Skip to content
2000
Volume 26, Issue 1
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Objectives

Obese patients are at increased risk for CVD, which is the main cause of premature death and has been a major cause of disability and ill health in recent years. PTN, a natural dihydrochalcone flavonoid, has a variety of pharmacological characteristics. This article aimed to prepare PTN-NSLs to evaluate their anti-obesity activity.

Methods

Morphology, Particle size, zeta potential, UV-vis, entrapment efficiency, FT-IR spectra, and an release study of PTN-NSLs were described. PTN-NSLs were also tested for their anti-obesity properties in obese rats. The LD of PTN-NSLs was calculated, as was the 1/20 LD prepared for the treatment of obese rats. Also, the level of glycemic, oxidative stress and inflammatory biomarkers were estimated in the obese rat’s model.

Results

The synthesized PTN-NSLs were uniform, spherically shaped, and well dispersed with no aggregation noted, with a size range of 114.06 ± 8.35 nm. The measured zeta potential value of PTN-NSLs was -32.50.8 mv. Also, the UV spectra of PTN and PTN-NSLs have strong absorption at 225 and 285 nm. Also, the LD of PTN-NSLs was found to be 2750 mg/kg.b.w. Moreover, administrating obese rats with PTN-NSLs resulted in improved glycemic features as well as GSH, SOD, GPx, GR, IL10, TBARs, and IL-6 levels, as well as attenuated and gene expression.

Conclusion

Administration of PTN-NSLs significantly attenuated the levels of glycemic, oxidative stress, and inflammatory biomarkers. The biochemical and PCR findings are aided by histological investigations. Also, the present findings imply that PTN-NSLs might be a promising pharmacological tool for the treatment of obesity-related diseases.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010278684240105115516
2024-05-02
2025-04-02
Loading full text...

Full text loading...

References

  1. BlundellJ.E. DullooA.G. SalvadorJ. FrühbeckG. Beyond BMI--phenotyping the obesities.Obes. Facts20147532232810.1159/000368783 25485991
    [Google Scholar]
  2. KhalilM. ShanmugamH. AbdallahH. John BrittoJ.S. GaleratiI. Gómez-Ambrosi, J.; Frühbeck, G.; Portincasa, P. The potential of the mediterranean diet to improve mitochondrial function in experimental models of obesity and metabolic syndrome.Nutrients20221415311210.3390/nu14153112 35956289
    [Google Scholar]
  3. FinicelliM. SquillaroT. Di CristoF. Di SalleA. MeloneM.A.B. GalderisiU. PelusoG. Metabolic syndrome, mediterranean diet, and polyphenols: Evidence and perspectives.J. Cell. Physiol.201923455807582610.1002/jcp.27506 30317573
    [Google Scholar]
  4. MyungJ.H. KimB.R. YoonS.H. KwonY.K. ParkS.S. PyunS.B. Relationship between cardiorespiratory fitness and preoperative evaluation findings in patients with morbid obesity undergoing sleeve gastrectomy.Medicine202110037e2726310.1097/MD.0000000000027263 34664878
    [Google Scholar]
  5. SalahA. HusseinA. HassanS. HusseinM. BassiounyK. Green synthesis of RES-CMCS: A promising modulator of the glut-4/leptin signaling pathway in HFD-induced insulin resistance.Biomed. Res. Ther.2022975166517810.15419/bmrat.v9i7.753
    [Google Scholar]
  6. HusseinM.A. Anti-obesity, antiatherogenic, anti-diabetic and antioxidant activities of J. montana ethanolic formulation in obese diabetic rats fed high-fat diet.Free Radic. Antioxid.201111496010.5530/ax.2011.1.9
    [Google Scholar]
