Skip to content
2000
Volume 26, Issue 1
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Introduction

Active targeting of tumors by nanomaterials favors early diagnosis and the reduction of harsh side effects of chemotherapeuticals.

Methods

We synthesized magnetic nanoparticles (64 nm; -40 mV) suspended in a magnetic fluid (MF) and decorated them with anti-carcinoembryonic antigen (MFCEA; 144 nm; -39 mV). MF and MFCEA nanoparticles were successfully radiolabeled with technetium–99m (99mTc) and intravenously injected in CEA-positive 4T1 tumor-bearing mice to perform biodistribution studies. Both 99mTc-MF and 99mTc-MFCEA had marked uptake by the liver and spleen, and the renal uptake of 99mTc-MFCEA was higher than that observed for 99mTc-MF at 20h. At 1 and 5 hours, the urinary excretion was higher for 99mTc-MF than for 99mTc-MFCEA.

Results

These data suggest that anti-CEA decoration might be responsible for a delay in renal clearance. Regarding the tumor, 99mTc-MFCEA showed tumor uptake nearly two times higher than that observed for 99mTc-MFCEA. Similarly, the target-nontarget ratio was higher with 99mTc-MFCEA when compared to the group that received the 99mTc-MF.

Conclusion

These data validated the ability of active tumor targeting by the as-developed anti-CEA loaded nanoparticles and are very promising results for the future development of a nanodevice for the management of breast cancer and other types of CEA-positive tumors.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010268872240104114444
2024-02-06
2024-12-28
Loading full text...

Full text loading...

References

  1. Global Cancer Observatory. 2020Available from: https://gco.iarc.fr/
  2. JahangirianH. KalantariK. IzadiyanZ. Rafiee-MoghaddamR. ShameliK. WebsterT.J. A review of small molecules and drug delivery applications using gold and iron nanoparticles.Int. J. Nanomedicine2019141633165710.2147/IJN.S184723 30880970
    [Google Scholar]
  3. BabikerH.M. McBrideA. NewtonM. BoehmerL.M. DruckerA.G. GowanM. CassagnolM. CamenischT.D. AnwerF. HollandsJ.M. Cardiotoxic effects of chemotherapy: A review of both cytotoxic and molecular targeted oncology therapies and their effect on the cardiovascular system.Crit. Rev. Oncol. Hematol.201812618620010.1016/j.critrevonc.2018.03.014 29759560
    [Google Scholar]
  4. RibeiroJ.T. MacedoL.T. CuriglianoG. FumagalliL. LocatelliM. DaltonM. QuintelaA. CarvalheiraJ.B.C. ManuntaS. MazzarellaL. BrolloJ. GoldhirschA. Cytotoxic drugs for patients with breast cancer in the era of targeted treatment: back to the future?Ann. Oncol.201223354755510.1093/annonc/mdr382 21896541
    [Google Scholar]
  5. WangS.Y. HuH.Z. QingX.C. ZhangZ.C. ShaoZ.W. Recent advances of drug delivery nanocarriers in osteosarcoma treatment.J. Cancer2020111698210.7150/jca.36588 31892974
    [Google Scholar]
  6. RajoraA.K. RavishankarD. ZhangH. RosenholmJ.M. Recent advances and impact of chemotherapeutic and antiangiogenic nanoformulations for combination cancer therapy.Pharmaceutics202012659261810.3390/pharmaceutics12060592 32630584
    [Google Scholar]
  7. SamantaK. SetuaS. KumariS. JaggiM. YallapuM.M. ChauhanS.C. Gemcitabine combination nano therapies for pancreatic cancer.Pharmaceutics2019111157459910.3390/pharmaceutics11110574 31689930
