Skip to content
2000
Volume 20, Issue 7
  • ISSN: 1573-4129
  • E-ISSN: 1875-676X

Abstract

Purpose

This paper aims to analyze the clinical distribution and drug resistance changes of (KPN) from 2017 to 2021 in the Beijing Hospital of Integrated Traditional Chinese and Western Medicine to provide a reference for the clinical rational use of antibiotics.

Methods

We collected isolated from various clinical specimens in 2017-2021, analyzed the isolation rate, specimen distribution, and department distribution characteristics during the five years, and statistically analyzed their drug sensitivity tests and multiple drug resistance. Zhuhai Deere DL-96 full-automatic microbial analyzer was used for bacterial identification and drug sensitivity tests. The drug sensitivity test was interpreted according to the standards recommended by the American Clinical and Laboratory Standards Institute (CLSI).

Results

A total of 1057 strains of were identified between 2017 and 2021, with proportions of 18.6%, 15.7%, 15.4%, 15.1%, and 15.0% in each respective year. Specimen distribution included sputum (66.0%), urine (17.9%), throat swab (9.4%), secretion (2.4%), pus (0.7%), venous blood (0.6%), vaginal swab (0.4%), and other sources (2.6%). Distribution by the department revealed specimens originating from the respiratory department (21.2%), cardiology department (17.8%), neurology department (13.4%), oncology department (13.0%), nephrology department (12.2%), acupuncture department (10.1%), and other departments (12.3%). In terms of drug susceptibility testing, exhibited high resistance rates to ceftriaxone, cefotaxime, ceftazidime, and ampicillin/sulbactam, with rates of 50.8%, 46.8%, 46.3%, and 43.6% respectively. Conversely, resistance rates to minocycline, amikacin, imipenem, and meropenem were relatively low, at 8.6%, 16.5%, 8.5%, and 9.4% respectively. Resistance rates to cefepime/sulbactam and piperacillin/tazobactam were 29.9% and 28.9%, respectively, while cephalosporin resistance rates ranged from 36.1% to 50.8%. Regarding multidrug resistance, the detection rates of ESBL-producing were 8.2%, 10.9%, 4.5%, 10.6%, and 6.4% from 2017 to 2021, with an average detection rate of 7.9%. The detection rates of CR-Kp were 12.1%, 11.7%, 5.8%, 9.9%, and 8.9% respectively, averaging 9.6% over the five-year period.

Conclusion

The sputum specimen of exhibits the highest detection rate among specimen distributions, signifying its significance as a pathogenic bacterium in respiratory tract infections. Notably, the respiratory department demonstrates the highest detection rate, underscoring the necessity to enhance the monitoring and management of infections in respiratory patients. Over the past five years, our hospital has observed a decreasing trend in the overall drug resistance rate of to 17 antibiotics. While imipenem and meropenem exhibit minimal resistance rates, these carbapenem antibiotics serve as crucial agents for treating gram-negative bacilli, particularly in critically ill patients, and are thus not recommended as first-line choices for routine clinical use. Conversely, minocycline, amikacin, ceftazidime/sulbactam, and piperacillin/tazobactam showcase relatively low resistance rates, enabling their empirical use based on clinical experience. Combination therapy with other antibiotics is advised for amikacin. Conclusion: Nevertheless, cephalosporins display a relatively high resistance rate, necessitating a reduction in their clinical utilization. Regarding multidrug resistance, the detection of ESBLs-producing (KP) and Carbapenem-Resistant KP (CR-Kp) has exhibited a declining trend over the past three years. Despite this positive trend, the issue of multidrug resistance in remains severe, with instances of complete drug resistance reported. Clinicians are urged to judiciously administer antibiotics guided by drug sensitivity test results and resistance rate variations, restrict the use of broad-spectrum antibiotics, and manage the emergence and spread of ESBLs-producing and CR-Kp bacteria.

Loading

Article metrics loading...

/content/journals/cpa/10.2174/0115734129306621240813074201
2024-08-23
2025-01-22
Loading full text...

Full text loading...