  7. ShehataM.R. MohamedM.M.A. ShoukryM.M. HusseinM.A. HusseinF.M. Synthesis, characterization, equilibria and biological activity of dimethyltin(IV) complex with 1,4-piperazine.J. Coord. Chem.20156861101111410.1080/00958972.2015.1007962
    [Google Scholar]
  8. ShurrabN.T. ArafaE.S.A. Metformin: A review of its therapeutic efficacy and adverse effects.Obes. Med.20201710018610.1016/j.obmed.2020.100186
    [Google Scholar]
  9. Mohammed AbdallaH.Jr Soad MohamedA.G. In vivo hepato-protective properties of purslane extracts on paracetamol-induced liver damage.Malays. J. Nutr.2010161161170 22691863
    [Google Scholar]
  10. TianX.R. FengJ.T. MaZ.Q. XieN. ZhangJ. ZhangX. TangH.F. Three new glycosides from the whole plant of Clematis lasiandra Maxim and their cytotoxicity.Phytochem. Lett.20141016817210.1016/j.phytol.2014.09.004
    [Google Scholar]
  11. ZhangT.T. YangL. JiangJ.G. Bioactive comparison of main components from unripe fruits of Rubus chingii Hu and identification of the effective component.Food Funct.2015672205221410.1039/C5FO00406C 26053738
    [Google Scholar]
  12. DianaA.A. MohammedA.H. SuzanS.A. SohaA.H. MichaelW. Salvia officinalis improves glycemia and suppresses pro-inflammatory features in obese rats with metabolic syndrome.Curr. Pharm. Biotechnol.202310.2174/1389201024666230811104740
    [Google Scholar]
  13. KalinowskaM. GrykoK. WróblewskaA.M. Jabłońska-TrypućA. KarpowiczD. Phenolic content, chemical composition and anti-/pro-oxidant activity of Gold Milenium and Papierowka apple peel extracts.Sci. Rep.20201011495110.1038/s41598‑020‑71351‑w 32917912
    [Google Scholar]
  14. MariadossA.V.A. VinayagamR. XuB. VenkatachalamK. SankaranV. VijayakumarS. BakthavatsalamS.R. A. MohamedS. DavidE. Phloretin loaded chitosan nanoparticles enhance the antioxidants and apoptotic mechanisms in DMBA induced experimental carcinogenesis.Chem. Biol. Interact.2019308111910.1016/j.cbi.2019.05.008 31071336
    [Google Scholar]
  15. MariadossA.V.A. VinayagamR. SenthilkumarV. PaulpandiM. MuruganK. XuB. K M, G.; Kotakadi, V.S.; David, E. Phloretin loaded chitosan nanoparticles augments the pH-dependent mitochondrial-mediated intrinsic apoptosis in human oral cancer cells.Int. J. Biol. Macromol.2019130997100810.1016/j.ijbiomac.2019.03.031 30844461
    [Google Scholar]
  16. AlsaneaS. GaoM. LiuD. Phloretin prevents high-fat diet-induced obesity and improves metabolic homeostasis.AAPS J.201719379780510.1208/s12248‑017‑0053‑0 28197827
    [Google Scholar]
  17. WangY. LiD. LinH. JiangS. HanL. HouS. LinS. ChengZ. BianW. ZhangX. HeY. ZhangK. Enhanced oral bioavailability and bioefficacy of phloretin using mixed polymeric modified self‐nanoemulsions.Food Sci. Nutr.2020873545355810.1002/fsn3.1637 32724617
    [Google Scholar]
  18. Abu-AzzamO. NasrM. In vitro anti-inflammatory potential of phloretin microemulsion as a new formulation for prospective treatment of vaginitis.Pharm. Dev. Technol.202025893093510.1080/10837450.2020.1764032 32363977
    [Google Scholar]
  19. FahmyA.M. El-SetouhyD.A. HabibB.A. TayelS.A. Enhancement of transdermal delivery of haloperidol via spanlastic dispersions: Entrapment efficiency vs. particle size.AAPS PharmSciTech20192039510710.1208/s12249‑019‑1306‑2 30694404
    [Google Scholar]
  20. AbdelrahmanF.E. ElsayedI. GadM.K. ElshafeeyA.H. MohamedM.I. Response surface optimization, Ex vivo and In vivo investigation of nasal spanlastics for bioavailability enhancement and brain targeting of risperidone.Int. J. Pharm.20175301-211110.1016/j.ijpharm.2017.07.050 28733244