    [Google Scholar]
  8. Hoang ThiT. Nguyen TranD.H. BachL. Vu-QuangH. NguyenD. ParkK. NguyenD. Functional magnetic core-shell system-based iron oxide nanoparticle coated with biocompatible copolymer for anticancer drug delivery.Pharmaceutics201911312013310.3390/pharmaceutics11030120 30875948
    [Google Scholar]
  9. GholamiA. MousaviS.M. HashemiS.A. GhasemiY. ChiangW.H. ParvinN. Current trends in chemical modifications of magnetic nanoparticles for targeted drug delivery in cancer chemotherapy.Drug Metab. Rev.202052120522410.1080/03602532.2020.1726943 32083952
    [Google Scholar]
  10. PustaA. TertisM. CrăciunescuI. TurcuR. MirelS. CristeaC. Recent advances in the development of drug delivery applications of magnetic nanomaterials.Pharmaceutics2023157187210.3390/pharmaceutics15071872 37514058
    [Google Scholar]
  11. GaoP. MeiC. HeL. XiaoZ. ChanL. ZhangD. ShiC. ChenT. LuoL. Designing multifunctional cancer-targeted nanosystem for magnetic resonance molecular imaging-guided theranostics of lung cancer.Drug Deliv.20182511811182510.1080/10717544.2018.1494224 30465437
    [Google Scholar]
  12. UlbrichK. HoláK. ŠubrV. BakandritsosA. TučekJ. ZbořilR. Targeted drug delivery with polymers and magnetic nanoparticles: covalent and noncovalent approaches, release control, and clinical studies.Chem. Rev.201611695338543110.1021/acs.chemrev.5b00589 27109701
    [Google Scholar]
  13. EspinosaA. Di CoratoR. Kolosnjaj-TabiJ. FlaudP. PellegrinoT. WilhelmC. Duality of iron oxide nanoparticles in cancer therapy: Amplification of heating efficiency by magnetic hyperthermia and photothermal bimodal treatment.ACS Nano20161022436244610.1021/acsnano.5b07249 26766814
    [Google Scholar]
  14. FangK. SongL. GuZ. YangF. ZhangY. GuN. Magnetic field activated drug release system based on magnetic PLGA microspheres for chemo-thermal therapy.Colloids Surf. B Biointerfaces201513671272010.1016/j.colsurfb.2015.10.014 26513754
    [Google Scholar]
  15. JeonM.J. AhnC.H. KimH. ChungI.J. JungS. KimY.H. YounH. ChungJ.W. KimY.I. The intratumoral administration of ferucarbotran conjugated with doxorubicin improved therapeutic effect by magnetic hyperthermia combined with pharmacotherapy in a hepatocellular carcinoma model.J. Exp. Clin. Cancer Res.20143315710.1186/s13046‑014‑0057‑x 25037747
    [Google Scholar]
  16. AbedZ. BeikJ. LaurentS. EslahiN. KhaniT. DavaniE.S. GhaznaviH. Shakeri-ZadehA. Iron oxide-gold core-shell nano-theranostic for magnetically targeted photothermal therapy under magnetic resonance imaging guidance.J. Cancer Res. Clin. Oncol.201914551213121910.1007/s00432‑019‑02870‑x 30847551
    [Google Scholar]
  17. CancinoJ. MarangoniV.S. ZucolottoV. Nanotecnologia em medicina: Aspectos fundamentais e principais preocupações.Quim. Nova201437352152610.5935/0100‑4042.20140086
    [Google Scholar]
  18. BalasM. PredoiD. BurteaC. DinischiotuA. New insights into the biological response triggered by dextran-coated maghemite nanoparticles in pancreatic cancer cells and their potential for theranostic applications.Int. J. Mol. Sci.2023244330710.3390/ijms24043307 36834718
