Skip to content
2000
Volume 20, Issue 7
  • ISSN: 1573-4129
  • E-ISSN: 1875-676X

Abstract

Background

Bge. is a plant extensively utilized in Traditional Chinese Medicine (TCMs). Nevertheless, our knowledge of the chemical components and metabolic complexities in its extracts is still quite limited.

Objective

The study aimed to thoroughly analyze the flavonoid metabolism in Bge. extracts and conduct a pharmacodynamic evaluation.

Methods

In this study, we investigated the metabolism of flavonoids in Bge. extracts using SD rats. The research adopted the strategy of “i metabolism assessment, basic study of pharmacodynamics and preliminary evaluation of molecular docking” to systematically investigate the pharmacodynamic substances and targets of action of Bge.

Results

The results of the study showed that the main metabolic forms of Bge. include hydroxylation, methylation, and glycosylation. Among them, luteolin in the total flavonoids of Bge. has the strongest antimicrobial and antioxidant ability. Outcomes of molecular docking experiments indicated that the glycosylated metabolite of luteolin had a significant advantage in acting with Glp-1 (Glucagon-like peptide-1).

Conclusion

The present study revealed the metabolic pathways of total flavonoids in Bge. It not only effectively screened out their pharmacodynamic substances and targets but also provided a theoretical basis for the application of TCMs into a systematic application and also provided ideas for the direction of drug optimization in the future. However, the sample range of this study is limited, and it generalizability needs to be investigated.

© 2024 The Author(s). Published by Bentham Science Publishers. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cpa/10.2174/0115734129298520240812062841
2024-08-15
2025-01-22
Loading full text...

Full text loading...

/deliver/fulltext/cpa/20/7/CPA-20-7-06.html?itemId=/content/journals/cpa/10.2174/0115734129298520240812062841&mimeType=html&fmt=ahah

