Skip to content
2000
image of In Vitro and In Silico Evaluation of Caffeic and Ferulic Acids Involvement
in the Translocation of Glucose Transporter 4

Abstract

Background

Insulin is a key hormone in our systems. Upon binding of insulin to its receptors in fat and muscle tissues, tens of proteins in the insulin signaling pathway are involved in the process of GLUT4 vesicle recruitment to the Plasma Membrane (PM) and the absorption of serum glucose. Deficits in the aforementioned pathway lead to insulin resistance and eventually to Type II Diabetes Mellitus.

Objective

We appreciate the contribution of phytochemicals in the treatment of diabetes. Yet, and studies are needed to validate the safety and efficacy of the phytochemicals, plus their action mechanisms.

Methods

Herein, we tested two phytochemicals, caffeic acid and ferulic acid and . We shed light on the insulin signaling proteins as plausible therapeutic targets using studies, AutoDock and SwissADME.

Results

Results obtained indicate that Caffeic Acid (CA) increased GLUT4 translocation at 125µM by 31% in the absence of insulin, and 24.5% in presence of insulin, when compared to the control. Ferulic Acid (FA) was less potent as an enhancer of GLUT4 translocation. Best docking results were found for the binding of the phytochemicals CA and FA to PDK1, AKT, IRS1 and PTEN proteins of the insulin signaling, with comparable results.

Conclusion

These findings indicate that CA and FA possess a limited anti-diabetic potency by increasing GLUT4 trafficking to the PM in skeletal muscles. These results suggest that these compounds are candidates for further investigation in pre-clinical and clinical stages of drug discovery.

Loading

Article metrics loading...

/content/journals/cp/10.2174/0115701646334678240913105521
2024-10-08
2024-11-18
Loading full text...

Full text loading...

