Skip to content
2000
Volume 20, Issue 5
  • ISSN: 1573-4129
  • E-ISSN: 1875-676X

Abstract

Background

The study focuses on establishing Release Testing (IVRT) parameters for Desonide cream, following the guidelines of the Topical Classification System (TCS), to assess the bioequivalence between the Reference Listed Drug (RLD) and test.

Aims

This study aimed to develop a reliable IVRT method using Franz diffusion cells. An environmentally friendly U-HPLC method was created to analyze Desonide in the samples.

Objectives

To evaluate the drug release in Desonide products in accordance with SUPAC guidance, quantify the drug concentration using an analytical method, as per bioanalytical method validation guidelines, and ensure that the results meet the acceptance criteria. Linearity was established from 0.50 µg/mL to 40 µg/mL with acceptable regression values. Precision was confirmed three times, with an average % RSD of below 15% for 3 sets of 6QC level sample preparations. Stability tests demonstrated Desonide stability in receptor fluid (LLOQ and ULOQ) for 72 hours at 2-8°C and 25°C. Autosampler stability at LQC and HQC levels was proven at 25°C for 72 hours. Additionally, the stock solution remained stable at both 25°C and 2-8°C for 72 hours.

Methods

The study involved evaluating the dosing regimen, release medium, and membrane while optimizing the U-HPLC method based on three variables including column temperature, mobile phase composition, and flow rate. After experimentation, it was determined that Nylon membrane and 0.9% NaCl: Methanol release media (70:30 v/v) with 1000 mg dose were used to maximize the release profile of desonide.

Results

The created explanatory strategy is precise, delicate, and exact for measuring Desonide, with satisfactory Limits of Location LOD and Lower Limits of Measurement LLOQ measured at 0.15 and 0.50 ng /mL, respectively. The Regression coefficient r2 was identified to be 0.9996. The degree of Desonide measurement lessening was considered palatable, basically since the recuperation was underneath 30.00, additionally due to the favourable linear relationship watched within the Desonide discharge rates amid the IVRT study.

Conclusion

All three generic products analyzed were found to be equivalent to the RLD, meeting for “sameness” outlined in the FDA's SUPAC-SS guidance. A novel U-HPLC method was developed for Desonide, covering the range from 0.5 to 40 µg/ml, with intra and inter-day variability below 2% RSD. Additional characterizations were established, and the stability of Desonide was successfully determined.

Loading

Article metrics loading...

/content/journals/cpa/10.2174/0115734129298659240606103013
2024-06-01
2025-01-10
Loading full text...

Full text loading...