References

  1. GaoY. Studies on the flavonoid chemical composition and hypoglycaemic activity of the chinese traditional medicine potentilla discolor Bge.J. Guangzhou Chem.202149103106
    [Google Scholar]
  2. ShiJ. The effect of Forsythia glabra on insulin resistance in type 2 diabetes mellitus.Shandong University of Chinese Medicine2022
    [Google Scholar]
  3. LiuY. FuQ. ShiM. SuY. ZhaoH. CuiJ. LiC. LiuZ. Study on the mechanism of action of Potontilla Discolor Bge. officinalis in regulating the mitochondrial autophagy pathway for the treatment of UC. %.J Chin. J. Tradit. Chin. Med.20214639073914
    [Google Scholar]
  4. YangY. RenJ. SunJ. HuX. LuoH. GeD. MaX. MaQ. ZhaoY. YangY. Study on the molecular mechanism of oxidative stress in skeletal muscle of rats with type 2 diabetes mellitus by Potontilla Discolor Bge.
  5. JinQ. NanJ. LianL. Study on the induction of apoptosis of HepG-2 in human hepatocellular carcinoma cells by Potontilla Discolor Bge. %.Chin. J. Nat. Med.20119616410.1016/S1875‑5364(11)60022‑8
    [Google Scholar]
  6. LvH.W. WangQ.L. LuoM. ZhuM.D. LiangH.M. LiW.J. CaiH. ZhouZ.B. WangH. TongS.Q. LiX.N. Phytochemistry and pharmacology of natural prenylated flavonoids.Arch. Pharm. Res.202346420727210.1007/s12272‑023‑01443‑437055613
    [Google Scholar]
  7. GouH. SuH. LiuD. WongC.C. ShangH. FangY. ZengX. ChenH. LiY. HuangZ. FanM. WeiC. WangX. ZhangX. LiX. YuJ. Traditional medicine pien tze huang suppresses colorectal tumorigenesis through restoring gut microbiota and metabolites.Gastroenterology202316561404141910.1053/j.gastro.2023.08.05237704113
    [Google Scholar]
  8. XuM.J. ZhongL.J. ChenJ.K. BuQ. LiangL.F. Secondary metabolites from marine sponges of the genus Oceanapia: Chemistry and biological activities.Mar. Drugs202220214410.3390/md2002014435200673
    [Google Scholar]
  9. KangX. LiuC. DingY. NiY. JiF. LauH.C.H. JiangL. SungJ.J.Y. WongS.H. YuJ. Roseburia intestinalis generated butyrate boosts anti-PD-1 efficacy in colorectal cancer by activating cytotoxic CD8 + T cells.Gut202372112112212210.1136/gutjnl‑2023‑33029137491158
    [Google Scholar]
  10. JiangH. LiM. DuK. MaC. ChengY. WangS. NieX. FuC. HeY. Traditional Chinese medicine for adjuvant treatment of breast cancer: Taohong Siwu Decoction.Chin. Med.202116112910.1186/s13020‑021‑00539‑734857023
    [Google Scholar]
  11. AbdoliA. ShahbaziR. ZoghiG. DavoodianP. KheirandishS. AzadM. KheirandishM. The effect of topical olive oil dressing on the healing of grade 1 and 2 diabetic foot ulcers: An assessor-blind randomized controlled trial in type 2 diabetes patients.Diabetes Metab. Syndr.2022161210267810.1016/j.dsx.2022.10267836459908
    [Google Scholar]
  12. BaoY. LiH. LiQ. Y. LiY. LiF. ZhangC. F. WangC. Z. YuanC. S. Therapeutic effects of Smilax glabra and Bolbostemma paniculatum on rheumatoid arthritis using a rat paw edema model.Biomed. Pharmacother.2018108309315
    [Google Scholar]
  13. JiL. SongT. GeC. WuQ. MaL. ChenX. ChenT. ChenQ. ChenZ. ChenW. Identification of bioactive compounds and potential mechanisms of Scutellariae Radix-Coptidis Rhizoma in the treatment of atherosclerosis by integrating network pharmacology and experimental validation.Biomed. Pharmacother.2023165115210
    [Google Scholar]
  14. FengM. ZouZ. ZhouX. HuY. MaH. XiaoY. LiX. YeX. Comparative effect of berberine and its derivative 8-cetylberberine on attenuating atherosclerosis in ApoE−/− mice.Int. Immunopharmacol.20174319520210.1016/j.intimp.2016.12.00128024280
    [Google Scholar]