References

  1. WyresK.L. LamM.M.C. HoltK.E. Population genomics of Klebsiella pneumoniae. Nat. Rev. Microbiol.202018634435910.1038/s41579‑019‑0315‑132055025
    [Google Scholar]
  2. LamM.M.C. WyresK.L. DuchêneS. WickR.R. JuddL.M. GanY.H. HohC.H. ArchuletaS. MoltonJ.S. KalimuddinS. KohT.H. PassetV. BrisseS. HoltK.E. Population genomics of hypervirulent Klebsiella pneumoniae clonal-group 23 reveals early emergence and rapid global dissemination.Nat. Commun.201891270310.1038/s41467‑018‑05114‑730006589
    [Google Scholar]
  3. WangG. ZhaoG. ChaoX. XieL. WangH. The Characteristic of Virulence, Biofilm and Antibiotic Resistance of Klebsiella pneumoniae. Int. J. Environ. Res. Public Health20201717627810.3390/ijerph1717627832872324
    [Google Scholar]
  4. MartinR.M. BachmanM.A. Colonization, Infection, and the Accessory Genome of Klebsiella pneumoniae. Front. Cell. Infect. Microbiol.20188410.3389/fcimb.2018.0000429404282
    [Google Scholar]
  5. Stojowska-SwędrzyńskaK. ŁupkowskaA. Kuczyńska-WiśnikD. LaskowskaE. Antibiotic Heteroresistance in Klebsiella pneumoniae. Int. J. Mol. Sci.202123144910.3390/ijms2301044935008891
    [Google Scholar]
  6. ShaabanM. ElshaerS.L. Abd El-RahmanO.A. Prevalence of extended-spectrum β-lactamases, AmpC, and carbapenemases in Proteus mirabilis clinical isolates.BMC Microbiol.202222124710.1186/s12866‑022‑02662‑336221063
    [Google Scholar]
  7. ClancyCJ BuehrleDJ NguyenMH The COVID-19 pandemic will result in increased antimicrobial resistance rates.JAC Antimicrob Resist 202023dlaa049
    [Google Scholar]
  8. KiraggaA.N. NajjembaL. GaliwangoR. BanturakiG. MunyiwraG. IwumbweI. AtwineJ. SsendiwalaC. NatifA. NakanjakoD. Community purchases of antimicrobials during the COVID-19 pandemic in Uganda: An increased risk for antimicrobial resistance.PLOS Global Public Health202332e000157910.1371/journal.pgph.000157936963050
    [Google Scholar]
  9. MurrayC.J.L. IkutaK.S. ShararaF. SwetschinskiL. Robles AguilarG. GrayA. HanC. BisignanoC. RaoP. WoolE. JohnsonS.C. BrowneA.J. ChipetaM.G. FellF. HackettS. Haines-WoodhouseG. Kashef HamadaniB.H. KumaranE.A.P. McManigalB. AchalapongS. AgarwalR. AkechS. AlbertsonS. AmuasiJ. AndrewsJ. AravkinA. AshleyE. BabinF-X. BaileyF. BakerS. BasnyatB. BekkerA. BenderR. BerkleyJ.A. BethouA. BielickiJ. BoonkasidechaS. BukosiaJ. CarvalheiroC. Castañeda-OrjuelaC. ChansamouthV. ChaurasiaS. ChiurchiùS. ChowdhuryF. Clotaire DonatienR. CookA.J. CooperB. CresseyT.R. Criollo-MoraE. CunninghamM. DarboeS. DayN.P.J. De LucaM. DokovaK. DramowskiA. DunachieS.J. Duong