References

  1. Harreiter J. Roden M. Diabetes mellitus — Definition, classification, diagnosis, screening and prevention (update 2019). Wien. Klin. Wochenschr. 2019 131 S1 6 15 10.1007/s00508‑019‑1450‑4 30980151
    [Google Scholar]
  2. Larter C.Z. Farrell G.C. Insulin resistance, adiponectin, cytokines in NASH: Which is the best target to treat? J. Hepatol. 2006 44 2 253 261 10.1016/j.jhep.2005.11.030 16364488
    [Google Scholar]
  3. O’Rahilly S. Barroso I. Wareham N.J. Genetic factors in type 2 diabetes: The end of the beginning? Science 2005 307 5708 370 373 10.1126/science.1104346 15662000
    [Google Scholar]
  4. DiMeglio L.A. Evans-Molina C. Oram R.A. Type 1 diabetes. Lancet 2018 391 10138 2449 2462 10.1016/S0140‑6736(18)31320‑5 29916386
    [Google Scholar]
  5. Popoviciu M.S. Kaka N. Sethi Y. Patel N. Chopra H. Cavalu S. Type 1 diabetes mellitus and autoimmune diseases: A critical review of the association and the application of personalized medicine. J. Pers. Med. 2023 13 3 422 10.3390/jpm13030422 36983604
    [Google Scholar]
  6. Akil A.A.S. Yassin E. Al-Maraghi A. Aliyev E. Al-Malki K. Fakhro K.A. Diagnosis and treatment of type 1 diabetes at the dawn of the personalized medicine era. J. Transl. Med. 2021 19 1 137 10.1186/s12967‑021‑02778‑6 33794915
    [Google Scholar]
  7. Galicia-Garcia U. Benito-Vicente A. Jebari S. Larrea-Sebal A. Siddiqi H. Uribe K.B. Ostolaza H. Martín C. Pathophysiology of type 2 diabetes mellitus. Int. J. Mol. Sci. 2020 21 17 6275 10.3390/ijms21176275 32872570
    [Google Scholar]
  8. Tomic D. Shaw J.E. Magliano D.J. The burden and risks of emerging complications of diabetes mellitus. Nat. Rev. Endocrinol. 2022 18 9 525 539 10.1038/s41574‑022‑00690‑7 35668219
    [Google Scholar]
  9. Omar-Hmeadi M. Idevall-Hagren O. Insulin granule biogenesis and exocytosis. Cell. Mol. Life Sci. 2021 78 5 1957 1970 10.1007/s00018‑020‑03688‑4 33146746
    [Google Scholar]
  10. Rahman M.S. Hossain K.S. Das S. Kundu S. Adegoke E.O. Rahman M.A. Hannan M.A. Uddin M.J. Pang M.G. Role of insulin in health and disease: An update. Int. J. Mol. Sci. 2021 22 12 6403 10.3390/ijms22126403 34203830
    [Google Scholar]
  11. Baghaie L. Bunsick D.A. Szewczuk M.R. Insulin receptor signaling in health and disease. Biomolecules 2023 13 5 807 10.3390/biom13050807 37238677
    [Google Scholar]
  12. Le Marchand-Brustel Y. Molecular mechanisms of insulin action in normal and insulin-resistant states. Exp. Clin. Endocrinol. Diabetes 1999 107 2 126 132 10.1055/s‑0029‑1212087 10320053
    [Google Scholar]
  13. Waters S.B. Pessin J.E. Insulin receptor substrate 1 and 2 (IRS1 and IRS2): what a tangled web we weave. Trends Cell Biol. 1996 6 1 1 4 10.1016/0962‑8924(96)81024‑5 15157524
    [Google Scholar]
  14. Huang R. Dai Q. Yang R. Duan Y. Zhao Q. Haybaeck J. Yang Z. A Review: PI3K/AKT/mTOR signaling pathway and its regulated eukaryotic translation initiation factors may be a potential therapeutic target in esophageal squamous cell carcinoma. Front. Oncol. 2022 12 817916 10.3389/fonc.2022.817916 35574327
    [Google Scholar]
  15. Truebestein L. Hornegger H. Anrather D. Hartl M. Fleming K.D. Stariha J.T.B. Pardon E. Steyaert J. Burke J.E. Leonard T.A. Structure of autoinhibited Akt1 reveals mechanism of PIP 3 -mediated activation. Proc. Natl. Acad. Sci. USA 2021 118 33 e2101496118 10.1073/pnas.2101496118 34385319
    [Google Scholar]