  15. SunL. YangZ. ZhaoW. ChenQ. BaiH. WangS. YangL. BiC. ShiY. LiuY. Integrated lipidomics, transcriptomics and network pharmacology analysis to reveal the mechanisms of Danggui Buxue Decoction in the treatment of diabetic nephropathy in type 2 diabetes mellitus.J. Ethnopharmacol.202228311469910.1016/j.jep.2021.11469934610419
    [Google Scholar]
  16. YosriH. El-KashefD. H. El-SherbinyM. SaidE. SalemH. A. Calycosin modulates NLRP3 and TXNIP-mediated pyroptotic signaling and attenuates diabetic nephropathy progression in diabetic rats; An insight.Biomed. Pharmacother.2022155113758
    [Google Scholar]
  17. ZhuM. ZhangP. YuS. TangC. WangY. ShenZ. ChenW. LiuT. CuiY. Targeting ZFP64/GAL-1 axis promotes therapeutic effect of nab-paclitaxel and reverses immunosuppressive microenvironment in gastric cancer.J. Exp. Clin. Cancer Res.20224111410.1186/s13046‑021‑02224‑x34996504
    [Google Scholar]
  18. ZhuY. WangA. ZhangS. KimJ. XiaJ. ZhangF. WangD. WangQ. WangJ. Paclitaxel-loaded ginsenoside Rg3 liposomes for drug-resistant cancer therapy by dual targeting of the tumor microenvironment and cancer cells.J. Adv. Res.20234915917310.1016/j.jare.2022.09.00736167294
    [Google Scholar]
  19. HuL. QuachT. HanS. LimS.F. YadavP. SenyschynD. TrevaskisN.L. SimpsonJ.S. PorterC.J.H. Glyceride-mimetic prodrugs incorporating self-immolative spacers promote lymphatic transport, avoid first-pass metabolism, and enhance oral bioavailability.Angew. Chem. Int. Ed.20165544137001370510.1002/anie.20160420727482655
    [Google Scholar]
  20. AmesM. M. Hexamethylmelamine: Pharmacology and mechanism of action.Cancer Treat. Rev.199118Suppl A31410.1016/0305‑7372(91)90019‑V
    [Google Scholar]
  21. WangR.N. ZhaoH.C. HuangJ.Y. WangH.L. LiJ.S. LuY. DiL.Q. Challenges and strategies in progress of drug delivery system for traditional Chinese medicine Salviae Miltiorrhizae Radix et Rhizoma (Danshen).Chin. Herb. Med.2020131788936117766
    [Google Scholar]
  22. LiY. DengX. XiongH. HuQ. ChenY. ZhangW. MaX. ZhaoY. Deciphering the toxicity-effect relationship and action patterns of traditional Chinese medicines from a smart data perspective: A comprehensive review.Front. Pharmacol.202314127801410.3389/fphar.2023.127801437915415
    [Google Scholar]
  23. SunH. WangD. XuM. GaoY. LiF. Methodological verification-based screening of the representative ingredients for traditional chinese medicine: Taking Astragalus as an example for interfering with cervical cancer.Curr. Computeraided Drug Des.202218534736210.2174/157340991866622082312030436017857
    [Google Scholar]
  24. LiuX. WangY. ZhangY. JiangH. HuoX. LiuR. Integrated bioinformatic analysis and experimental validation to reveal the mechanisms of xinfeng capsule against rheumatoid arthritis.Comb. Chem. High Throughput Screen.202326122161216910.2174/138620732666623012715104936705239
    [Google Scholar]
  25. TangG. LiS. ZhangC. ChenH. WangN. FengY. Clinical efficacies, underlying mechanisms and molecular targets of Chinese medicines for diabetic nephropathy treatment and management.Acta Pharm. Sin. B20211192749276710.1016/j.apsb.2020.12.02034589395
    [Google Scholar]
  26. LiuC. YinJ. YaoJ. XuZ. TaoY. ZhangH. Pharmacophore-based virtual screening toward the discovery of novel anti-echinococcal compounds.Front. Cell. Infect. Microbiol.20201011810.3389/fcimb.2020.0011832266168
    [Google Scholar]
  27. LiC. JiaW. YangJ. ChengC. OlaleyeO.E. Multi-compound and drug-combination pharmacokinetic research on Chinese herbal medicines.Acta Pharmacol. Sin.202243123080309510.1038/s41401‑022‑00983‑736114271