    [Google Scholar]
  21. El MenshaweS.F. NafadyM.M. AboudH.M. KharshoumR.M. ElkelawyA.M.M.H. HamadD.S. Transdermal delivery of fluvastatin sodium via tailored spanlastic nanovesicles: Mitigated Freund’s adjuvant-induced rheumatoid arthritis in rats through suppressing p38 MAPK signaling pathway.Drug Deliv.20192611140115410.1080/10717544.2019.1686087 31736366
    [Google Scholar]
  22. KakkarS. KaurI.P. Spanlastics—A novel nanovesicular carrier system for ocular delivery.Int. J. Pharm.20114131-220221010.1016/j.ijpharm.2011.04.027 21540093
    [Google Scholar]
  23. TayelS.A. El-NabarawiM.A. TadrosM.I. Abd-ElsalamW.H. Duodenum-triggered delivery of pravastatin sodium via enteric surface-coated nanovesicular spanlastic dispersions: Development, characterization and pharmacokinetic assessments.Int. J. Pharm.20154831-2778810.1016/j.ijpharm.2015.02.012 25666025
    [Google Scholar]
  24. ElsherifN.I. ShammaR.N. AbdelbaryG. Terbinafine hydrochloride trans-ungual delivery via nanovesicular systems: In vitro characterization and ex vivo evaluation.AAPS PharmSciTech201718255156210.1208/s12249‑016‑0528‑9 27138036
    [Google Scholar]
  25. Al-mahallawiA.M. KhowessahO.M. ShoukriR.A. Enhanced non invasive trans -tympanic delivery of ciprofloxacin through encapsulation into nano-spanlastic vesicles: Fabrication, in-vitro characterization, and comparative ex-vivo permeation studies.Int. J. Pharm.20175221-215716410.1016/j.ijpharm.2017.03.005 28279741
    [Google Scholar]
  26. HusseinM.A. IsmailN.E.M. MohamedA.H. BorikR.M. AliA.A. MosaadY.O. Plasma phospholipids: A promising simple biochemical parameter to evaluate COVID-19 infection severity.Bioinform. Biol. Insights20211510.1177/11779322211055891 34840499
    [Google Scholar]
  27. BoshraS.A. HusseinM.A. Cranberry extract as a supplemented food in treatment of oxidative stress and breast cancer induced by N-Methyl-N-Nitrosourea in female virgin rats.Int. J. Phytomed.20168217227
    [Google Scholar]
  28. HusseinM.A. BorikR.M. A novel quinazoline-4-one derivatives as a promising cytokine inhibitors: Synthesis, molecular docking, and structure-activity relationship.Curr. Pharm. Biotechnol.20222391179120310.2174/1389201022666210601170650 34077343
    [Google Scholar]
  29. GobbaN.A.E.K. Hussein AliA. El SharawyD.E. HusseinM.A. The potential hazardous effect of exposure to iron dust in Egyptian smoking and nonsmoking welders.Arch. Environ. Occup. Health201873318920210.1080/19338244.2017.1314930 28375782
    [Google Scholar]
  30. M.Fayed A.; A Abdalla, E.; Hassan, S.A.; A Hussein, M.; M Roshdy, T. Downregulation of TLR4-NF-?B-p38 MAPK signalling in cholestatic rats treated with cranberry extract.Pak. J. Biol. Sci.202225211212210.3923/pjbs.2022.112.122 35233999
    [Google Scholar]
  31. FazilM. MdS. HaqueS. KumarM. BabootaS. SahniJ. AliJ. Development and evaluation of rivastigmine loaded chitosan nanoparticles for brain targeting.Eur. J. Pharm. Sci.201247161510.1016/j.ejps.2012.04.013 22561106
    [Google Scholar]
  32. SalarR.K. KumarN. Synthesis and characterization of vincristine loaded folic acid–chitosan conjugated nanoparticles.Resource-Efficient Technol.20162419921410.1016/j.reffit.2016.10.006
    [Google Scholar]