References

  1. ShahV.P. Progress in methodologies for evaluating bioequivalence of topical formulations.Am. J. Clin. Dermatol.20012527528010.2165/00128071‑200102050‑00001 11721645
    [Google Scholar]
  2. OlejnikA. GoscianskaJ. NowakI. Active compounds release from semisolid dosage forms.J. Pharm. Sci.2012101114032404510.1002/jps.23289 22886492
    [Google Scholar]
  3. YacobiA. ShahV.P. BashawE.D. BenfeldtE. DavitB. GanesD. GhoshT. KanferI. KastingG.B. KatzL. LionbergerR. LuG.W. MaibachH.I. PershingL.K. RackleyR.J. RawA. ShuklaC.G. ThakkerK. WagnerN. ZovkoE. LaneM.E. Current challenges in bioequivalence, quality, and novel assessment technologies for topical products.Pharm. Res.201431483784610.1007/s11095‑013‑1259‑1 24395404
    [Google Scholar]
  4. KleinR.R. HeckartJ.L. ThakkerK.D. In vitro release testing methodology and variability with the vertical diffusion cell (VDC).Dissolut. Technol.2018253526110.14227/DT250318P52
    [Google Scholar]
  5. ThakkerK.D. ChernW.H. Development and validation of in vitro release tests for semisolid dosage forms—Case study.Dissolut. Technol.2003102101510.14227/DT100203P10
    [Google Scholar]
  6. TiffnerK.I. KanferI. AugustinT. RamlR. RaneyS.G. SinnerF. A comprehensive approach to qualify and validate the essential parameters of an in vitro release test (IVRT) method for acyclovir cream, 5%.Int. J. Pharm.20185351-221722710.1016/j.ijpharm.2017.09.049 28935255
    [Google Scholar]
  7. Lusina KregarM. DürriglM. RožmanA. JelčićŽ. Cetina-ČižmekB. Filipović-GrčićJ. Development and validation of an in vitro release method for topical particulate delivery systems.Int. J. Pharm.20154851-220221410.1016/j.ijpharm.2015.03.018
    [Google Scholar]
  8. NallagundlaS. PatnalaS. KanferI. Comparison of in vitro release rates of acyclovir from cream formulations using vertical diffusion cells.AAPS PharmSciTech201415499499910.1208/s12249‑014‑0130‑y 24824173
    [Google Scholar]
  9. NgS.F. RouseJ.J. SandersonF.D. EcclestonG.M. Validation of Franz cell diffusion experiments and evaluation of drug release through various cellulose membranes.J. Pharm. Pharmacol.200557S53S53
    [Google Scholar]
  10. Sesto CabralM.E. RamosA.N. CabreraC.A. ValdezJ.C. GonzálezS.N. Equipment and method for in vitro release measurements on topical dosage forms.Pharm. Dev. Technol.2014745017 25318476
    [Google Scholar]
  11. IlićT. PantelićI. LunterD. ĐorđevićS. MarkovićB. RankovićD. DanielsR. SavićS. Critical quality attributes, in vitro release and correlated in vitro skin permeation in vivo tape stripping collective data for demonstrating therapeutic (non)equivalence of topical semisolids: A case study of “ready-to-use” vehicles.Int. J. Pharm.20175281-225326710.1016/j.ijpharm.2017.06.018 28602800
    [Google Scholar]
  12. GaddamP. MuthuprasannaP. SuriyaprabhaK. ManojkumarJ. RaoBB. JukantiR. Diffusion cells for measuring skin permeation in vitro.M.S.A.I.J.200953277287
    [Google Scholar]
  13. BosmanI.J. AvegaartS.R. LawantA.L. EnsingK. de ZeeuwR.A. Evaluation of a novel diffusion cell for in vitro transdermal permeation: effects of injection height, volume and temperature.J. Pharm. Biomed. Anal.199817349349910.1016/S0731‑7085(97)00238‑0 9656161
    [Google Scholar]
  14. HansonR. HeaneyJ. A primer on automating the vertical diffusion cell (VDC).Dissolut. Technol.2013202404310.14227/DT200213P40
    [Google Scholar]