    [Google Scholar]
  28. XiongY. GaoM. van DuijnB. ChoiH. van HorssenF. WangM. International policies and challenges on the legalization of traditional medicine/herbal medicines in the fight against COVID-19.Pharmacol. Res.202116610547210.1016/j.phrs.2021.10547233592272
    [Google Scholar]
  29. KangL. ZhangY. ZhouL. YangJ. HeY. YangS. LiG. HaoQ. YuY. GuoL. Structural characterization and discrimination of Morinda officinalis and processing Morinda officinalis based on metabolite profiling analysis.Front Chem.2022980355010.3389/fchem.2021.80355035127649
    [Google Scholar]
  30. TenutaM.C. LoizzoM.R. TundisR. DugayA. BouzidiC. MarieA. AcquavivaR. CappelloA.R. DeguinB. Iridoid- and flavonoid-enriched fractions of Cornus sanguinea and Cornus mas exert antioxidant and anti-inflammatory effects and inhibit key enzymes in the treatment of metabolic disorders.Food Funct.202314198838885310.1039/D3FO02987E37694378
    [Google Scholar]
  31. DobrzynskaM. NapieralaM. FlorekE. Flavonoid nanoparticles: A promising approach for cancer therapy.Biomolecules2020109126810.3390/biom1009126832887473
    [Google Scholar]
  32. ZhangK. HeY. LuX. ShiY. ZhaoH. LiX. LiJ. LiuY. OuyangY. TangY. RenX. ZhangX. YangW. SunZ. ZhangC. QuinetM. LutharZ. GermM. KreftI. JanovskáD. MegličV. PipanB. GeorgievM.I. StuderB. ChapmanM.A. ZhouM. Comparative and population genomics of buckwheat species reveal key determinants of flavor and fertility.Mol. Plant20231691427144410.1016/j.molp.2023.08.01337649255
    [Google Scholar]
  33. ChaddaK.R. ChengT.S. OngK.K. GLP-1 agonists for obesity and type 2 diabetes in children: Systematic review and meta-analysis.Obes. Rev.2021226e1317710.1111/obr.1317733354917
    [Google Scholar]
  34. NeuenB.L. HeerspinkH.J.L. VartP. ClaggettB.L. FletcherR.A. ArnottC. de Oliveira CostaJ. FalsterM.O. PearsonS.A. MahaffeyK.W. NealB. AgarwalR. BakrisG. PerkovicV. SolomonS.D. VaduganathanM. Estimated lifetime cardiovascular, kidney, and mortality benefits of combination treatment with SGLT2 inhibitors, GLP-1 receptor agonists, and nonsteroidal MRA compared with conventional care in patients with type 2 diabetes and albuminuria.Circulation2024149645046210.1161/CIRCULATIONAHA.123.06758437952217
    [Google Scholar]
  35. ZhangY. JiangL. WangJ. WangT. ChienC. HuangW. FuX. XiaoY. FuQ. WangS. ZhaoJ. Network meta-analysis on the effects of finerenone versus SGLT2 inhibitors and GLP-1 receptor agonists on cardiovascular and renal outcomes in patients with type 2 diabetes mellitus and chronic kidney disease.Cardiovasc. Diabetol.202221123210.1186/s12933‑022‑01676‑536335326
    [Google Scholar]
  36. TanQ. AkindehinS.E. OrssoC.E. WaldnerR.C. DiMarchiR.D. MüllerT.D. HaqqA.M. Recent advances in incretin-based pharmacotherapies for the treatment of obesity and diabetes.Front. Endocrinol.20221383841010.3389/fendo.2022.83841035299971
    [Google Scholar]
  37. ShettyR. BasheerF.T. PoojariP.G. ThungaG. ChandranV.P. AcharyaL.D. Adverse drug reactions of GLP-1 agonists: A systematic review of case reports.Diabetes Metab. Syndr.202216310242710.1016/j.dsx.2022.10242735217468
    [Google Scholar]
  38. GaberyS. SalinasC.G. PaulsenS.J. Ahnfelt-RønneJ. AlanentaloT. BaqueroA.F. BuckleyS.T. FarkasE. FeketeC. FrederiksenK.S. HelmsH.C.C. JeppesenJ.F. JohnL.M. PykeC. NøhrJ. LuT.T. Polex-WolfJ. PrevotV. RaunK. SimonsenL. SunG. Szilvásy-SzabóA. WillenbrockH. SecherA. KnudsenL.B. HogendorfW.F.J. Semaglutide lowers body weight in rodents via distributed neural pathways.JCI Insight202056e13342910.1172/jci.insight.13342932213703
