Skip to content
2000
Volume 20, Issue 8
  • ISSN: 1573-4129
  • E-ISSN: 1875-676X

Abstract

Background

Oxaliplatin, a platinum-based antineoplastic agent, is widely used to treat colorectal cancer. It is well-known for its capacity to hinder the development and division of cells, especially fast-dividing ones, like cancer cells, the creation of DNA adduct. The currently published oxaliplatin analytical methods require a complex, difficult-to-understand procedure, and are costly.

Objective

The main objectives of our study were to select the chromatographic parameters, develop a UFLC method and validate it, and validate the results according to ICH guidelines.

Methods

In this UFLC study, a normal phase C18 column (250cm x 4.6 mm x5 µm) with a mobile phase containing 0.01 M orthophosphoric acid and acetonitrile (95:5 V/V) has been used at pH 3.5. Flowrate has been fixed at 1ml/min and the sample has been tested in the UV range for detection. The methods have been validated for precision, linearity, forced degradation studies, robustness, and accuracy.

Results

The retention time of the drug has been found to be >8min. The calibration curve of the drug has been obtained within the range of 10–240 µg/ml. The results of this analysis have been validated according to ICH guideline Q2 (R1) for registration of human use.

Conclusion

The UFLC method we have used for oxaliplatin quantification has been found to be simpler, easier to understand, and more cost-effective than standard HPLC as it has consumed less mobile phase and less time. Thus, we can conclude that this new, simple, and easy method may be a useful alternative to the existing standard methods for oxaliplatin.

Loading

Article metrics loading...

/content/journals/cpa/10.2174/0115734129329774240829073320
2024-09-04
2025-07-05
Loading full text...

Full text loading...