  15. Córdoba-DíazM. NovaM. ElorzaB. Córdoba-DíazD. ChantresJ.R. Córdoba-BorregoM. Validation protocol of an automated in-line flow-through diffusion equipment for in vitro permeation studies.J. Control. Release200069335736710.1016/S0168‑3659(00)00306‑0 11102676
    [Google Scholar]
  16. KrishnaiahY.S.R. XuX. RahmanZ. YangY. KatragaddaU. LionbergerR. PetersJ.R. UhlK. KhanM.A. Development of performance matrix for generic product equivalence of acyclovir topical creams.Int. J. Pharm.20144751-211012210.1016/j.ijpharm.2014.07.034 25089511
    [Google Scholar]
  17. XuX. Al-GhabeishM. RahmanZ. KrishnaiahY.S.R. YerlikayaF. YangY. MandaP. HuntR.L. KhanM.A. Formulation and process factors influencing product quality and in vitro performance of ophthalmic ointments.Int. J. Pharm.20154931-241242510.1016/j.ijpharm.2015.07.066 26231106
    [Google Scholar]
  18. ZatzJ.L. VarsanoJ. ShahV.P. In vitro release of betamethasone dipropionate from petrolatum-based ointments.Pharm. Dev. Technol.19961329329810.3109/10837459609022598 9552312
    [Google Scholar]
  19. RathS. KanferI. A validated IVRT method to assess topical creams containing metronidazole using a novel approach.Pharmaceutics202012211910.3390/pharmaceutics12020119 32028557
    [Google Scholar]
  20. ShahV.P. TymesN.W. YamamotoL.A. SkellyJ.P. In vitro dissolution profile of transdermal nitroglycerin patches using paddle method.Int. J. Pharm.1986322-324325010.1016/0378‑5173(86)90185‑7
    [Google Scholar]
  21. MudyahotoN.A. RathS. RamanahA. KanferI. In Vitro Release Testing (IVRT) of topical hydrocortisone acetate creams: A Novel approach using positive and negative controls.Dissolut. Technol.202027161210.14227/DT270120P6
    [Google Scholar]
  22. DongY. QuH. PavuralaN. WangJ. SekarV. MartinezM.N. FahmyR. AshrafM. CruzC.N. XuX. Formulation characteristics and in vitro release testing of cyclosporine ophthalmic ointments.Int. J. Pharm.2018544125426410.1016/j.ijpharm.2018.04.042 29684560
    [Google Scholar]
  23. Non-sterile Semisolid Dosage Forms.Scale-Up and Postapproval Changes (SUPAC-SS): Chemistry, Manufacturing, and Controls; In Vitro Release Testing and In Vivo Bioequivalence Documentation Guidance for Industry; U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation Research (C.D.E.R.).Washington, DCU.S. Government Printing Office199710.1201/9780824741969.ax
    [Google Scholar]
  24. HabjaničN. Kerec KosM. KristanK. Sensitivity of different in vitro performance tests and their in vivo relevance for calcipotriol/betamethasone ointment.Pharm. Res.20203735210.1007/s11095‑020‑2766‑5 32043181
    [Google Scholar]
  25. AlvesT. ArrancaD. MartinsA. RibeiroH. RaposoS. MartoJ. Complying with the guideline for quality and equivalence for topical semisolid products: The case of clotrimazole cream.Pharmaceutics202113455510.3390/pharmaceutics13040555 33920061
    [Google Scholar]
  26. RaghavanL. BrownM. Michniak-KohnB. NgS. SammetaS. In Vitro release tests as a critical quality attribute in topical product development.Cham, SwitzerlandSpringer201936
    [Google Scholar]
  27. FlynnG.L. ShahV.P. TenjarlaS.N. CorboM. DeMagistrisD. FeldmanT.G. FranzT.J. MiranD.R. PearceD.M. SequeiraJ.A. SwarbrickJ. WangJ.C.T. YacobiA. ZatzJ.L. Assessment of value and applications of in vitro testing of topical dermatological drug products.Pharm. Res.19991691325133010.1023/A:1018997520950 10496646
    [Google Scholar]
  28. Parera MorellJ.L. Contreras ClaramonteM.D. Parera VialardA. Validation of a release diffusion cell for topical dosage forms.Int. J. Pharm.19961371495510.1016/0378‑5173(95)04421‑3