  16. Storz P. Toker A. 3′-phosphoinositide-dependent kinase-1 (PDK-1) in PI 3-kinase signaling. Front. Biosci. 2002 7 1-3 d886 d902 10.2741/storz 11897568
    [Google Scholar]
  17. Vara J.Á.F. Casado E. de Castro J. Cejas P. Belda-Iniesta C. González-Barón M. PI3K/Akt signalling pathway and cancer. Cancer Treat. Rev. 2004 30 2 193 204 10.1016/j.ctrv.2003.07.007 15023437
    [Google Scholar]
  18. Zheng X. Cartee G.D. Insulin-induced effects on the subcellular localization of AKT1, AKT2 and AS160 in rat skeletal muscle. Sci. Rep. 2016 6 1 39230 10.1038/srep39230 27966646
    [Google Scholar]
  19. Sakamoto K. Holman G.D. Emerging role for AS160/TBC1D4 and TBC1D1 in the regulation of GLUT4 traffic. Am. J. Physiol. Endocrinol. Metab. 2008 295 1 E29 E37 10.1152/ajpendo.90331.2008 18477703
    [Google Scholar]
  20. Homma Y. Hiragi S. Fukuda M. Rab family of small GTPases: An updated view on their regulation and functions. FEBS J. 2021 288 1 36 55 10.1111/febs.15453 32542850
    [Google Scholar]
  21. Xu L. Nagai Y. Kajihara Y. Ito G. Tomita T. The regulation of Rab GTPases by phosphorylation. Biomolecules 2021 11 9 1340 10.3390/biom11091340 34572553
    [Google Scholar]
  22. Hutagalung A.H. Novick P.J. Role of Rab GTPases in membrane traffic and cell physiology. Physiol. Rev. 2011 91 1 119 149 10.1152/physrev.00059.2009 21248164
    [Google Scholar]
  23. Alto N.M. Soderling J. Scott J.D. Rab32 is an A-kinase anchoring protein and participates in mitochondrial dynamics. J. Cell Biol. 2002 158 4 659 668 10.1083/jcb.200204081 12186851
    [Google Scholar]
  24. Cohen-Solal K.A. Sood R. Marin Y. Crespo-Carbone S.M. Sinsimer D. Martino J.J. Robbins C. Makalowska I. Trent J. Chen S. Identification and characterization of mouse Rab32 by mRNA and protein expression analysis. Biochim. Biophys. Acta. Proteins Proteomics 2003 1651 1-2 68 75 10.1016/S1570‑9639(03)00236‑X 14499590
    [Google Scholar]
  25. Wasmeier C. Romao M. Plowright L. Bennett D.C. Raposo G. Seabra M.C. Rab38 and Rab32 control post-Golgi trafficking of melanogenic enzymes. J. Cell Biol. 2006 175 2 271 281 10.1083/jcb.200606050 17043139
    [Google Scholar]
  26. Cai H. Reinisch K. Ferro-Novick S. Coats, tethers, Rabs, and SNAREs work together to mediate the intracellular destination of a transport vesicle. Dev. Cell 2007 12 5 671 682 10.1016/j.devcel.2007.04.005 17488620
    [Google Scholar]
  27. Chavrier P. Parton R.G. Hauri H.P. Simons K. Zerial M. Localization of low molecular weight GTP binding proteins to exocytic and endocytic compartments. Cell 1990 62 2 317 329 10.1016/0092‑8674(90)90369‑P 2115402
    [Google Scholar]
  28. Callaghan J. Simonsen A. Gaullier J.M. Toh B.H. Stenmark H. The endosome fusion regulator early-endosomal autoantigen 1 (EEA1) is a dimer. Biochem. J. 1999 338 2 539 543 10.1042/bj3380539 10024533
    [Google Scholar]
  29. Christoforidis S. McBride H.M. Burgoyne R.D. Zerial M. The Rab5 effector EEA1 is a core component of endosome docking. Nature 1999 397 6720 621 625 10.1038/17618 10050856
    [Google Scholar]
  30. Ishikura S. Bilan P.J. Klip A. Rabs 8A and 14 are targets of the insulin-regulated Rab-GAP AS160 regulating GLUT4 traffic in muscle cells. Biochem. Biophys. Res. Commun. 2007 353 4 1074 1079 10.1016/j.bbrc.2006.12.140 17208202
    [Google Scholar]