References

  1. AbramkinS.A. JungwirthU. ValiahdiS.M. DworakC. HabalaL. MeelichK. BergerW. JakupecM.A. HartingerC.G. NazarovA.A. GalanskiM.S. KepplerB.K. (1R,2R,4R)-4-methyl-1,2-cyclohexanediamineoxalatoplatinum(II): a novel enantiomerically pure oxaliplatin derivative showing improved anticancer activity in vivo.J. Med. Chem.201053207356736410.1021/jm100953c20886814
    [Google Scholar]
  2. AlcindorT. BeaugerN. Oxaliplatin: A review in the era of molecularly targeted therapy.Curr. Oncol.2011181182510.3747/co.v18i1.70821331278
    [Google Scholar]
  3. ZhangC. XuC. GaoX. YaoQ. Platinum-based drugs for cancer therapy and anti-tumor strategies.Theranostics20221252115213210.7150/thno.6942435265202
    [Google Scholar]
  4. ManicS. GattiL. CareniniN. FumagalliG. ZuninoF. PeregoP. Mechanisms controlling sensitivity to platinum complexes: role of p53 and DNA mismatch repair.Curr. Cancer Drug Targets200331212910.2174/156800903333372712570658
    [Google Scholar]
  5. StordalB. PavlakisN. DaveyR. Oxaliplatin for the treatment of cisplatin-resistant cancer: A systematic review.Cancer Treat. Rev.200733434735710.1016/j.ctrv.2007.01.00917383100
    [Google Scholar]
  6. GrahamM.A. LockwoodG.F. GreensladeD. BrienzaS. BayssasM. GamelinE. Clinical pharmacokinetics of oxaliplatin: A critical review.Clin. Cancer Res.2000641205121810778943
    [Google Scholar]
  7. KöberleB. MastersJ.R.W. HartleyJ.A. WoodR.D. Defective repair of cisplatin-induced DNA damage caused by reduced XPA protein in testicular germ cell tumours.Curr. Biol.19999527327810.1016/S0960‑9822(99)80118‑310074455
    [Google Scholar]
  8. ZhouJ. KangY. ChenL. WangH. LiuJ. ZengS. YuL. The Drug-Resistance Mechanisms of Five Platinum-Based Antitumor Agents.Front. Pharmacol.20201134310.3389/fphar.2020.0034332265714
    [Google Scholar]
  9. LiaoL. TangJ. HongZ. JiangW. LiY. KongL. HanK. HouZ. ZhangC. ZhouC. ZhangL. SuiQ. XiaoB. MeiW. YuJ. YangW. PanZ. DingP.R. The effects of oxaliplatin-based adjuvant chemotherapy in high-risk stage II colon cancer with mismatch repair-deficient: A retrospective study.BMC Cancer202424116410.1186/s12885‑024‑11821‑w38302968
    [Google Scholar]
  10. SharmaS. GongP. TempleB. BhattacharyyaD. DokholyanN.V. ChaneyS.G. Molecular dynamic simulations of cisplatin- and oxaliplatin-d(GG) intrastand cross-links reveal differences in their conformational dynamics.J. Mol. Biol.200737351123114010.1016/j.jmb.2007.07.07917900616
    [Google Scholar]
  11. MehmoodR.K. Review of cisplatin and oxaliplatin in current immunogenic and monoclonal antibody treatments.Oncol. Rev.20148225610.4081/oncol.2014.25625992242
    [Google Scholar]
  12. AndréT. BoniC. NavarroM. TaberneroJ. HickishT. TophamC. BonettiA. ClinganP. BridgewaterJ. RiveraF. de GramontA. Improved overall survival with oxaliplatin, fluorouracil, and leucovorin as adjuvant treatment in stage II or III colon cancer in the MOSAIC trial.J. Clin. Oncol.200927193109311610.1200/JCO.2008.20.677119451431
    [Google Scholar]
  13. MeyerhardtJ.A. MayerR.J. Systemic therapy for colorectal cancer.N. Engl. J. Med.2005352547648710.1056/NEJMra04095815689586
    [Google Scholar]
  14. PucciB. KastenM. GiordanoA. Cell Cycle and Apoptosis.Neoplasia.20002429129910.1038/sj.neo.7900101
    [Google Scholar]
  15. RaymondE. Buquet-FagotC. DjelloulS. MesterJ. CvitkovicE. AllainP. LouvetC. GespachC. Antitumor activity of oxaliplatin in combination with 5-fluorouracil and the thymidylate synthase inhibitor AG337 in human colon, breast and ovarian cancers.Anticancer Drugs19978987688510.1097/00001813‑199710000‑000099402315