    [Google Scholar]
  29. HauckW.W. ShahV.P. ShawS.W. UedaC.T. Reliability and reproducibility of vertical diffusion cells for determining release rates from semisolid dosage forms.Pharm. Res.200724112018202410.1007/s11095‑007‑9329‑x 17530388
    [Google Scholar]
  30. ICH. Validation of analytical procedures: text and methodology Q2(R1).Guidance2005199417
    [Google Scholar]
  31. LucieN. LudmilaM. PetrS. Advantages of application of U.P.L.C. in pharmaceutical analysis.Talanta2006683, 15908918
    [Google Scholar]
  32. GosettiF. Ultra high-performance liquid chromatography-tandem mass spectrometry determination and profiling of prohibited steroids in human biological matrices.Chromatogr201310.1016/j.jchromb.2012.12.003
    [Google Scholar]
  33. ShabirG.A. A practical approach to validation of HPLC methods under current good manufacturing practices.J. Validation Technol.200410210218
    [Google Scholar]
  34. U.S. Food and Drug Administration. Draft Guidance on Acyclovir. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/psg/Acyclovir_oint_18604_RC03-12.pdf
  35. U.S. Food and Drug Administration. Draft Guidance on Docosanol Topical Cream. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/psg/Docosanol_topical%20cream_NDA
  36. ShabirG.A. John LoughW. ArainS.A. BradshawT.K. Evaluation and application of best practice in analytical method validation.J. Liq. Chromatogr. Relat. Technol.200730331133310.1080/10826070601084753
    [Google Scholar]
  37. U.S. Food and Drug Administration. Draft Guidance on Dapsone Gel. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/psg/Dapsone_Topical%20gel_NDA%20207154_ RV%20Nov%202018.pdf
  38. European Medicines Agency; Committee for Medicinal Products for Human Use.Draft Guideline on Quality and Equivalence of Topical Products.London, UK2018
    [Google Scholar]
  39. UedaC.T. ShahV.P. DerdzinskiK. EwingG. FlynnG. MaibachH. YacobiA. Topical and transdermal drug products.Pharmacop. Forum200935750764
    [Google Scholar]
  40. HiguchiW.I. Analysis of data on the medicament release from ointments.J. Pharm. Sci.196251880280410.1002/jps.2600510825 13907274
    [Google Scholar]
  41. HiguchiT. Rate of release of medicaments from ointment bases containing drugs in suspension.J. Pharm. Sci.1961501087487510.1002/jps.2600501018 13907269
    [Google Scholar]
  42. SonawaneS. GideP. Application of experimental design for the optimisation of forced degradation and development of a validated stability indicating L.C. method for luliconazole bulk and cream formulation.Arab. J. Chem.20129S1428S1434
    [Google Scholar]
  43. RignallA. ICHQ1A(R2) Stability Testing of New Drug Substance and Product and ICHQ1C Stability Testing of New Dosage Forms.ICH Quality Guidelines: An Implementation Guide.Wiley Online Library2017
    [Google Scholar]
  44. DongL. LiuC. CunD. FangL. The effect of rheological behavior and microstructure of the emulgels on the release and permeation profiles of Terpinen-4-ol.Eur. J. Pharm. Sci.20157814015010.1016/j.ejps.2015.07.003 26144369
    [Google Scholar]
  45. YükselB. Quantitative GC-FID analysis of heroin for seized drugs.Annal. Clin. Analyt.Med.2020111384210.4328/ACAM.6139
    [Google Scholar]
  46. ShabirG.A. Validation of HPLC methods for pharmaceutical analysis: Understanding the differences and similarities between validation requirements of the U.S. Food and Drug Administration, the U.S. Pharmacopoeia and the International Conference on Harmonization.J. Chromatogr. A2003987576610.1016/S0021‑9673(02)01536‑4 12613797