BichT. EckmannsT. EibachD. EmamiA. FeaseyN. Fisher-PearsonN. ForrestK. GarciaC. GarrettD. GastmeierP. GirefA.Z. GreerR.C. GuptaV. HallerS. HaselbeckA. HayS.I. HolmM. HopkinsS. HsiaY. IregbuK.C. JacobsJ. JarovskyD. JavanmardiF. JenneyA.W.J. KhoranaM. KhusuwanS. KissoonN. KobeissiE. KostyanevT. KrappF. KrumkampR. KumarA. KyuH.H. LimC. LimK. LimmathurotsakulD. LoftusM.J. LunnM. MaJ. ManoharanA. MarksF. MayJ. MayxayM. MturiN. Munera-HuertasT. MusichaP. MusilaL.A. Mussi-PinhataM.M. NaiduR.N. NakamuraT. NanavatiR. NangiaS. NewtonP. NgounC. NovotneyA. NwakanmaD. ObieroC.W. OchoaT.J. Olivas-MartinezA. OlliaroP. OokoE. Ortiz-BrizuelaE. OunchanumP. PakG.D. ParedesJ.L. PelegA.Y. PerroneC. PheT. PhommasoneK. PlakkalN. Ponce-de-LeonA. RaadM. RamdinT. RattanavongS. RiddellA. RobertsT. RobothamJ.V. RocaA. RosenthalV.D. RuddK.E. RussellN. SaderH.S. SaengchanW. SchnallJ. ScottJ.A.G. SeekaewS. SharlandM. ShivamallappaM. Sifuentes-OsornioJ. SimpsonA.J. SteenkesteN. StewardsonA.J. StoevaT. TasakN. ThaiprakongA. ThwaitesG. TigoiC. TurnerC. TurnerP. van DoornH.R. VelaphiS. VongpradithA. VongsouvathM. VuH. WalshT. WalsonJ.L. WanerS. WangrangsimakulT. WannapinijP. WozniakT. Young SharmaT.E.M.W. YuK.C. ZhengP. SartoriusB. LopezA.D. StergachisA. MooreC. DolecekC. NaghaviM. Antimicrobial Resistance Collaborators.Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis.Lancet20223991032562965510.1016/S0140‑6736(21)02724‑035065702
    [Google Scholar]
  10. LiX. FanH. ZiH. HuH. LiB. HuangJ. LuoP. ZengX. Global and Regional Burden of Bacterial Antimicrobial Resistance in Urinary Tract Infections in 2019.J. Clin. Med.20221110281710.3390/jcm1110281735628941
    [Google Scholar]
  11. LaiC.C. ChenS.Y. KoW.C. HsuehP.R. Increased antimicrobial resistance during the COVID-19 pandemic.Int. J. Antimicrob. Agents202157410632410.1016/j.ijantimicag.2021.10632433746045
    [Google Scholar]
  12. RhoumaM. TessierM. AenishaenslinC. SandersP. CarabinH. Should the Increased Awareness of the One Health Approach Brought by the COVID-19 Pandemic Be Used to Further Tackle the Challenge of Antimicrobial Resistance?Antibiotics202110446410.3390/antibiotics1004046433923886
    [Google Scholar]
  13. HarrisP.N.A. TambyahP.A. LyeD.C. MoY. LeeT.H. YilmazM. AlenaziT.H. ArabiY. FalconeM. BassettiM. RighiE. RogersB.A. KanjS. BhallyH. IredellJ. MendelsonM. BoylesT.H. LookeD. MiyakisS. WallsG. Al KhamisM. ZikriA. CroweA. IngramP. DanemanN. GriffinP. AthanE. LorencP. BakerP. RobertsL. BeatsonS.A. PelegA.Y. Harris-BrownT. PatersonD.L. MERINO Trial Investigators and the Australasian Society for Infectious Disease Clinical Research Network (ASID-CRN).Effect of Piperacillin-Tazobactam vs Meropenem on 30-Day Mortality for Patients With E coli or Klebsiella pneumoniae Bloodstream Infection and Ceftriaxone Resistance.JAMA20183201098499410.1001/jama.2018.1216330208454
    [Google Scholar]
  14. Karami-ZarandiM. RahdarH.A. EsmaeiliH. RanjbarR. Klebsiella pneumoniae: an update on antibiotic resistance mechanisms.Future Microbiol.2023181658110.2217/fmb‑2022‑009736632990
    [Google Scholar]