  31. Sano H. Eguez L. Teruel M.N. Fukuda M. Chuang T.D. Chavez J.A. Lienhard G.E. McGraw T.E. Rab10, a target of the AS160 Rab GAP, is required for insulin-stimulated translocation of GLUT4 to the adipocyte plasma membrane. Cell Metab. 2007 5 4 293 303 10.1016/j.cmet.2007.03.001 17403373
    [Google Scholar]
  32. Sun Y. Bilan P.J. Liu Z. Klip A. Rab8A and Rab13 are activated by insulin and regulate GLUT4 translocation in muscle cells. Proc. Natl. Acad. Sci. USA 2010 107 46 19909 19914 10.1073/pnas.1009523107 21041651
    [Google Scholar]
  33. Chen C.Y. Chen J. He L. Stiles B.L. PTEN: Tumor suppressor and metabolic regulator. Front. Endocrinol. (Lausanne) 2018 9 338 10.3389/fendo.2018.00338 30038596
    [Google Scholar]
  34. Dempsey D.R. Viennet T. Iwase R. Park E. Henriquez S. Chen Z. Jeliazkov J.R. Palanski B.A. Phan K.L. Coote P. The structural basis of PTEN regulation by multi-site phosphorylation. Nat. Struct. Mol. Biol. 2021 28 10 858 868 10.1038/s41594‑021‑00668‑5
    [Google Scholar]
  35. Posner B.I. insulin signalling: The inside story. Can. J. Diabetes 2017 41 1 108 113 10.1016/j.jcjd.2016.07.002 27614806
    [Google Scholar]
  36. Tokarz V.L. MacDonald P.E. Klip A. The cell biology of systemic insulin function. J. Cell Biol. 2018 217 7 2273 2289 10.1083/jcb.201802095 29622564
    [Google Scholar]
  37. Ahmed Z. Pillay T.S. Adapter protein with a pleckstrin homology (PH) and an Src homology 2 (SH2) domain (APS) and SH2-B enhance insulin-receptor autophosphorylation, extracellular-signal-regulated kinase and phosphoinositide 3-kinase-dependent signalling. Biochem. J. 2003 371 2 405 412 10.1042/bj20021589 12521378
    [Google Scholar]
  38. Liang J. Oyang L. Rao S. Han Y. Luo X. Yi P. Lin J. Xia L. Hu J. Tan S. Tang L. Pan Q. Tang Y. Zhou Y. Liao Q. Rac1, a potential target for tumor therapy. Front. Oncol. 2021 11 674426 10.3389/fonc.2021.674426 34079763
    [Google Scholar]
  39. Hopkins B.D. Goncalves M.D. Cantley L.C. Insulin–PI3K signalling: An evolutionarily insulated metabolic driver of cancer. Nat. Rev. Endocrinol. 2020 16 5 276 283 10.1038/s41574‑020‑0329‑9 32127696
    [Google Scholar]
  40. Cheng Z. White M.F. The AKTion in non-canonical insulin signaling. Nat. Med. 2012 18 3 351 353 10.1038/nm.2694 22395698
    [Google Scholar]
  41. Shanak S. Bassalat N. Barghash A. Kadan S. Ardah M. Zaid H. Drug discovery of plausible lead natural compounds that target the insulin signaling pathway: Bioinformatics approaches. Evid. Based Complement. Alternat. Med. 2022 2022 1 42 10.1155/2022/2832889 35356248
    [Google Scholar]
  42. Chiu T.T. Jensen T.E. Sylow L. Richter E.A. Klip A. Rac1 signalling towards GLUT4/glucose uptake in skeletal muscle. Cell. Signal. 2011 23 10 1546 1554 10.1016/j.cellsig.2011.05.022 21683139
    [Google Scholar]
  43. Mott D.M. Stone K. Gessel M.C. Bunt J.C. Bogardus C. Palmitate action to inhibit glycogen synthase and stimulate protein phosphatase 2A increases with risk factors for type 2 diabetes. Am. J. Physiol. Endocrinol. Metab. 2008 294 4 E807 E807 10.1152/ajpendo.zh1‑5299‑corr.2008
    [Google Scholar]
  44. Ugi S. Imamura T. Maegawa H. Egawa K. Yoshizaki T. Shi K. Obata T. Ebina Y. Kashiwagi A. Olefsky J.M. Protein phosphatase 2A negatively Akt (protein kinase B) activity in 3T3-L1 adipocytes. Mol. Cell. Biol. 2004 24 19 8778 8789 10.1128/MCB.24.19.8778‑8789.2004 15367694
    [Google Scholar]
