Google Scholar]
  137. YinW. PanF. ZhuJ. XuJ. Gonzalez-RivasD. OkumuraM. TangZ. YangY. Nanotechnology and Nanomedicine: A Promising Avenue for Lung Cancer Diagnosis and Therapy.Engineering (Beijing)20217111577158510.1016/j.eng.2020.04.017
    [Google Scholar]
  138. DesaiP. AnnD. WangJ. PrabhuS. Pancreatic Cancer: Recent Advances in Nanoformulation-Based Therapies.Crit. Rev. Ther. Drug Carrier Syst.2019361599110.1615/CritRevTherDrugCarrierSyst.2018025459
    [Google Scholar]
  139. Xeloda: Side effects, cost, dosage, uses, and more.2024Available From: https://www.medicalnewstoday.com/articles/drugs-xeloda
    [Google Scholar]
  140. Cancer Research UKErlotinib (Tarceva), Cancer information.2024Available From: https://www.cancerresearchuk.org/about-cancer/treatment/drugs/erlotinib
    [Google Scholar]
  141. GEMCITABINE - INJECTION(Gemzar) side effects, medical uses, and drug interactions.2024Available From: https://www.medicinenet.com/gemcitabine-injection/article.htm
    [Google Scholar]
  142. Onivyde (Irinotecan Liposome Injection)Side effects, uses, dosage, interactions, warnings.2024Available From: https://www.rxlist.com/onivyde-drug.htm
    [Google Scholar]
  143. Sutent (Sunitinib Malate)Side Effects, uses, dosage, interactions, warnings.2024Available From: https://www.rxlist.com/sutent-drug.htm
    [Google Scholar]
  144. Mitomycin (Mutamycin, Mitomycin-C).2024Available From: https://www.oncolink.org/cancer-treatment/oncolink-rx/mitomycin-mutamycin-mitomycin-c
  145. ClinicalTrials.govSearch for: Pancreatic Cancer, Card Results.2024Available From: https://clinicaltrials.gov/search?cond=Pancreatic
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010284407240212110745
Loading
/content/journals/cpb/10.2174/0113892010284407240212110745
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test