    [Google Scholar]
  39. PedrosaM.R. FrancoD.R. GieremekH.W. VidalC.M. BronzeriF. de Cassia RochaA. de Carvalho CaraL.G. FogoS.L. EliaschewitzF.G. GLP-1 agonist to treat obesity and prevent cardiovascular disease: What have we achieved so far?Curr. Atheroscler. Rep.2022241186788410.1007/s11883‑022‑01062‑236044100
    [Google Scholar]
  40. TanR. CongQ. WangX. ZhouZ. WenX. Study on the induction of apoptosis of HepG-2 in human hepatocellular carcinoma cells by Potontilla Discolor Bge. %.Pharmacol. Clin. Tradit. Chin. Med.202036114120
    [Google Scholar]
  41. DanelT. ŁęskiJ. PodlewskaS. PodolakI.T. Docking-based generative approaches in the search for new drug candidates.Drug Discov. Today202328210343910.1016/j.drudis.2022.10343936372330
    [Google Scholar]
  42. YangX. WangY. ByrneR. SchneiderG. YangS. Concepts of artificial intelligence for computer-assisted drug discovery.Chem. Rev.201911918105201059410.1021/acs.chemrev.8b0072831294972
    [Google Scholar]
  43. LiT. GuoR. ZongQ. LingG. Application of molecular docking in elaborating molecular mechanisms and interactions of supramolecular cyclodextrin.Carbohydr. Polym.202227611864410.1016/j.carbpol.2021.11864434823758
    [Google Scholar]
  44. SilvaD.A. YuS. UlgeU.Y. SpanglerJ.B. JudeK.M. Labão-AlmeidaC. AliL.R. Quijano-RubioA. RuterbuschM. LeungI. BiaryT. CrowleyS.J. MarcosE. WalkeyC.D. WeitznerB.D. Pardo-AvilaF. CastellanosJ. CarterL. StewartL. RiddellS.R. PepperM. BernardesG.J.L. DouganM. GarciaK.C. BakerD. De novo design of potent and selective mimics of IL-2 and IL-15.Nature2019565773818619110.1038/s41586‑018‑0830‑730626941
    [Google Scholar]
  45. ZhouY. JiangY. ChenS.J. RNA –ligand molecular docking: Advances and challenges.Wiley Interdiscip. Rev. Comput. Mol. Sci.2022123e157110.1002/wcms.157137293430
    [Google Scholar]
  46. ChisholmT.S. MackeyM. HunterC.A. Discovery of high- affinity amyloid ligands using a ligand-based virtual screening pipeline.J. Am. Chem. Soc.202314529159361595010.1021/jacs.3c0374937439212
    [Google Scholar]
  47. LiX. WeiS. NiuS. MaX. LiH. JingM. ZhaoY. Network pharmacology prediction and molecular docking-based strategy to explore the potential mechanism of Huanglian Jiedu Decoction against sepsis.Comput. Biol. Med.202214410538910.1016/j.compbiomed.2022.10538935303581
    [Google Scholar]
  48. WangY. YuanY. WangW. HeY. ZhongH. ZhouX. ChenY. CaiX.J. LiuL. Mechanisms underlying the therapeutic effects of Qingfeiyin in treating acute lung injury based on GEO datasets, network pharmacology and molecular docking.Comput. Biol. Med.202214510545410.1016/j.compbiomed.2022.10545435367781
    [Google Scholar]
  49. ZhaoJ. LinF. LiangG. HanY. XuN. PanJ. LuoM. YangW. ZengL. Exploration of the Molecular Mechanism of Polygonati Rhizoma in the Treatment of Osteoporosis Based on Network Pharmacology and Molecular Docking Exploration of the molecular mechanism of polygonati rhizoma in the treatment of osteoporosis based on network pharmacology and molecular docking.Front. Endocrinol.20221281589110.3389/fendo.2021.815891
    [Google Scholar]
  50. LeeT.S. ParkE.J. ChoiM. OhH.S. AnY. KimT. KimT.H. ShinB.S. ShinS. Novel LC-MS/MS analysis of the GLP-1 analog semaglutide with its application to pharmacokinetics and brain distribution studies in rats.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.2023122112368810.1016/j.jchromb.2023.12368836989942
    [Google Scholar]