    [Google Scholar]
  16. RaymondE. ChaneyS.G. TaammaA. CvitkovicE. Oxaliplatin: A review of preclinical and clinical studies.Ann. Oncol.19989101053107110.1023/A:10082137324299834817
    [Google Scholar]
  17. GermannN. BrienzaS. RotarskiM. EmileJ.F. Di PalmaM. MussetM. ReynesM. SouliéP. CvitkovicE. MissetJ.L. Preliminary results on the activity of oxaliplatin (L-OHP) in refractory/recurrent non-Hodgkin’s lymphoma patients.Ann. Oncol.199910335135410.1023/A:100831070885310355582
    [Google Scholar]
  18. KumarA. SainiG. NairA. SharmaR. UPLC: a preeminent technique in pharmaceutical analysis.Acta Pol. Pharm.201269337138022594250
    [Google Scholar]
  19. PandaS.S. Ravi KumarB.V.V. MohantaG. DashR. PatelP.K. New Stability-Indicating RP-UFLC Method for Determination of Trospium Chloride in Tablet Dosage Form.Sci. Pharm.201280495596410.3797/scipharm.1207‑0723264942
    [Google Scholar]
  20. MeenakshiD. MeenaxiM. A Review on Ultra Performance Liquid Chromatography.Int J Drug Dev Res.201352934
    [Google Scholar]
  21. KamalS. SharadW. Step-up in liquid chromatography from HPLC to UPLC: A comparative and comprehensive review.Pharma Innov J.201878342347
    [Google Scholar]
  22. YandamuriN. Comparative study of new trends in HPLC: A review.Int. J. Pharm. Sci. Rev. Res.201323
    [Google Scholar]
  23. AliR. BhatiaR. ChawlaP.A. Prospects of UPLC in Pharmaceutical Analysis over HPLC.Biomed. J. Sci. Tech. Res.20224513607536077
    [Google Scholar]
  24. GannuR. YamsaniV.V. YamsaniS.K. PalemC.R. VorugantiS. YamsaniM.R. Development of ultra fast liquid chromatographic method for simultaneous determination of nitrendipine and carvone in skin diffusate samples.J. Pharm. Biomed. Anal.20095051080108410.1016/j.jpba.2009.06.04719631487
    [Google Scholar]
  25. BasharatR. KotraV. LoongL.Y. MathewsA. KanakalM.M. DevC.H.B.P. NyamathullaS. VaralaR. MingL.C. RaoK.R.S.S. BabuB.H. AlamM.M. A Mini-review on Ultra Performance Liquid Chromatography.Orient. J. Chem.202137484785710.13005/ojc/370411
    [Google Scholar]
  26. ZhaoX. BiK. WangX. XueX. HeB. CuiY. LiuZ. WangD. ChenX. A UFLC–MS/MS method coupled with one-step protein precipitation for determination of docetaxel in rat plasma: Comparative pharmacokinetic study of modified nanostructured lipid carrier.J. Pharm. Biomed. Anal.20138320220810.1016/j.jpba.2013.05.02523764658
    [Google Scholar]
  27. RathodR.H. ChaudhariS.R. PatilA.S. ShirkhedkarA.A. Ultra-high performance liquid chromatography-MS/MS (UHPLC-MS/MS) in practice: Analysis of drugs and pharmaceutical formulations.Future J. Pharm. Sci201951610.1186/s43094‑019‑0007‑8
    [Google Scholar]
  28. IoeleG. ChieffalloM. OcchiuzziM.A. De LucaM. GarofaloA. RagnoG. GrandeF. Anticancer Drugs: Recent strategies to improve stability profile, pharmacokinetic and pharmacodynamic properties.Molecules20222717543610.3390/molecules2717543636080203
    [Google Scholar]
  29. FahmyS.A. PonteF. FawzyI.M. SiciliaE. BakowskyU. AzzazyH.M.E.S. Host-guest complexation of oxaliplatin and Para-Sulfonatocalix[n]Arenes for potential use in cancer therapy.Molecules20202524592610.3390/molecules2524592633327642
    [Google Scholar]
  30. NajmiM. AyariM.A. SadeghsalehiH. VaferiB. KhandakarA. ChowdhuryM.E.H. RahmanT. JawharZ.H. Estimating the dissolution of anticancer drugs in supercritical carbon dioxide with a stacked machine learning model.Pharmaceutics2022148163210.3390/pharmaceutics1408163236015258
    [Google Scholar]