  15. HoltK.E. WertheimH. ZadoksR.N. BakerS. WhitehouseC.A. DanceD. JenneyA. ConnorT.R. HsuL.Y. SeverinJ. BrisseS. CaoH. WilkschJ. GorrieC. SchultzM.B. EdwardsD.J. NguyenK.V. NguyenT.V. DaoT.T. MensinkM. MinhV.L. NhuN.T.K. SchultszC. KuntamanK. NewtonP.N. MooreC.E. StrugnellR.A. ThomsonN.R. Genomic analysis of diversity, population structure, virulence, and antimicrobial resistance in Klebsiella pneumoniae, an urgent threat to public health.Proc. Natl. Acad. Sci. USA201511227E3574E358110.1073/pnas.150104911226100894
    [Google Scholar]
  16. LiuC. ShiJ. GuoJ. High prevalence of hypervirulent Klebsiella pneumoniae infection in the genetic background of elderly patients in two teaching hospitals in China.Infect. Drug Resist.2018111031104110.2147/IDR.S16107530104891
    [Google Scholar]
  17. ZhangY. ZhaoC. WangQ. WangX. ChenH. LiH. ZhangF. LiS. WangR. WangH. High Prevalence of Hypervirulent Klebsiella pneumoniae Infection in China: Geographic Distribution, Clinical Characteristics, and Antimicrobial Resistance.Antimicrob. Agents Chemother.201660106115612010.1128/AAC.01127‑1627480857
    [Google Scholar]
  18. Mędrzycka-DąbrowskaW. LangeS. ZorenaK. DąbrowskiS. OzgaD. TomaszekL. Carbapenem-Resistant Klebsiella pneumoniae Infections in ICU COVID-19 Patients—A Scoping Review.J. Clin. Med.20211010206710.3390/jcm1010206734066031
    [Google Scholar]
  19. GuD. DongN. ZhengZ. LinD. HuangM. WangL. ChanE.W.C. ShuL. YuJ. ZhangR. ChenS. A fatal outbreak of ST11 carbapenem-resistant hypervirulent Klebsiella pneumoniae in a Chinese hospital: a molecular epidemiological study.Lancet Infect. Dis.2018181374610.1016/S1473‑3099(17)30489‑928864030
    [Google Scholar]
  20. Mesbah ZekarF. GranierS.A. TouatiA. MillemannY. Occurrence of Third-Generation Cephalosporins-Resistant Klebsiella pneumoniae in Fresh Fruits and Vegetables Purchased at Markets in Algeria.Microb. Drug Resist.202026435335910.1089/mdr.2019.024931603740
    [Google Scholar]
  21. HuY. LiuC. ShenZ. ZhouH. CaoJ. ChenS. LvH. ZhouM. WangQ. SunL. SunQ. HuF. WangY. ZhangR. Prevalence, risk factors and molecular epidemiology of carbapenem-resistant Klebsiella pneumoniae in patients from Zhejiang, China, 2008–2018.Emerg. Microbes Infect.2020911771177910.1080/22221751.2020.179972132689907
    [Google Scholar]
  22. YangX. DongN. ChanE.W.C. ZhangR. ChenS. Carbapenem Resistance-Encoding and Virulence-Encoding Conjugative Plasmids in Klebsiella pneumoniae. Trends Microbiol.2021291658310.1016/j.tim.2020.04.01232448764
    [Google Scholar]
  23. Al-AgamyM.H. AljallalA. RadwanH.H. ShiblA.M. Characterization of carbapenemases, ESBLs, and plasmid-mediated quinolone determinants in carbapenem-insensitive Escherichia coli and Klebsiella pneumoniae in Riyadh hospitals.J. Infect. Public Health2018111646810.1016/j.jiph.2017.03.01028462854
    [Google Scholar]
  24. VachvanichsanongP. McNeilE.B. DissaneewateP. Extended-spectrum beta-lactamase Escherichia coli and Klebsiella pneumoniae urinary tract infections.Epidemiol. Infect.2021149e1210.1017/S095026882000301533327984
    [Google Scholar]