  51. XuS. LiuY. XiangL. ZhouF. LiH. SuY. XuX. WangQ. Metabolites identification of bioactive compounds Daturataturin A, Daturametelin I, N-trans-feruloyltyramine, and cannabisin F from the seeds of datura metel in rats.Front. Pharmacol.2018973110.3389/fphar.2018.0073130050436
    [Google Scholar]
  52. LiL. LuoW. QianY. ZhuW. QianJ. LiJ. JinY. XuX. LiangG. Luteolin protects against diabetic cardiomyopathy by inhibiting NF-κB-mediated inflammation and activating the Nrf2- mediated antioxidant responses.Phytomedicine20195915277410.1016/j.phymed.2018.11.03431009852
    [Google Scholar]
  53. ManzoorM.F. AhmadN. AhmedZ. SiddiqueR. ZengX.A. RahamanA. Muhammad AadilR. WahabA. Novel extraction techniques and pharmaceutical activities of luteolin and its derivatives.J. Food Biochem.2019439e1297410.1111/jfbc.1297431489656
    [Google Scholar]
  54. XiaC. LiuY. QiH. NiuL. ZhuY. LuW. XuX. SuY. YangB. WangQ. Characterization of the Metabolic Fate of Datura metel seed extract and its main constituents in rats.Front. Pharmacol.20191057110.3389/fphar.2019.0057131191311
    [Google Scholar]
  55. QinH. SunH. WangX. SunJ. ZhangJ. YangQ. LiuC. Studies on the chemical composition of Potontilla Discolor Bge. %.J. Chin. Med. Mater.202043339343
    [Google Scholar]
  56. SukkasamN. LeksingtoJ. IncharoensakdiA. MonshupaneeT. Chemical triggering cyanobacterial glycogen accumulation: Methyl viologen treatment increases Synechocystis sp. PCC 6803 glycogen storage by enhancing levels of gene transcript and substrates in glycogen synthesis.Plant Cell Physiol.202363122027204110.1093/pcp/pcac13636197756
    [Google Scholar]
  57. EddouksM. AzzaneA. AmssayefA. El-HaidaniA. Effect of Pulicaria mauritanica on glucose metabolism and glycogen content in streptozotocin-induced diabetic rats.Cardiovasc. Hematol. Agents Med. Chem.202220319721110.2174/187152572066622051020462435538824
    [Google Scholar]
  58. WangB.T. HuS. YuX.Y. JinL. ZhuY.J. JinF.J. Studies of cellulose and starch utilization and the regulatory mechanisms of related enzymes in fungi.Polymers2020123
    [Google Scholar]
  59. KongX. LvH. ZhouH. Determination of flavonoids in Potontilla Discolor Bge. and its quality evaluation. %.J. Shandong Univ. Tradit. Chin. Med.202246108114
    [Google Scholar]
  60. SheY. ShaoL. JiaoK. SunR. LangT. LongH. TangY. ZhangW. DingC. DengC. Glycosides of Buyang Huanwu decoction inhibits pyroptosis associated with cerebral ischemia-reperfusion through Nrf2-mediated antioxidant signaling pathway both in vivo and in vitro.Phytomedicine202312015500110.1016/j.phymed.2023.15500137619321
    [Google Scholar]
  61. ZhuK. MengZ. TianY. GuR. XuZ. FangH. LiuW. HuangW. DingG. XiaoW. Hypoglycemic and hypolipidemic effects of total glycosides of Cistanche tubulosa in diet/streptozotocin-induced diabetic rats.J. Ethnopharmacol.202127611399110.1016/j.jep.2021.11399133675914
    [Google Scholar]
  62. WangH. RiemannM. LiuQ. SiegristJ. NickP. Glycyrrhizin, the active compound of the TCM drug Gan Cao stimulates actin remodelling and defence in grapevine.Plant Sci.2021302110712
    [Google Scholar]
  63. HerderC. RodenM. A novel diabetes typology: Towards precision diabetology from pathogenesis to treatment.Diabetologia202265111770178110.1007/s00125‑021‑05625‑x34981134
    [Google Scholar]
  64. MikłoszA. ChabowskiA. Adipose-derived mesenchymal stem cells therapy as a new treatment option for diabetes mellitus.J. Clin. Endocrinol. Metab.202310881889189710.1210/clinem/dgad14236916961
    [Google Scholar]
  65. LiuX.J. HuX.K. YangH. GuiL.M. CaiZ.X. QiM.S. DaiC.M. A review of traditional chinese medicine on treatment of diabetic nephropathy and the involved mechanisms.Am. J. Chin. Med.20225071739177910.1142/S0192415X2250074436222120