  33. DickinsonE. Emulsion gels: The structuring of soft solids with protein-stabilized oil droplets.Food Hydrocoll.201228122424110.1016/j.foodhyd.2011.12.017
    [Google Scholar]
  34. ZhaiG.X. Guo; Tan; Liu, Preparation and evaluation of quercetin-loaded lecithin-chitosan nanoparticles for topical delivery.Int. J. Nanomedicine201161621163010.2147/IJN.S22411 21904452
    [Google Scholar]
  35. TamilselvanN. RaghavanC.V. Formulation and characterization of Anti alzheimer’s drug loaded chitosan nanoparticles and its in vitro biological evaluation.J. Young Pharm.201471283510.5530/jyp.2015.1.6
    [Google Scholar]
  36. LiuY. WangB. ZhangQ. LiuK. WuQ. Physicochemical properties and lipophilicity of polydatin-lecithin complex.Trop. J. Pharm. Res.201614122217222210.4314/tjpr.v14i12.10
    [Google Scholar]
  37. AbalP. LouzaoM. AnteloA. AlvarezM. CagideE. Vilariño, N.; Vieytes, M.; Botana, L. Acute oral toxicity of tetrodotoxin in mice: Determination of lethal dose 50 (LD50) and No Observed Adverse Effect Level (NOAEL).Toxins2017937510.3390/toxins9030075 28245573
    [Google Scholar]
  38. AssineweV.A. BaumB.R. GagnonD. ArnasonJ.T. Phytochemistry of wild populations of Panax quinquefolius L. (North American ginseng).J. Agric. Food Chem.200351164549455310.1021/jf030042h 14705875
    [Google Scholar]
  39. TroisiR.J. CowieC.C. HarrisM.I. Diurnal variation in fasting plasma glucose: implications for diagnosis of diabetes in patients examined in the afternoon.JAMA2000284243157315910.1001/jama.284.24.3157 11135780
    [Google Scholar]
  40. FossatiP. PrencipeL. Serum triglycerides determined colorimetrically with an enzyme that produces hydrogen peroxide.Clin. Chem.198228102077208010.1093/clinchem/28.10.2077 6812986
    [Google Scholar]
  41. AllainC.C. PoonL.S. ChanC.S.G. RichmondW. FuP.C. Enzymatic determination of total serum cholesterol.Clin. Chem.197420447047510.1093/clinchem/20.4.470 4818200
    [Google Scholar]
  42. BursteinM. ScholnickH.R. MorfinR. Rapid method for the isolation of lipoproteins from human serum by precipitation with polyanions.J. Lipid Res.197011658359510.1016/S0022‑2275(20)42943‑8 4100998
    [Google Scholar]
  43. NithiyaT. RajangamU. Preventive effect of phloretin on components of glycoprotein changes in streptozotocin induced diabetic rats.Int. J. Diab. Endocrinol.201723035
    [Google Scholar]
  44. LeeA. MorleyJ.E. Metformin decreases food consumption and induces weight loss in subjects with obesity with type II non-insulin-dependent diabetes.Obes. Res.199861475310.1002/j.1550‑8528.1998.tb00314.x 9526970
    [Google Scholar]
  45. TsikasD. Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: Analytical and biological challenges.Anal. Biochem.2017524133010.1016/j.ab.2016.10.021 27789233
    [Google Scholar]
  46. OwenJ.B. ButterfieldD.A. Measurement of oxidized/reduced glutathione ratio.Methods Mol. Biol.201064826927710.1007/978‑1‑60761‑756‑3_18 20700719
    [Google Scholar]
  47. KakkarP. DasB. VisvanathanP. A modified spectrophotometric assay of SOD.Indian J. Biochem. Biophys.198421130132 6490072
    [Google Scholar]
  48. MaiorinoF.M. Brigelius-FlohéR. AumannK.D. RoveriA. SchomburgD. FlohéL. FlohéL. Diversity of glutathione peroxidases. Methods Enzymol.1995252385310.1016/0076‑6879(95)52007‑4 7476373
    [Google Scholar]
  49. DymO. EisenbergD. Sequence‐structure analysis of FAD‐containing proteins.Protein Sci.20011091712172810.1110/ps.12801 11514662
    [Google Scholar]