    [Google Scholar]
  47. U.S. F.D.A. Draft Product Specific Guidance on Acyclovir Ointment2012.Available from: https://www.accessdata.fda.gov/drugsatfda_docs/psg/PSG_021478.pdf
  48. U.S. F.D.A. Draft Product Specific Guidance on Benzyl Alcohol2014Available from: https://www.accessdata.fda.gov/drugsatfda_docs/psg/Benzyl_alcohol_lot_022129_RC12-14.pdf
  49. U.S. F.D.A. Draft Product Specific Guidance on Acyclovir Cream2016Available from: https://www.accessdata.fda.gov/drugsatfda_docs/psg/PSG_021478.pdf
  50. U.S.P. Topical and transdermal drug products- Product performance tests.U.S.P. Pharm. Forum201935112
    [Google Scholar]
  51. U.S.P. chapter ‹1724› Semisolid drug products performance tests.U.S.P.20113712731284
    [Google Scholar]
  52. ManianM. JainP. VoraD. BangaA.K. Formulation and evaluation of the In Vitro performance of topical dermatological products containing diclofenac sodium.Pharmaceutics2022149189210.3390/pharmaceutics14091892 36145640
    [Google Scholar]
  53. ShabirG.A. Step-by-step analytical methods and protocol in the quality system compliance industry.J. Validation Technol.200410314324
    [Google Scholar]
  54. BajajS. SinglaD. SakhujaN. Stability testing of pharmaceutical products.J. Appl. Pharm. Sci.201223129138
    [Google Scholar]
  55. Validation of analytical procedures: Text and Methodology, Q2(R1)International Conference on Harmonization (ICH)Geneva, Switzerland2005
    [Google Scholar]
  56. ShabirG.A. HPLC method development and validation for pharmaceutical analysis.PharmaTechnolEur2004163749
    [Google Scholar]
  57. FreemanS. HowardA. FoleyP. RosenR. WoodG. SeeJ.A. GrayS. Efficacy, cutaneous tolerance and cosmetic acceptability of desonide 0.05% lotion (Desowen ®) versus vehicle in the short‐term treatment of facial atopic or seborrhoeic dermatitis.Australas. J. Dermatol.200243318618910.1046/j.1440‑0960.2002.00592.x 12121395
    [Google Scholar]
  58. YükselB. ÖncüT. ŞenN. Assessing caffeine levels in soft beverages available in Istanbul, Turkey: An LC-MS/MS application in food toxicology.Toxicol. Anal. Clin.2023351334310.1016/j.toxac.2022.08.004
    [Google Scholar]
  59. YükselB. ŞenN. Development and validation of a GC-FID method for determination of cocaine in illicit drug samples.J. res. pharm.2018224
    [Google Scholar]
  60. GreenspanA. HerndonJ.H.Jr BakerM.D. CheneyT. Controlled evaluation of 0.05% desonide lotion and desonide cream in psoriasis.Curr. Ther. Res. Clin. Exp.199353661462010.1016/S0011‑393X(05)80731‑3
    [Google Scholar]
  61. CornellR.C. BakerM.D. Dermal safety comparison of 0.05% desonide cream and 1.0% hydrocortisone cream.Curr. Ther. Res. Clin. Exp.199353435635910.1016/S0011‑393X(05)80194‑8
    [Google Scholar]
  62. PrawerS.E. KatzH.I. HerndonJ.H.Jr BakerM.D. CheneyT. Controlled, bilateral, comparative evaluation of 0.05% desonide lotion and desonide cream in eczematous dermatitis.Curr. Ther. Res. Clin. Exp.199353660761310.1016/S0011‑393X(05)80730‑1
    [Google Scholar]
  63. PhillipsB.M. SanenF.J. LeelingJ.L. HammesT.L. HartnagelR.E. SancilioL.F. LorenzettiO.J. KrausP.J. The physical, animal and human pharmacologic, and toxicologic properties of desonide, a new, topically active, antiinflammatory steroid.Toxicol. Appl. Pharmacol.197120452253710.1016/0041‑008X(71)90256‑0 5143593
    [Google Scholar]