    [Google Scholar]
  19. RehmanY. ChengZ. WangX. HuangX.F. KonstantinovK. Theranostic two-dimensional superparamagnetic maghemite quantum structures for ROS-mediated cancer therapy.J. Mater. Chem. B Mater. Biol. Med.20219295805581710.1039/D1TB01036K 34231637
    [Google Scholar]
  20. KuchmaE.A. ZolotukhinP.V. BelanovaA.A. SoldatovM.A. KozakovA.T. KubrinS.P. PolozhentsevO.E. MedvedevP.V. SoldatovA.V. Effect of synthesis conditions on local atomic structure and properties of low-toxic maghemite nanoparticles for local magnetic hyperthermia in oncology.J. Nanopart. Res.20222422510.1007/s11051‑021‑05393‑0
    [Google Scholar]
  21. DarsonJ. MohanM. Iron oxide nanoparticles and nano-composites: An efficient tool for cancer theranostics.In: Iron Oxide Nanoparticles.Intechopen202210.5772/intechopen.101934
    [Google Scholar]
  22. VangijzegemT. LecomteV. TernadI. Van LeuvenL. MullerR.N. StanickiD. LaurentS. Superparamagnetic iron oxide nanoparticles (SPION): From fundamentals to state-of-the-art innovative applications for cancer therapy.Pharmaceutics202315123610.3390/pharmaceutics15010236 36678868
    [Google Scholar]
  23. Fernández-ÁlvarezF. CaroC. García-GarcíaG. García-MartínM.L. AriasJ.L. Engineering of stealth (maghemite/PLGA)/chitosan (core/shell)/shell nanocomposites with potential applications for combined MRI and hyperthermia against cancer.J. Mater. Chem. B Mater. Biol. Med.20219244963498010.1039/D1TB00354B 34114575
    [Google Scholar]
  24. AgwaM.M. SabraS. Lactoferrin coated or conjugated nanomaterials as an active targeting approach in nanomedicine.Int. J. Biol. Macromol.20211671527154310.1016/j.ijbiomac.2020.11.107 33212102
    [Google Scholar]
  25. JazayeriM.H. AmaniH. PourfatollahA.A. Pazoki-ToroudiH. SedighimoghaddamB. Various methods of gold nanoparticles (GNPs) conjugation to antibodies.Sens. Biosensing Res.20169172210.1016/j.sbsr.2016.04.002
    [Google Scholar]
  26. ZhiD. YangT. YangJ. FuS. ZhangS. Targeting strategies for superparamagnetic iron oxide nanoparticles in cancer therapy.Acta Biomater.2020102133410.1016/j.actbio.2019.11.027 31759124
    [Google Scholar]
  27. LacavaZ. Campos da Paz; Almeida Santos; Santos; Silva; Souza; Lima; Silva; Lucci; Morais; Azevedo, R. Anti-CEA loaded maghemite nanoparticles as a theragnostic device for colorectal cancer.Int. J. Nanomedicine201275271528210.2147/IJN.S32139 23055733
    [Google Scholar]
  28. TeijeiraA. MiguelizI. GarasaS. KaranikasV. LuriC. CirellaA. OliveraI. CañameroM. AlvarezM. OchoaM.C. RouzautA. Rodriguez-RuizM.E. SanmamedM.F. KleinC. UmañaP. PonzM. BacacM. MeleroI. Three-dimensional colon cancer organoids model the response to CEA-CD3 T-cell engagers.Theranostics20221231373138710.7150/thno.63359 35154495
    [Google Scholar]
  29. MustafaA.J. IsmailP.A. Association of potent inflammatory Cytokine and Oxidative DNA Damage Biomarkers in Stomach cancer patients.Baghdad Sci J2022196131310.21123/bsj.2022.6589
    [Google Scholar]
  30. SatoO. TsuchikawaT. KatoT. AmaishiY. OkamotoS. MinenoJ. TakeuchiY. SasakiK. NakamuraT. UmemotoK. SuzukiT. WangL. WangY. HatanakaK.C. MitsuhashiT. HatanakaY. ShikuH. HiranoS. Tumor growth suppression of pancreatic cancer orthotopic xenograft model by CEA-targeting CAR-T cells.Cancers202315360110.3390/cancers15030601 36765558