  25. WangM. EarleyM. ChenL. HansonB.M. YuY. LiuZ. SalcedoS. CoberE. LiL. KanjS.S. GaoH. MunitaJ.M. OrdoñezK. WestonG. SatlinM.J. Valderrama-BeltránS.L. MarimuthuK. StryjewskiM.E. KomarowL. LuterbachC. MarshallS.H. RudinS.D. MancaC. PatersonD.L. ReyesJ. VillegasM.V. EvansS. HillC. AriasR. BaumK. FriesB.C. DoiY. PatelR. KreiswirthB.N. BonomoR.A. ChambersH.F. FowlerV.G.Jr AriasC.A. van DuinD. AbboL.M. AndersonD.J. AriasR. AriasC.A. BaumK. BonomoR.A. ChambersH.F. ChenL. ChewK.L. CoberE. CrossH.R. DeP.P. DesaiS. DharS. Di CastelnuovoV. DiazL. DinhQ. DoiY. EarleyM. EilertsonB. EvansB. EvansS. FowlerV.G.Jr FriesB.C. GaoH. Garcia-DiazJ. GarnerO.B. Greenwood-QuaintanceK. HansonB. HercE. HillC. JacobJ.T. JiangJ. KalayjianR.C. KanjS.S. KayeK.S. KimA. KomarowL. KreiswirthB.N. LauterbachC. LiL. LiuZ. MancaC. MarimuthuK. MarshallS.H. McCartyT. MunitaJ. NgO.T. Oñate GutierrezJ.M. OrdoñezK. PatelR. PatersonD.L. PelegA. ReyesJ. RudinS.D. SalataR.A. SalcedoS. SatlinM.J. Schmidt-MalanS. SmitasinN. SpencerM. StryjewskiM. SuJ. TambyahP.A. ValderramaS. van DuinD. Villegas BoteroM.V. WangM. WatersM. WestonG. WongD. WortmannG. YangY. YuY. ZhangF. Multi-Drug Resistant Organism Network Investigators.Clinical outcomes and bacterial characteristics of carbapenem-resistant Klebsiella pneumoniae complex among patients from different global regions (CRACKLE-2): a prospective, multicentre, cohort study.Lancet Infect. Dis.202222340141210.1016/S1473‑3099(21)00399‑634767753
    [Google Scholar]
  26. RemyaP.A. ShanthiM. SekarU. Characterisation of virulence genes associated with pathogenicity in Klebsiella pneumoniae. Indian J. Med. Microbiol.201937221021810.4103/ijmm.IJMM_19_15731745021
    [Google Scholar]
  27. TiriB. SensiE. MarsilianiV. CantariniM. PrianteG. VernelliC. MartellaL.A. CostantiniM. MariottiniA. AndreaniP. BruzzoneP. SuadoniF. FrancucciM. CirocchiR. CappaneraS. Antimicrobial Stewardship Program, COVID-19, and Infection Control: Spread of Carbapenem-Resistant Klebsiella pneumoniae Colonization in ICU COVID-19 Patients. What Did Not Work?J. Clin. Med.202099274410.3390/jcm909274432854334
    [Google Scholar]
  28. ChenL. MathemaB. ChavdaK.D. DeLeoF.R. BonomoR.A. KreiswirthB.N. Carbapenemase-producing Klebsiella pneumoniae: molecular and genetic decoding.Trends Microbiol.2014221268669610.1016/j.tim.2014.09.00325304194
    [Google Scholar]
  29. ChewK.L. LinR.T.P. TeoJ.W.P. Klebsiella pneumoniae in Singapore: Hypervirulent Infections and the Carbapenemase Threat.Front. Cell. Infect. Microbiol.2017751510.3389/fcimb.2017.0051529312894
    [Google Scholar]
  30. LaiC.C. YuW.L. Klebsiella pneumoniae Harboring Carbapenemase Genes in Taiwan: Its Evolution over 20 Years, 1998–2019.Int. J. Antimicrob. Agents202158110635410.1016/j.ijantimicag.2021.10635433964452
    [Google Scholar]
  31. NicolettiA.G. MarcondesM.F.M. MartinsW.M.B.S. AlmeidaL.G.P. NicolásM.F. VasconcelosA.T.R. OliveiraV. GalesA.C. Characterization of BKC-1 class A carbapenemase from Klebsiella pneumoniae clinical isolates in Brazil.Antimicrob. Agents Chemother.20155995159516410.1128/AAC.00158‑1526055384