  64. ZhengS. LuoS.B. MeiY.B. GuoJ. TongL.J. ZhangQ. YeX.Y. Simultaneous determination of rivaroxaban and enalapril in rat plasma by U.P.L.C.–MS/MS and its application to a pharmacokinetic interaction study.Eur. J. Drug Metab. Pharmacokinet.201944222923610.1007/s13318‑018‑0504‑8 30151746
    [Google Scholar]
  65. MohanT.S.S.J. JogiaH.A. MukkantiK. Novel stability-indicating U-HPLC method development and validation for the quantification of perindopril, amlodipine and their impurities in pharmaceutical formulations: Application of QbD approach.Chromatographia202083101197122010.1007/s10337‑020‑03936‑6
    [Google Scholar]
  66. Harmonised Tripartite GuidelineI.C.H. Stability testing of new drug substances and products, Q1A(R2).Int. Conf. Harmon.2003118
    [Google Scholar]
  67. MohanT.S.S.J. JogiaH.A. MukkantiK. A stability indicating U-HPLC method for the simultaneous estimation of perindopril, indapamide in the presence of potential impurities: An application of QbD for robustness study.Anal. Chem. Lett.202010447749710.1080/22297928.2020.1817776
    [Google Scholar]
  68. Al-TannakN. U-HPLC-UV method for simultaneous determination of perindopril arginine and indapamide hemihydrate in combined dosage form: A stability-indicating assay method.Sci. Pharm.2018861710.3390/scipharm86010007 29470453
    [Google Scholar]
  69. SantaF. SperottoL. BragaM. DalcinT. CodevillaC. MeneghiniL. DonatoE. RolimC. BergoldA. AdamsA. Development and validation of a simple stability-indicating L.C. method and UVA photostability study of Desonide hair lotion.Curr. Anal. Chem.20139465966710.2174/15734110113099990011
    [Google Scholar]
  70. LopesS.B. SarragucaJ.M. Development of an HPLC assay methodology for a Desonide cream with chemometrics assisted optimisation.Anal. Lett.201245111390140010.1080/00032719.2012.675494
    [Google Scholar]
  71. MinighJ. Desonide.xPharm: The Comprehensive Pharmacology ReferenceElsevier200815
    [Google Scholar]
  72. WangJ. ZhengS. XuY. HuH. ShenM. TangL. Development of a novel HPLC method for the determination of the impurities in desonide cream and characterization of its impurities by 2D LC-IT-TOF MS.J. Pharm. Biomed. Anal.201816139940610.1016/j.jpba.2018.08.055 30205304
    [Google Scholar]
  73. MalodeS.B. DigheR.D. ChaudhariS.R. Simple UV spectrophotometric determination of Desonide in pure form and pharmaceutical formulation. Inventi Rapid. Pharm Analysis and Quality Assurance2012
    [Google Scholar]
  74. GarcíaM.D.G. CañadaF.C. CulzoniM.J. Vera-CandiotiL. SianoG.G. GoicoecheaH.C. GaleraM.M. Chemometric tools improving the determination of anti-inflammatory and antiepileptic drugs in river and wastewater by solid-phase microextraction and liquid chromatography diode array detection.J. Chromatogr. A20091216295489549610.1016/j.chroma.2009.05.073 19535087
    [Google Scholar]
  75. Di PietraA.M. AndrisanoV. GottiR. CavriniV. On-line post-column photochemical derivatization in liquid chromatographic—diode-array detection analysis of binary drug mixtures.J. Pharm. Biomed. Anal.1996148-101191119910.1016/0731‑7085(95)01695‑3 8818033
    [Google Scholar]
  76. NguyenT.T. KringstadR. AasenA.J. RasmussenK.E. LönnbergH. BergJ-E. BartókM. PelczerI. DombiG. Identification and analysis of a degradation product of the glucocorticoid desonide in ointment.Acta Chem. Scand.198842b640340710.3891/acta.chem.scand.42b‑0403 3195294
    [Google Scholar]
  77. NguyenT.T. KringstadR. RasmussenK.E. Use of extraction columns for the isolation of desonide and parabens from creams and ointments for high-performance liquid chromatographic analysis.J. Chromatogr. A198636644545010.1016/S0021‑9673(01)93500‑9 3782330