  31. FaressF. YariA. Rajabi KouchiF. Safari NezhadA. HadizadehA. Sharif BakhtiarL. NaserzadehY. MahmoudiN. Developing an accurate empirical correlation for predicting anti-cancer drugs’ dissolution in supercritical carbon dioxide.Sci. Rep.2022121938010.1038/s41598‑022‑13233‑x35672349
    [Google Scholar]
  32. SubiratsX. RosésM. BoschE. On the effect of organic solvent composition on the ph of buffered HPLC Mobile Phases and the pKa of analytes—A Review.Sep Purif Rev2007363231255
    [Google Scholar]
  33. AnnapurnaM.M. BaswaniR. PradhanD.P. New Stability Indicating RP-UFLC Method for the Determination of Flucytosine – An Anti Fungal AgentnActa Sci. Pharm. Sci.201935
    [Google Scholar]
  34. PandaS.S. Ravi KumarB.V.V. DashR. MohantaG. Determination of Cephalexin Monohydrate in Pharmaceutical Dosage Form by Stability-Indicating RP-UFLC and UV Spectroscopic Methods.Sci. Pharm.20138141029104110.3797/scipharm.1306‑0724482771
    [Google Scholar]
  35. DossiN. TonioloR. SusmelS. PizzarielloA. BontempelliG. Simultaneous RP-LC Determination of Additives in Soft Drinks.Chromatographia20066311-1255756210.1365/s10337‑006‑0793‑y
    [Google Scholar]
  36. LasureA. AnsariA. KalshettiM. UV spectrophotometric analysis and validation of acyclovir in solid dosage form.Int. J. Curr. Pharm. Res.202010010310.22159/ijcpr.2020v12i2.37501
    [Google Scholar]
  37. Analytical Methods: A Statistical Perspective on the ICH Q2A and Q2B Guidelines for Validation of Analytical Methods.Biopharm Int.200619124045
    [Google Scholar]
  38. AsG. GbS. SaS. RrK.Ll.H. Method development, optimization and validation of RP-UFLC method for bioactive flavonoids from Cassia auriculata.J. Pharmacogn. Phytochem.2019817781
    [Google Scholar]
  39. MatosB.N. OliveiraP.M. ReisT.A. GratieriT. Cunha-FilhoM. GelfusoG.M. Development and Validation of a Simple and Selective Analytical HPLC Method for the Quantification of Oxaliplatin.J. Chem.201520151610.1155/2015/812701
    [Google Scholar]
  40. QureshiH.K. VeereshamC. SrinivasC. Analytical Method Development and Validation of Filgrastim by UV and RP-UFLC Methods.Am. J. Anal. Chem.20211210333346
    [Google Scholar]
  41. PippallaS. NekkalapudiA.R. JillellamudiS.B. Stability Indicating RP-UPLC Method for Quantification of Glycopyrrolate, Methylparaben and Propylparaben Assay in Liquid Oral Formulation.Am. J. Anal. Chem.20221312538552
    [Google Scholar]
  42. ParikhR. MathaiA. ParikhS. Chandra SekharG. ThomasR. Understanding and using sensitivity, specificity and predictive values.Indian J. Ophthalmol.2008561455010.4103/0301‑4738.3759518158403
    [Google Scholar]
  43. KadimpatiK.K. BabuG. KumarC. Estimation of oxaliplatin in pharmaceutical dosage forms by high performance liquid chromatography.Biosci. Biotechnol. Res. Asia200634144
    [Google Scholar]
  44. DanzerK. Selectivity and specificity in analytical chemistry. General considerations and attempt of a definition and quantification.Fresenius J. Anal. Chem.2001369539740210.1007/s00216000068411270217
    [Google Scholar]
  45. MonaghanT.F. RahmanS.N. AgudeloC.W. WeinA.J. LazarJ.M. EveraertK. DmochowskiR.R. Foundational Statistical Principles in Medical Research: Sensitivity, Specificity, Positive Predictive Value, and Negative Predictive Value.Medicina (Kaunas)202157550310.3390/medicina5705050334065637
    [Google Scholar]
  46. Nazmus Sakib ChowdhuryM.D. A review on specific and sensitive analytical method development and validation.IJPCA2023101283010.18231/j.ijpca.2023.005
    [Google Scholar]
  47. SunL. JinH. TianR. WangM. LiuL. YeL. ZuoT. MaS. A simple method for HPLC retention time prediction: Linear calibration using two reference substances.Chin. Med.20171211610.1186/s13020‑017‑0137‑x28642805