    [Google Scholar]
  32. AlaqeelS.I. AlmansourA.I. ArumugamN. KumarR.S. PonmuruganK. Al-DhabiN.A. Antimicrobial activities of novel class of dispirooxindolopyrrolidine grafted indanedione hybrid heterocycles against carbapenemase producing Klebsiella pneumoniae (CKP).J. Infect. Public Health202114121870187410.1016/j.jiph.2021.10.02334782290
    [Google Scholar]
  33. IslerB. AslanA.T. AkovaM. HarrisP. PatersonD.L. Treatment strategies for OXA-48-like and NDM producing Klebsiella pneumoniae infections.Expert Rev. Anti Infect. Ther.202220111389140010.1080/14787210.2022.212876436150216
    [Google Scholar]
  34. LoqmanS. SoraaN. DieneS.M. RolainJ.M. Dissemination of Carbapenemases (OXA-48, NDM and VIM) Producing Enterobacteriaceae Isolated from the Mohamed VI University Hospital in Marrakech, Morocco.Antibiotics (Basel)202110549210.3390/antibiotics1005049233925772
    [Google Scholar]
  35. HanR. ShiQ. WuS. YinD. PengM. DongD. ZhengY. GuoY. ZhangR. HuF. China Antimicrobial Surveillance Network (CHINET) Study Group. Dissemination of Carbapenemases (KPC, NDM, OXA-48, IMP, and VIM) Among Carbapenem-Resistant Enterobacteriaceae Isolated From Adult and Children Patients in China.Front. Cell. Infect. Microbiol.20201031410.3389/fcimb.2020.0031432719751
    [Google Scholar]
  36. JinX. ChenQ. ShenF. JiangY. WuX. HuaX. FuY. YuY. Resistance evolution of hypervirulent carbapenem-resistant Klebsiella pneumoniae ST11 during treatment with tigecycline and polymyxin.Emerg. Microbes Infect.20211011129113610.1080/22221751.2021.193732734074225
    [Google Scholar]
  37. MikhailS. SinghN.B. KebriaeiR. RiceS.A. StamperK.C. CastanheiraM. RybakM.J. Evaluation of the Synergy of Ceftazidime-Avibactam in Combination with Meropenem, Amikacin, Aztreonam, Colistin, or Fosfomycin against Well-Characterized Multidrug-Resistant Klebsiella pneumoniae and Pseudomonas aeruginosa.Antimicrob. Agents Chemother.2019638e00779-1910.1128/AAC.00779‑1931182535
    [Google Scholar]
  38. ÇölkesenF. TarakçıA. EroğluE. KacarF. Özdemir ArmağanŞ. CanS. ErolB. AksayO. ÇölkesenF. Carbapenem-Resistant Klebsiella pneumoniae Infection and Its Risk Factors in Older Adult Patients.Clin. Interv. Aging2023181037104510.2147/CIA.S40621437435410
    [Google Scholar]
  39. HuF. PanY. LiH. HanR. LiuX. MaR. WuY. LunH. QinX. LiJ. WangA. ZhouM. LiuB. ZhouZ. HeP. Carbapenem-resistant Klebsiella pneumoniae capsular types, antibiotic resistance and virulence factors in China: a longitudinal, multi- centre study.Nat. Microbiol.20249381482910.1038/s41564‑024‑01612‑138424289
    [Google Scholar]
  40. MolinaF.J. BoteroL.E. IsazaJ.P. CanoL.E. LópezL. TamayoL. TorresA. Diagnostic concordance between BioFire® FilmArray® Pneumonia Panel and culture in patients with COVID-19 pneumonia admitted to intensive care units: the experience of the third wave in eight hospitals in Colombia.Crit. Care202226113010.1186/s13054‑022‑04006‑z35534867