    [Google Scholar]
  78. U.S. F.D.A. Guidance for industry nonsterile semisolid dosage forms, scale-up and postapproval changes: chemistry, manufacturing, and controls; in vitro release testing and in vivo bioequivalence documentation (SUPAC-SS)Guidance for IndustryUS1997
    [Google Scholar]
  79. BaoQ. BurgessD.J. Perspectives on physicochemical and in vitro profiling of ophthalmic ointments.Pharm. Res.2018351223410.1007/s11095‑018‑2513‑3 30324424
    [Google Scholar]
  80. SoaresR.F. AraújoA.L.D. CastroJ.L. GomesL.N.L.F. PereiraH.M.G. Aquino NetoF.R. Quantitative approach to glucocorticosteroids analysis in human urine using LC-MS/MS.J. Braz. Chem. Soc.201223112065207410.1590/S0103‑50532012005000081
    [Google Scholar]
  81. SiewertM. DressmanJ. BrownC.K. ShahV.P. AiacheJ-M. AoyagiN. BashawD. BrownC. BrownW. BurgessD. CrisonJ. DeLucaP. DjerkiR. DressmanJ. FosterT. GjellanK. GrayV. HussainA. IngallineraT. KlanckeJ. KraemerJ. KristensenH. KumiK. LeunerC. LimbergJ. LoosP. MargulisL. MarroumP. MoellerH. MuellerB. Mueller-ZsigmondyM. OkafoN. OuderkirkL. ParsiS. QureshiS. RobinsonJ. ShahV. SiewertM. UppoorR. WilliamsR. FIP/AAPS guidelines to dissolution/in vitro release testing of novel/special dosage forms.AAPS PharmSciTech200341435210.1208/pt040107 12916916
    [Google Scholar]
  82. ShahV.P. ElkinsJ.S. WilliamsR.L. Evaluation of the test system used for in vitro release of drugs for topical dermatological drug products.Pharm. Dev. Technol.19994337738510.1081/PDT‑100101373 10434283
    [Google Scholar]
  83. GineysN. GiroudB. VullietE. Analytical method for the determination of trace levels of steroid hormones and corticosteroids in soil, based on PLE/SPE/LC-MS/MS.Anal. Bioanal. Chem.201039762295230210.1007/s00216‑010‑3787‑4 20449575
    [Google Scholar]
  84. BeotraA. ReddyI.M. JainS. AhiS. A simple and rapid ESI-LC-MS/MS method for simultaneous screening of doping agents in urine samples.Indian J. Pharmacol.2009412808610.4103/0253‑7613.51347 20336223
    [Google Scholar]
  85. Harmonised Tripartite GuidelineI.C.H. Validation of analytical procedures: Text and methodology, Q2(R1).Int. Conf. Harmon.2005113
    [Google Scholar]
  86. Patient assessment of Desonide hydrogel for the treatment of mild to moderate atopic dermatitis.J. Am. Acad. Dermatol.2009603AB69
    [Google Scholar]
  87. LopesS.B. SarraguçaJ.M. PriorJ.A.V. LopesJ.A. Development of an HPLC assay methodology for a Desonide cream with chemometrics assisted optimization.Anal. Lett.201245111390140010.1080/00032719.2012.675494
    [Google Scholar]
  88. AntonowM.B. LorenzoniR. BarbosaG.M. OuriqueA.F. GomesP. RaffinR.P. Development and physicochemical characterization of Desonide-loaded nanocapsule suspensions.Adv. Mater. Sci. Eng.2016201611210.1155/2016/7395896
    [Google Scholar]
  89. MayurkumarD.J. ChaudharyA.B. PandyaC.H. Development and validation of Rp-Hplc method for estimation of desonide in presence of sorbic acid.World J. Pharm. Pharm. Sci.201876666678
    [Google Scholar]
  90. SeelamJ. IsmailY. A review on in-vitro release testing methods for topical dosage forms.J. Drug Alcohol. Res.20231218
    [Google Scholar]
/content/journals/cpa/10.2174/0115734129298659240606103013
Loading
/content/journals/cpa/10.2174/0115734129298659240606103013
Loading

Data & Media loading...

Supplements

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test