    [Google Scholar]
  31. Campos-da-PazM. DóreaJ.G. GaldinoA.S. LacavaZ.G.M. de Fatima Menezes Almeida SantosM. Carcinoembryonic antigen (CEA) and hepatic metastasis in colorectal cancer: update on biomarker for clinical and biotechnological approaches.Recent Pat. Biotechnol.201812426927910.2174/1872208312666180731104244 30062978
    [Google Scholar]
  32. AurichK. NagelS. HeisterE. WeitschiesW. Affinity analysis for biomolecular interactions based on magneto-optical relaxation measurements.Nanotechnology2008195050510250511010.1088/0957‑4484/19/50/505102 19942759
    [Google Scholar]
  33. ErnstingM.J. MurakamiM. RoyA. LiS.D. Factors controlling the pharmacokinetics, biodistribution and intratumoral penetration of nanoparticles.J. Control. Release2013172378279410.1016/j.jconrel.2013.09.013 24075927
    [Google Scholar]
  34. NamJ. WonN. BangJ. JinH. ParkJ. JungS. JungS. ParkY. KimS. Surface engineering of inorganic nanoparticles for imaging and therapy.Adv. Drug Deliv. Rev.201365562264810.1016/j.addr.2012.08.015 22975010
    [Google Scholar]
  35. XuL. XuM. SunX. FeliuN. FengL. ParakW.J. LiuS. Quantitative comparison of gold nanoparticle delivery via the enhanced permeation and retention (EPR) effect and mesenchymal stem cell (MSC)-based targeting.ACS Nano20231732039205210.1021/acsnano.2c07295 36717361
    [Google Scholar]
  36. ShipunovaV.O. BelovaM.M. KotelnikovaP.A. ShilovaO.N. MirkasymovA.B. DanilovaN.V. KomedchikovaE.N. PopovtzerR. DeyevS.M. NikitinM.P. Photothermal therapy with HER2-targeted silver nanoparticles leading to cancer remission.Pharmaceutics2022145101310.3390/pharmaceutics14051013 35631598
    [Google Scholar]
  37. FelberM. BauwensM. MateosJ.M. ImstepfS. MottaghyF.M. AlbertoR. (99m) Tc radiolabeling and biological evaluation of nanoparticles functionalized with a versatile coating ligand.Chemistry201521166090609910.1002/chem.201405704 25765900
    [Google Scholar]
  38. DinizS.O.F. SiqueiraC.F. NelsonD.L. Martin-CominJ. CardosoV.N. Technetium-99m ceftizoxime kit preparation.Braz. Arch. Biol. Technol.200548spe2899610.1590/S1516‑89132005000700014
    [Google Scholar]
  39. TsiapaI. EfthimiadouE.K. FragogeorgiE. LoudosG. VarvarigouA.D. BouziotisP. KordasG.C. MihailidisD. NikiforidisG.C. XanthopoulosS. PsimadasD. Paravatou-PetsotasM. PalamarisL. HazleJ.D. KagadisG.C. 99m Tc-labeled aminosilane-coated iron oxide nanoparticles for molecular imaging of ανβ3 -mediated tumor expression and feasibility for hyperthermia treatment.J. Colloid Interface Sci.201443316317510.1016/j.jcis.2014.07.032 25128864
    [Google Scholar]
  40. LassenbergerA. ScheberlA. StadlbauerA. StiglbauerA. HelbichT. ReimhultE. Individually stabilized, superparamagnetic nanoparticles with controlled shell and size leading to exceptional stealth properties and high relaxivities.ACS Appl. Mater. Interfaces2017943343335310.1021/acsami.6b12932 28071883
    [Google Scholar]
  41. KievitF.M. ZhangM. Surface engineering of iron oxide nanoparticles for targeted cancer therapy.Acc. Chem. Res.2011441085386210.1021/ar2000277 21528865
    [Google Scholar]