  50. BancroftG.D. StevenA. Theory and Practice of Histological Technique.4th edNew YorkChurchill Livingstone198399112
    [Google Scholar]
  51. RoaM. BlaneK. ZonnebergM. One way analysis of variance. Version IA (C);PC-STAT, Program coded by University of Georgia: USA,1985
    [Google Scholar]
  52. AryaeianN. KhorshidiS.S. ArablouT. Polyphenols and their effects on diabetes management: A review.Med. J. Islam. Repub. Iran201731188689210.14196/mjiri.31.134 29951434
    [Google Scholar]
  53. JudyE. LopusM. KishoreN. Mechanistic insights into encapsulation and release of drugs in colloidal niosomal systems: Biophysical aspects.RSC Advances20211156351103512610.1039/D1RA06057K 35493162
    [Google Scholar]
  54. LaluL. TambeV. PradhanD. NayakK. BagchiS. MaheshwariR. KaliaK. TekadeR.K. Novel nanosystems for the treatment of ocular inflammation: Current paradigms and future research directions.J. Control. Release2017268193910.1016/j.jconrel.2017.07.035 28756272
    [Google Scholar]
  55. MazyedE.A. HelalD.A. ElkhoudaryM.M. Abd ElhameedA.G. YasserM. Formulation and optimization of nanospanlastics for improving the bioavailability of green tea epigallocatechin gallate.Pharmaceuticals2021141687510.3390/ph14010068 33467631
    [Google Scholar]
  56. JagwaniS. JalalpureS. DhamechaD. JadhavK. BoharaR. Pharmacokinetic and pharmacodynamic evaluation of resveratrol-loaded cationic liposomes for targeting hepatocellular carcinoma.ACS Biomater. Sci. Eng.2020694969498410.1021/acsbiomaterials.0c00429 33455290
    [Google Scholar]
  57. DhamechaD. JalalpureS. JadhavK. JagwaniS. ChavanR. Doxorubicin loaded gold nanoparticles: Implication of passive targeting on anticancer efficacy.Pharmacol Res.2016113Pt A54755610.1016/j.phrs.2016.09.037
    [Google Scholar]
  58. MohamadE.A. MohamedZ.N. HusseinM.A. ElneklawiM.S. GANE can improve lung fibrosis by reducing inflammation via promoting p38MAPK/TGF-β1/NF-κB signaling pathway downregulation.ACS Omega2022733109312010.1021/acsomega.1c06591 35097306
    [Google Scholar]
  59. SaetingK. MitrevejA. LeuenbergerH. SinchaipanidN. Development of alendronate niosomal delivery system for gastrointestinal permeability improvement.J. Drug Deliv. Sci. Technol.20226710288510.1016/j.jddst.2021.102885
    [Google Scholar]
  60. BadriaF. MazyedE. Formulation of nanospanlastics as a promising approach for ‎improving the topical delivery of a natural leukotriene inhibitor (3-‎Acetyl-11-Keto-β-Boswellic Acid): Statistical optimization, in vitro ‎characterization, and ex vivo permeation study.Drug Des. Devel. Ther.2020143697372110.2147/DDDT.S265167 32982176
    [Google Scholar]
  61. Sezgin-BayindirZ. YukselN. Investigation of formulation variables and excipient interaction on the production of niosomes.AAPS PharmSciTech201213382683510.1208/s12249‑012‑9805‑4 22644706
    [Google Scholar]
  62. ElgizawyH.A. AliA.A. HusseinM.A. Resveratrol: Isolation, and its nanostructured lipid carriers, inhibits cell proliferation, induces cell apoptosis in certain human cell lines carcinoma and exerts protective effect against paraquat-induced hepatotoxicity.J. Med. Food20212418910010.1089/jmf.2019.0286 32580673
    [Google Scholar]
  63. HusseinM.A. Synthesis of some novel triazoloquinazolines and triazinoquinazolines and their evaluation for anti-inflammatory activity.Med. Chem. Res.20122181876188610.1007/s00044‑011‑9707‑0
    [Google Scholar]