    [Google Scholar]
  41. AloisioE. ColomboG. DolciA. PanteghiniM. C-reactive protein and clinical outcome in COVID-19 patients: the importance of harmonized measurements.Clin. Chem. Lab. Med.20236191546155110.1515/cclm‑2023‑027637036741
    [Google Scholar]
  42. GalliF. BindoF. MotosA. Fernández-BaratL. BarbetaE. GabarrúsA. CeccatoA. Bermejo-MartinJ.F. FerrerR. RieraJ. PeñuelasO. LorenteJ.Á. de Gonzalo-CalvoD. MenéndezR. GonzalezJ. MisuracaS. PalomequeA. Amaya-VillarR. AñónJ.M. Balan MariñoA. BarberàC. BarberánJ. Blandino OrtizA. Bustamante-MunguiraE. CaballeroJ. Cantón-BulnesM.L. Carbajales PérezC. CarbonellN. Catalán- GonzálezM. de FrutosR. FrancoN. GalbánC. Lopez LagoA. Gumucio-SanguinoV.D. de la TorreM.D.C. DíazE. EstellaÁ. Gallego CurtoE. García-GarmendiaJ.L. GómezJ.M. HuertaA. Jorge GarcíaR.N. Loza-VázquezA. Marin-CorralJ. Martin DelgadoM.C. Martínez de la GándaraA. Martínez VarelaI. Lopez MessaJ. M AlbaicetaG. NietoM.T. NovoM.A. PeñascoY. Pérez-GarcíaF. Pozo-LaderasJ.C. RicartP. SagredoV. Sánchez-MirallesA. Sancho ChinestaS. Roche-CampoF. SociasL. Solé-ViolanJ. Suarez-SipmannF. Tamayo LomasL. TrenadoJ. ÚbedaA. ValdiviaL.J. VidalP. BoadoM.V. RodríguezA. AntonelliM. BlasiF. BarbéF. TorresA. CIBERESUCICOVID Project investigators (COV20/00110, ISCIII).Procalcitonin and C-reactive protein to rule out early bacterial coinfection in COVID-19 critically ill patients.Intensive Care Med.202349893494510.1007/s00134‑023‑07161‑137507573
    [Google Scholar]
  43. GuoC.H. LiuY.Q. LiY. DuanX.X. YangT.Y. LiF.Y. ZouM. LiuB.T. High prevalence and genomic characteristics of carbapenem-resistant Enterobacteriaceae and colistin-resistant Enterobacteriaceae from large-scale rivers in China.Environ. Pollut.2023331Pt 212186910.1016/j.envpol.2023.12186937225077
    [Google Scholar]
  44. GaoS. YanR. ZhangS. LiL. ZhangR. FanJ. QinJ. PengY. WanD. CaoW. BianZ. Rectal culture could predict carbapenem-resistant organism bloodstream infection and reduce the mortality in haematological patients: A retrospective cohort study.J. Glob. Antimicrob. Resist.2024369610410.1016/j.jgar.2023.12.00738128727
    [Google Scholar]
  45. YuJ. ZuoW. FanH. WuJ. QiaoL. YangB. LiW. YangY. ZhangB. Ceftazidime-avibactam for carbapenem-resistant gram-negative bacteria infections: A real-world experience in the ICU.Infect. Drug Resist.2023166209621610.2147/IDR.S42254537727274
    [Google Scholar]
  46. ZhengZ. ShaoZ. LuL. TangS. ShiK. GongF. LiuJ. Ceftazidime/avibactam combined with colistin: A novel attempt to treat carbapenem-resistant Gram-negative bacilli infection.BMC Infect. Dis.202323170910.1186/s12879‑023‑08715‑w37864200
    [Google Scholar]
/content/journals/cpa/10.2174/0115734129306621240813074201
Loading
/content/journals/cpa/10.2174/0115734129306621240813074201
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test