  42. SongL. ChenY. DingJ. WuH. ZhangW. MaM. ZangF. WangZ. GuN. ZhangY. Rituximab conjugated iron oxide nanoparticles for targeted imaging and enhanced treatment against CD20-positive lymphoma.J. Mater. Chem. B Mater. Biol. Med.20208589590710.1039/C9TB02521A 31909406
    [Google Scholar]
  43. AvazzadehR. Vasheghani-FarahaniE. SoleimaniM. AmanpourS. SadeghiM. Synthesis and application of magnetite dextran-spermine nanoparticles in breast cancer hyperthermia.Prog. Biomater.201763758410.1007/s40204‑017‑0068‑8 28624871
    [Google Scholar]
  44. DriskellJ.D. JonesC.A. TompkinsS.M. TrippR.A. One-step assay for detecting influenza virus using dynamic light scattering and gold nanoparticles.Analys2011136153083309010.1039/c1an15303j 21666913
    [Google Scholar]
  45. VenkatramanG. Ramya; Shruthilaya; Akila; Ganga; Suresh Kumar; Yoganathan; Santosham, R.; Ponraju, Nanomedicine: towards development of patient-friendly drug-delivery systems for oncological applications.Int. J. Nanomedicine201271043106010.2147/IJN.S25182 22403487
    [Google Scholar]
  46. KalyaneD. RavalN. MaheshwariR. TambeV. KaliaK. TekadeR.K. Employment of enhanced permeability and retention effect (EPR): Nanoparticle-based precision tools for targeting of therapeutic and diagnostic agent in cancer.Mater. Sci. Eng. C2019981252127610.1016/j.msec.2019.01.066 30813007
    [Google Scholar]
  47. Mikelez-AlonsoI. AiresA. CortajarenaA.L. Cancer nano-immunotherapy from the injection to the target: The role of protein corona.Int. J. Mol. Sci.202021251953610.3390/ijms21020519 31947622
    [Google Scholar]
  48. ForoozandehP. AzizA.A. Merging worlds of nanomaterials and biological environment: Factors governing protein corona formation on nanoparticles and its biological consequences.Nanoscale Res. Lett.201510122110.1186/s11671‑015‑0922‑3 25995715
    [Google Scholar]
  49. BelanovaA.A. GavalasN. MakarenkoY.M. BelousovaM.M. SoldatovA.V. ZolotukhinP.V. Physicochemical properties of magnetic nanoparticles: Implications for biomedical applications in vitro and in vivo.Oncol. Res. Treat.201841313914310.1159/000485020 29485418
    [Google Scholar]
  50. DiasC.R.D.B.R. Studies of monoclonal antibodies IOR-CEA-1 and IOR-EGF/R3 labelled with 99mTc.2005Available from https://inis.iaea.org/search/search.aspx?orig_q=RN:40094776
    [Google Scholar]
  51. BaileyJ.J. DewarajaY. HubersD. SrinivasaR. FreyK.A. Biodistribution of 99mTc-MAA on SPECT/CT performed for 90Y-radioembolization therapy planning: A pictorial review.Clin. Transl. Imaging20175547348510.1007/s40336‑017‑0245‑8 29423383
    [Google Scholar]
  52. ZhangQ. RajanS.S. TynerK.M. CaseyB.J. DugardC.K. JonesY. ParedesA.M. ClingmanC.S. HowardP.C. GoeringP.L. Effects of iron oxide nanoparticles on biological responses and MR imaging properties in human mammary healthy and breast cancer epithelial cells.J. Biomed. Mater. Res. B Appl. Biomater.201610451032104210.1002/jbm.b.33450 26013845
    [Google Scholar]
  53. GaharwarU.S. MeenaR. RajamaniP. Biodistribution, clearance and morphological alterations of intravenously administered iron oxide nanoparticles in male wistar rats.Int. J. Nanomedicine2019149677969210.2147/IJN.S223142 31827324
    [Google Scholar]