  64. AbdelM.H.A. ElharrifM.G. MahfouzM.K. OmniaM.A. AbdullahM.H. EltabeyM.E. Biochemical study on occupational inhalation of benzene vapours in petrol station.Respir. Med. Case Rep.20192710083610.1016/j.rmcr.2019.100836
    [Google Scholar]
  65. El GizawyH.A. Abo-SalemH.M. AliA.A. HusseinM.A. Phenolic profiling and therapeutic potential of certain isolated compounds from Parkia roxburghii against AChE activity as well as GABA A α5, GSK-3β, and p38α MAP-kinase genes.ACS Omega2021631204922051110.1021/acsomega.1c02340 34395996
    [Google Scholar]
  66. BorikR.M. HusseinM.A. Synthesis, molecular docking, biological potentials and structure activity relationship of new quinazoline and quinazoline-4-one derivatives.Asian J. Chem.202133242343810.14233/ajchem.2021.23036
    [Google Scholar]
  67. El-GizawyH.A. HusseinM.A. Fatty acids profile, nutritional values, anti-diabetic and antioxidant activity of the fixed oil of malvaparviflora growing in Egypt.Int. J. Phytomed.20157219230
    [Google Scholar]
  68. ZhangJ. CelliG.B. BrooksM.S. Natural sources of anthocyanins.Anthocyanins from Natural Sources: Exploiting Targeted Delivery for Improved Health 1st ed; Brooks, M.S.L.; Celli, G.B. The Royal Society of Chemistry: Cambridge, UK,20197154196
    [Google Scholar]
  69. IstekN. GurbuzO. Investigation of the impact of blueberries on metabolic factors influencing health.J. Funct. Foods20173829830710.1016/j.jff.2017.09.039
    [Google Scholar]
  70. DemoriI. VociA. FugassaE. BurlandoB. Combined effects of high-fat diet and ethanol induce oxidative stress in rat liver.Alcohol200640318519110.1016/j.alcohol.2006.12.006 17418698
    [Google Scholar]
  71. Thomàs-MoyàE. Gómez-Pérez, Y.; Fiol, M.; Gianotti, M.; Lladó, I.; Proenza, A.M. Gender related differences in paraoxonase 1 response to high-fat diet-induced oxidative stress.Obesity200816102232223810.1038/oby.2008.340 18719679
    [Google Scholar]
  72. RozenbergO. AviramM. S-Glutathionylation regulates HDL-associated paraoxonase 1 (PON1) activity.Biochem. Biophys. Res. Commun.2006351249249810.1016/j.bbrc.2006.10.059 17070779
    [Google Scholar]
  73. UzunH. KonukogluD. GelisgenR. ZenginK. TaskinM. Plasma protein carbonyl and thiol stress before and after laparoscopic gastric banding in morbidly obese patients.Obes. Surg.200717101367137310.1007/s11695‑007‑9242‑8 18000722
    [Google Scholar]
  74. WuT. GaoY. GuoX. ZhangM. GongL. Blackberry and blueberry anthocyanin supplementation counteract high-fat-diet-induced obesity by alleviating oxidative stress and inflammation and accelerating energy expenditure.Oxid. Med. Cell. Longev.201820181910.1155/2018/4051232 30057677
    [Google Scholar]
  75. FayedA. IbrahemM.A. HassanS.A. HusseinM.A. RoshdyT. Cranberry extract as a promising functional food to regulate srebp1/ppar–α/cpt-1/aco signaling pathways in HFD-induced obesity in rats.Adv. Anim. Vet. Sci.20221091933194410.17582/journal.aavs/2022/10.9.1933.1944
    [Google Scholar]
  76. BothamK.M. Wheeler-JonesC.P.D. Postprandial lipoproteins and the molecular regulation of vascular homeostasis.Prog. Lipid Res.201352444646410.1016/j.plipres.2013.06.001 23774609
    [Google Scholar]
  77. ChengW.L. ZhangQ. LiB. CaoJ.L. JiaoL. ChaoS.P. LuZ. ZhaoF. PAK1 silencing attenuated proinflammatory macrophage activation and foam cell formation by increasing PPARγ expression.Oxid. Med. Cell. Longev.2021202111310.1155/2021/6957900 34603600
    [Google Scholar]