    [Google Scholar]
  66. CatrinaS.B. ZhengX. Hypoxia and hypoxia-inducible factors in diabetes and its complications.Diabetologia202164470971610.1007/s00125‑021‑05380‑z33496820
    [Google Scholar]
  67. YingruiW. ZhengL. GuoyanL. HongjieW. Research progress of active ingredients of Scutellaria baicalensis in the treatment of type 2 diabetes and its complications.Biomed. Pharmacother.2022148112690
    [Google Scholar]
  68. TuC. LuH. ZhouT. ZhangW. DengL. CaoW. YangZ. WangZ. WuX. DingJ. XuF. GaoC. Promoting the healing of infected diabetic wound by an anti-bacterial and nano-enzyme- containing hydrogel with inflammation-suppressing, ROS-scavenging, oxygen and nitric oxide-generating properties.Biomaterials202228612159710.1016/j.biomaterials.2022.12159735688112
    [Google Scholar]
  69. HuangF. LuX. YangY. YangY. LiY. KuaiL. LiB. DongH. ShiJ. Microenvironment-based diabetic foot ulcer nanomedicine.Adv. Sci.2023102220330810.1002/advs.20220330836424137
    [Google Scholar]
  70. XiongY. ChenL. LiuP. YuT. LinC. YanC. HuY. ZhouW. SunY. PanayiA. C. CaoF. XueH. HuL. LinZ. XieX. XiaoX. FengQ. MiB. LiuG. All-in-one: Multifunctional hydrogel accelerates oxidative diabetic wound healing through timed-release of exosome and fibroblast growth factor.Small2022181e2104229
    [Google Scholar]
  71. XuQ. ChenS. JiangL. XiaC. ZengL. CaiX. JinZ. QinS. DingW. HeQ. Sonocatalytic hydrogen/hole-combined therapy for anti-biofilm and infected diabetic wound healing.Natl. Sci. Rev.2023105nwad06310.1093/nsr/nwad06337056424
    [Google Scholar]
  72. GeaS. PutraI.B. LindartoD. PasaribuK.M. SaraswatiY. KarinaM. GoeiR. TokA.I.Y. Bacterial cellulose impregnated with andaliman (Zanthoxylum acanthopodium) microencapsulation as diabetic wound dressing.Int. J. Biol. Macromol.2023253Pt 112657210.1016/j.ijbiomac.2023.12657237648123
    [Google Scholar]
  73. WangY.Y. AddisuK.D. GebrieH.T. DargeH.F. WuT.Y. HongZ.X. TsaiH.C. Multifunctional thermosensitive hydrogel based on alginate and P(NIPAM-co-HEMIN) composites for accelerated diabetic wound healing.Int. J. Biol. Macromol.202324112454010.1016/j.ijbiomac.2023.12454037085062
    [Google Scholar]
  74. KwonE.Y. ChoiM.S. Luteolin targets the toll-like receptor signaling pathway in prevention of hepatic and adipocyte fibrosis and insulin resistance in diet-induced obese mice.Nutrients20181010141510.3390/nu1010141530282902
    [Google Scholar]
  75. WangZ. ZengM. WangZ. QinF. ChenJ. HeZ. Dietary luteolin: A narrative review focusing on its pharmacokinetic properties and effects on glycolipid metabolism.J. Agric. Food Chem.20216951441145410.1021/acs.jafc.0c0808533522240
    [Google Scholar]
  76. ChenX. XiaoZ. CaiY. HuangL. ChenC. Hypothalamic mechanisms of obesity-associated disturbance of hypothalamic–pituitary–ovarian axis.Trends Endocrinol. Metab.202233320621710.1016/j.tem.2021.12.00435063326
    [Google Scholar]
  77. ReynoldsA.N. AkermanA.P. MannJ. Dietary fibre and whole grains in diabetes management: Systematic review and meta-analyses.PLoS Med.2020173e100305310.1371/journal.pmed.100305332142510
    [Google Scholar]
  78. LimJ. FerruzziM.G. HamakerB.R. Dietary starch is weight reducing when distally digested in the small intestine.Carbohydr. Polym.202127311859910.1016/j.carbpol.2021.11859934560999
    [Google Scholar]
/content/journals/cpa/10.2174/0115734129298520240812062841
Loading
/content/journals/cpa/10.2174/0115734129298520240812062841
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test