    [Google Scholar]
  48. ReillyS.M. ChengT. DuMondJ. Method validation approaches for analysis of constituents in ENDS.Tob. Regul. Sci.20206424226510.18001/TRS.6.4.332789155
    [Google Scholar]
  49. MoosaviM GhassabianS. Linearity of Calibration Curves for Analytical Methods: A Review of Criteria for Assessment of Method Reliability.Calibration and Validation of Analytical Methods - A Sampling of Current Approaches.Intech201810.5772/intechopen.72932
    [Google Scholar]
  50. LingareddygariS.R. RavikrindhiN.R. BeludariI.M. YennamD.R. NookalaM.G. KammariS. Design of experiment approach for method development and validation of bilastine in pure and pharmaceutical dosage form using RP-UFLC.Orient. J. Chem.202339373674510.13005/ojc/390325
    [Google Scholar]
  51. PalemC.R. GodaS. DudhipalaN.R. YamsaniM.R. Development of Ultra Fast Liquid Chromatography (UFLC) method for fluorescence detection of domperidone in human serum and application to pharmacokinetic study.Am. J. Anal. Chem.201671122110.4236/ajac.2016.71002
    [Google Scholar]
  52. HrichiH. KoukiN. TarH. Analytical methods for the quantification of cisplatin, carboplatin, and oxaliplatin in various matrices over the last two decades.Curr. Pharm. Anal.202218545549010.2174/1573412918666210929105058
    [Google Scholar]
  53. TianJ. BaiR. ChenZ. QinP. LiuX. ShenH. ZhouL. GuoQ. A rapid and sensitive UPLC-MS/MS method for the determination of bellidifolin and pharmacokinetics study of bellidifolin nano-microcells.Curr. Pharm. Anal.202319970471110.2174/0115734129253094231018115646
    [Google Scholar]
  54. XuX. WenC. AiC. CaoC. YuQ. QuF. WangZ. SongS. Quantitative analysis of acidic polysaccharides using hydrophilic interaction chromatography and mass spectrometry after acid hydrolysis.Curr. Pharm. Anal.201814544344910.2174/1573412913666170525163234
    [Google Scholar]
  55. GerivaniZ. GhasemiN. QomiM. AbdollahiM. MalekiradA.A. Optimization of extraction and pre-concentration of rizatriptan in biological samples using solvent bar and chemometrics design.Curr. Pharm. Anal.201814545046010.2174/1573412913666170613091314
    [Google Scholar]
  56. YükselB. ÖncüT. ŞenN. Assessing caffeine levels in soft beverages available in Istanbul, Turkey: An LC-MS/MS application in food toxicology.Toxicol. Anal. Clin.2023351334310.1016/j.toxac.2022.08.004
    [Google Scholar]
  57. ErmerJ. ArthC. De RaeveP. DillD. FriedelH.D. Höwer-FritzenH. KleinschmidtG. KöllerG. KöppelH. KramerM. MaegerleinM. SchepersU. WätzigH. Precision from drug stability studies.J. Pharm. Biomed. Anal.200538465366310.1016/j.jpba.2005.02.00915967293
    [Google Scholar]
  58. DongM. Huynh-BaK. WongA. Validation of Stability-Indicating HPLC Methods for Pharmaceuticals: Overview, Methodologies, and Case Studies.LCGC Int202038606618
    [Google Scholar]
  59. NemitzM.C. YatsuF.K.J. BidoneJ. KoesterL.S. BassaniV.L. GarciaC.V. MendezA.S.L. von PoserG.L. TeixeiraH.F. A versatile, stability-indicating and high-throughput ultra-fast liquid chromatography method for the determination of isoflavone aglycones in soybeans, topical formulations, and permeation assays.Talanta201513418319310.1016/j.talanta.2014.10.06225618656
    [Google Scholar]
  60. YükselB. Quantitative GC-FID analysis of heroin for seized drugs.Ann. Clin. Anal. Med.202011110.4328/ACAM.6139
    [Google Scholar]
  61. MahrouseM.A. El-ZaherA.A. Al-GhaniA.M. Validated chromatographic methods for simultaneous estimation of cinnarizine in binary mixture with domperidone and paracetamol in tablets.Curr. Pharm. Anal.201915542943810.2174/1573412914666180307154921