  78. NakajimaY. MiyaharaI. HirotsuK. NishinaY. ShigaK. SetoyamaC. TamaokiH. MiuraR. Three-dimensional structure of the flavoenzyme acyl-CoA oxidase-II from rat liver, the peroxisomal counterpart of mitochondrial acyl-CoA dehydrogenase.J. Biochem.2002131336537410.1093/oxfordjournals.jbchem.a003111 11872165
    [Google Scholar]
  79. BeitesT. JansenR.S. WangR. JinichA. RheeK.Y. SchnappingerD. EhrtS. Multiple acyl-CoA dehydrogenase deficiency kills Mycobacterium tuberculosis in vitro and during infection.Nat. Commun.2021121659310.1038/s41467‑021‑26941‑1 34782606
    [Google Scholar]
  80. El GizawyH.A.E.H. HusseinM.A. Abdel-SattarE. Biological activities, isolated compounds and HPLC profile of Verbascum nubicum.Pharm. Biol.201957148549710.1080/13880209.2019.1643378 31401911
    [Google Scholar]
  81. HusseinM.A. El-gizawyH.A.E. GobbaN.A.E.K. MosaadY.O. Synthesis of cinnamyl and caffeoyl derivatives of cucurbitacin-e-glycoside isolated from citrullus colocynthis Fruits and their Structures Antioxidant and Anti-inflammatory Activities Relationship.Curr. Pharm. Biotechnol.201718867769310.2174/1389201018666171004144615 28982326
    [Google Scholar]
  82. Abdel-GawadS.M. GhorabM.M. El-ShariefA.M.S. El-TelbanyF.A. Abdel-AllaM. Design, synthesis, and antimicrobial activity of some new pyrazolo[3,4‐ d]pyrimidines.Heteroatom Chem.200314653053410.1002/hc.10187
    [Google Scholar]
  83. El-gizawyH.A.E. HusseinM.A. Isolation, structure elucidation of ferulic and coumaric acids from fortunella japonica swingle leaves and their structure antioxidant activity relationship.Free Radic. Antioxid.201671233010.5530/fra.2017.1.4
    [Google Scholar]
  84. AguirreL. PortilloM.P. HijonaE. BujandaL. Effects of resveratrol and other polyphenols in hepatic steatosis.World J. Gastroenterol.201420237366738010.3748/wjg.v20.i23.7366 24966607
    [Google Scholar]
  85. KammounH.L. ChabanonH. HainaultI. LuquetS. MagnanC. KoikeT. FerréP. FoufelleF. GRP78 expression inhibits insulin and ER stress–induced SREBP-1c activation and reduces hepatic steatosis in mice.J. Clin. Invest.200911951201121510.1172/JCI37007 19363290
    [Google Scholar]
  86. AragonèsG. Ardid-RuizA. IbarsM. Suárez, M.; Bladé, C. Modulation of leptin resistance by food compounds.Mol. Nutr. Food Res.20166081789180310.1002/mnfr.201500964 26842874
    [Google Scholar]
  87. Ardid-RuizA. HarazinA. BarnaL. WalterF.R. BladéC. Suárez, M.; Deli, M.A.; Aragonès, G. The effects of Vitis vinifera L. phenolic compounds on a blood-brain barrier culture model: Expression of leptin receptors and protection against cytokine-induced damage.J. Ethnopharmacol.202024711225310.1016/j.jep.2019.112253 31562952
    [Google Scholar]
  88. PolyzosS.A. KountourasJ. MantzorosC.S. Leptin in nonalcoholic fatty liver disease: A narrative review.Metabolism2015641607810.1016/j.metabol.2014.10.012 25456097
    [Google Scholar]
  89. MosaadY.O. HusseinM.A. AteyyaH. MohamedA.H. AliA.A. RamadanY.A. WinkM. El-KholyA.A. Vanin 1 gene role in modulation of iNOS/MCP-1/TGF-β1 signaling pathway in obese diabetic patients.J. Inflamm. Res.2022156745675910.2147/JIR.S386506
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010278684240105115516
Loading
/content/journals/cpb/10.2174/0113892010278684240105115516
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): ACO; adiponectin; insulin; leptin; OB-Rb; obesity; pAMPK; Phloretin nanospanlastics
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test