  54. KlapprothA.P. ShevtsovM. StanglS. LiW.B. MulthoffG. A new pharmacokinetic model describing the biodistribution of intravenously and intratumorally administered superparamagnetic iron oxide nanoparticles (SPIONs) in a GL261 Xenograft glioblastoma model.Int. J. Nanomedicine2020154677468910.2147/IJN.S254745 32669844
    [Google Scholar]
  55. AramiH. KhandharA. LiggittD. KrishnanK.M. In vivo delivery, pharmacokinetics, biodistribution and toxicity of iron oxide nanoparticles.Chem. Soc. Rev.201544238576860710.1039/C5CS00541H 26390044
    [Google Scholar]
  56. YangB. HanX. JiB. LuR. Competition between tumor and mononuclear phagocyte system causing the low tumor distribution of nanoparticles and strategies to improve tumor accumulation.Curr. Drug Deliv.20161381261127410.2174/1567201813666160418105703 27086698
    [Google Scholar]
  57. LuY. GuZ. A size bandpass filter.Nat. Nanotechnol.201712111023102510.1038/nnano.2017.200 28892100
    [Google Scholar]
  58. Gómez-VallejoV. PuigivilaM. Plaza-GarcíaS. SzczupakB. PiñolR. MurilloJ.L. SorribasV. LouG. VeintemillasS. Ramos-CabrerP. LlopJ. MillánA. PEG-copolymer-coated iron oxide nanoparticles that avoid the reticuloendothelial system and act as kidney MRI contrast agents.Nanoscale20181029141531416410.1039/C8NR03084G 29999506
    [Google Scholar]
  59. RuggieroA. VillaC.H. BanderE. ReyD.A. BergkvistM. BattC.A. Manova-TodorovaK. DeenW.M. ScheinbergD.A. McDevittM.R. Paradoxical glomerular filtration of carbon nanotubes.Proc. Natl. Acad. Sci.201010727123691237410.1073/pnas.0913667107 20566862
    [Google Scholar]
  60. HeX. NieH. WangK. TanW. WuX. ZhangP. In vivo study of biodistribution and urinary excretion of surface-modified silica nanoparticles.Anal. Chem.200880249597960310.1021/ac801882g 19007246
    [Google Scholar]
  61. NaumenkoV. NikitinA. KapitanovaK. MelnikovP. VodopyanovS. GaraninaA. ValikhovM. IlyasovA. VishnevskiyD. MarkovA. GolyshevS. ZhukovD. AlievaI. AbakumovM. ChekhoninV. MajougaA. Intravital microscopy reveals a novel mechanism of nanoparticles excretion in kidney.J. Control. Release201930736837810.1016/j.jconrel.2019.06.026 31247280
    [Google Scholar]
  62. DuanL. YangL. JinJ. YangF. LiuD. HuK. WangQ. YueY. GuN. Micro/nano-bubble-assisted ultrasound to enhance the EPR effect and potential theranostic applications.Theranostics202010246248310.7150/thno.37593 31903132
    [Google Scholar]
  63. ParkJ. ChoiY. ChangH. UmW. RyuJ.H. KwonI.C. Alliance with EPR effect: Combined strategies to improve the EPR effect in the tumor microenvironment.Theranostics20199268073809010.7150/thno.37198 31754382
    [Google Scholar]
  64. KangH. RhoS. StilesW.R. HuS. BaekY. HwangD.W. KashiwagiS. KimM.S. ChoiH.S. Size‐dependent EPR effect of polymeric nanoparticles on tumor targeting.Adv. Healthc. Mater.202091190122310.1002/adhm.201901223 31794153
    [Google Scholar]
  65. FieldL.D. NagO.K. SangtaniA. BurnsK.E. DelehantyJ.B. The role of nanoparticles in the improvement of systemic anticancer drug delivery.Ther. Deliv.20189752754510.4155/tde‑2018‑0015 29943689
    [Google Scholar]