    [Google Scholar]
  62. AgrawalS. GurjarP. KatheriyaB. Analytical method development and validation for simultaneous estimation of trimetazidine hydrochloride and metoprolol succinate using HPTLC.Curr. Pharm. Anal.201915324325010.2174/1573412913666171201160329
    [Google Scholar]
  63. YükselB. ŞenN. Development and validation of a GC-FID method for determination of cocaine in illicit drug samples.Marmara Pharm. J.2018224511518
    [Google Scholar]
  64. WangP. JiangS. ZhaoY. SunS. WenX. GuoX. JiangZ. A UPLC-MS/MS method for simultaneous determination of six bioactive compounds in rat plasma, and its application to pharmacokinetic studies of naoshuantong granule in rats.Curr. Pharm. Anal.201915323124210.2174/1573412914666180409143452
    [Google Scholar]
  65. Vander HeydenY. NijhuisA. Smeyers-VerbekeJ. VandeginsteB.G.M. MassartD.L. Guidance for robustness/ruggedness tests in method validation.J. Pharm. Biomed. Anal.2001245-672375310.1016/S0731‑7085(00)00529‑X11248467
    [Google Scholar]
  66. Analytical Method Development and Validation of Etravirine by RP-UFLC.Res J Pharm Technol.202114735373542
    [Google Scholar]
  67. EpshteinN.A. SevastianovaV.L. KorolevaA.I. Investigation of robustness at validation of HPLC and UPLC methods: A modern approach including risk analysis.Drug Dev Regist.20180196109
    [Google Scholar]
  68. EmamiJ. HaghighiM. RostamiM. MinaiyanM. Development and validation of a new robust RP-HPLC method for simultaneous quantitation of insulin and pramlintide in non-invasive and smart glucose-responsive microparticles.Res. Pharm. Sci.202217659461110.4103/1735‑5362.35942836704426
    [Google Scholar]
  69. PandaS.S. Ravi Kumar BeraV.V. BegS. MandalO. Analytical Quality by Design (AQbD)-oriented RP-UFLC method for quantification of lansoprazole with superior method robustness.J. Liq. Chromatogr. Relat. Technol.201740947948510.1080/10826076.2017.1327442
    [Google Scholar]
  70. ZergiebelS. SeelingA. Robust and Fast UV–HPLC method for biotransformation analysis of azecines.Chromatographia202184327528310.1007/s10337‑021‑04005‑2
    [Google Scholar]
  71. WaltherR. KrmarJ. LeistnerA. SvrkotaB. OtaševićB. MalenovićA. HolzgrabeU. ProtićA. Analytical quality by design: Achieving robustness of an lc-cad method for the analysis of non-volatile fatty acids.Pharmaceuticals (Basel)202316447810.3390/ph1604047837111235
    [Google Scholar]
  72. YulianitaR SopyanI MuchtaridiM. Forced degradation study of statins: A review.Int. J. Appl. Pharm.20181063842
    [Google Scholar]
  73. BlessyM. PatelR. PrajapatiP. AgrawalY. Development of forced degradation and stability indicating studies of drugs – A review.J. Pharm. Anal.2013429403878
    [Google Scholar]
  74. SversutR.A. VieiraJ.C. KassabN.M. SilvaD.B. SalgadoH.R.N. Forced degradation behavior of two-drug combinations: Isolation and characterization of major degradation products by LC-MS.Microchem. J.201915010407410.1016/j.microc.2019.104074
    [Google Scholar]
  75. SinghS. JunwalM. ModheG. TiwariH. KurmiM. ParasharN. SidduriP. Forced degradation studies to assess the stability of drugs and products.Trends Analyt. Chem.201349718810.1016/j.trac.2013.05.006
    [Google Scholar]
/content/journals/cpa/10.2174/0115734129329774240829073320
Loading
/content/journals/cpa/10.2174/0115734129329774240829073320
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): colorectal cancer; method development; Oxaliplatin; UFLC; UV detector; validation
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test