  66. AlricC. Hervé-AubertK. AubreyN. MeloukS. LajoieL. MêmeW. MêmeS. CourbebaisseY. IgnatovaA.A. FeofanovA.V. ChourpaI. Allard-VannierE. Targeting HER2-breast tumors with scFv-decorated bimodal nanoprobes.J. Nanobiotechnology20181611810.1186/s12951‑018‑0341‑6 29466990
    [Google Scholar]
  67. LinR. HuangJ. WangL. LiY. LipowskaM. WuH. YangJ. MaoH. Bevacizumab and near infrared probe conjugated iron oxide nanoparticles for vascular endothelial growth factor targeted MR and optical imaging.Biomater. Sci.2018661517152510.1039/C8BM00225H 29652061
    [Google Scholar]
  68. GriswoldK. NdongC. Toraya-BrownS. KekaloK. BakerI. GerngrossT. FieringS. Antibody-mediated targeting of iron oxide nanoparticles to the folate receptor alpha increases tumor cell association in vitro and in vivo.Int. J. Nanomedicine2015102595261710.2147/IJN.S79367 25878495
    [Google Scholar]
  69. CędrowskaE. PruszyńskiM. GawędaW. ŻukM. KrysińskiP. BruchertseiferF. MorgensternA. KarageorgouM.A. BouziotisP. BilewiczA. Trastuzumab conjugated superparamagnetic iron oxide nanoparticles labeled with 225AC as a perspective tool for combined α-radioimmunotherapy and magnetic hyperthermia of HER2-positive breast cancer.Molecules20202551025104310.3390/molecules25051025 32106568
    [Google Scholar]
  70. TateJ.A. KettW. NDong, C.; Griswold, K.E.; Hoopes, P.J. Biodistribution of antibody-targeted and non-targeted iron oxide nanoparticles in a breast cancer mouse model.Proc. SPIE2013858485840G10.1117/12.2008814 25301995
    [Google Scholar]
  71. StankovićA. MihailovićJ. MirkovićM. RadovićM. MilanovićZ. OgnjanovićM. JankovićD. AntićB. MijovićM. Vranješ-ĐurićS. PrijovićŽ. Aminosilanized flower-structured superparamagnetic iron oxide nanoparticles coupled to 131I-labeled CC49 antibody for combined radionuclide and hyperthermia therapy of cancer.Int. J. Pharm.202058711962811966510.1016/j.ijpharm.2020.119628 32681867
    [Google Scholar]
  72. OltolinaF. ColangeloD. MilettoI. ClementeN. MiolaM. VernéE. PratM. FollenziA. Tumor targeting by monoclonal antibody functionalized magnetic nanoparticles.Nanomaterials20199111575159710.3390/nano9111575 31698869
    [Google Scholar]
  73. CaiZ. ChattopadhyayN. YangK. KwonY.L. YookS. PignolJ.P. ReillyR.M. 111In-labeled trastuzumab-modified gold nanoparticles are cytotoxic in vitro to HER2-positive breast cancer cells and arrest tumor growth in vivo in athymic mice after intratumoral injection.Nucl. Med. Biol.2016431281882610.1016/j.nucmedbio.2016.08.009 27788375
    [Google Scholar]
  74. FrameryB. GutowskiM. DumasK. EvrardA. MullerN. DuboisV. QuinoneroJ. ScherninskiF. PèlegrinA. CaillerF. Toxicity and pharmacokinetic profile of SGM-101, a fluorescent anti-CEA chimeric antibody for fluorescence imaging of tumors in patients.Toxicol. Rep.2019640941510.1016/j.toxrep.2019.04.011 31080749
    [Google Scholar]
  75. CorreaT.S. BoccaA.L. FigueiredoF. LimaE.C.O. Almeida SantosM.D.F.M. LacavaZ.G.M. Campos-da-PazM. Anti-CEA tagged iron nanoparticles for targeting triple-negative breast cancer.Biomed. Mater.202116303501703504210.1088/1748‑605X/abe359 33540396
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010268872240104114444
Loading
/content/journals/cpb/10.2174/0113892010268872240104114444
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test