  45. Teimouri M. Hosseini H. ArabSadeghabadi Z. Babaei-Khorzoughi R. Gorgani-Firuzjaee S. Meshkani R. The role of protein tyrosine phosphatase 1B (PTP1B) in the pathogenesis of type 2 diabetes mellitus and its complications. J. Physiol. Biochem. 2022 78 2 307 322 10.1007/s13105‑021‑00860‑7 34988903
    [Google Scholar]
  46. Berenguer M. Martinez L. Giorgetti-Peraldi S. Le Marchand-Brustel Y. Govers R. A serum factor induces insulin-independent translocation of GLUT4 to the cell surface which is maintained in insulin resistance. PLoS One 2010 5 12 e15560 10.1371/journal.pone.0015560 21187969
    [Google Scholar]
  47. Zaid H. Shanak S. Tamrakar A. Computer-aided drug design of natural candidates for the treatment of non-communicable diseases. Evid. Based Complement Alternat. Med. 2022 2022 9769173 10.1155/2022/9769173
    [Google Scholar]
  48. Naceiri Mrabti H. Bouyahya A. Naceiri Mrabti N. Jaradat N. Doudach L. Faouzi M.E.A. Ethnobotanical survey of medicinal plants used by traditional healers to treat diabetes in the Taza region of Morocco. Evid. Based Complement. Alternat. Med. 2021 2021 1 16 10.1155/2021/5515634 33986815
    [Google Scholar]
  49. Zaid H. Tamrakar A.K. Razzaque M.S. Efferth T. Diabetes and metabolism disorders medicinal plants: A Glance at the past and a look to the future 2018. Evid. Based Complement. Alternat. Med. 2018 2018 1 5843298 10.1155/2018/5843298 30364074
    [Google Scholar]
  50. Zaid H. Mahdi A.A. Tamrakar A.K. Saad B. Razzaque M.S. Dasgupta A. Natural active ingredients for diabetes and metabolism disorders treatment. Evid. Based Complement Alternat. Med. 2016 2016 2965214 10.1155/2016/2965214
    [Google Scholar]
  51. Shanak S. Saad B. Zaid H. Metabolic and epigenetic action mechanisms of antidiabetic medicinal plants. Evid. Based Complement. Alternat. Med. 2019 2019 1 18 10.1155/2019/3583067 31191707
    [Google Scholar]
  52. Kadan S. Sasson Y. Saad B. Zaid H. Gundelia tournefortii antidiabetic efficacy: chemical composition and GLUT4 translocation. Evid. Based Complement. Alternat. Med. 2018 2018 1 8294320 10.1155/2018/8294320 29853973
    [Google Scholar]
  53. Kadan S. Melamed S. Benvalid S. Tietel Z. Sasson Y. Zaid H. Gundelia tournefortii: Fractionation, chemical composition and GLUT4 translocation enhancement in muscle cell line. Molecules 2021 26 13 3785 10.3390/molecules26133785 34206320
    [Google Scholar]
  54. Kadan S. Saad B. Sasson Y. Zaid H. In vitro evaluation of anti-diabetic activity and cytotoxicity of chemically analysed Ocimum basilicum extracts. Food Chem. 2016 196 1066 1074 10.1016/j.foodchem.2015.10.044 26593590
    [Google Scholar]
  55. O’Boyle N.M. Banck M. James C.A. Morley C. Vandermeersch T. Hutchison G.R. Open Babel: An open chemical toolbox. J. Cheminform. 2011 3 1 33 10.1186/1758‑2946‑3‑33 21982300
    [Google Scholar]
  56. Bassalat N. Kadan S. Melamed S. Yaron T. Tietel Z. Karam D. Kmail A. Masalha M. Zaid H. In vivo and in vitro antidiabetic efficacy of aqueous and methanolic extracts of Orthosiphon stamineus benth. Pharmaceutics 2023 15 3 945 10.3390/pharmaceutics15030945 36986806
    [Google Scholar]
  57. Abu-Lafi S. Rayan B. Kadan S. Abu-Lafi M. Rayan A. Anticancer activity and phytochemical composition of wild Gundelia tournefortii. Oncol. Lett. 2018 17 1 713 717 10.3892/ol.2018.9602 30655821
    [Google Scholar]
  58. Hani N. Abulaila K. Howes M.J.R. Mattana E. Bacci S. Sleem K. Sarkis L. Eddine N.S. Baydoun S. Apostolides N.A. Ulian T. Gundelia tournefortii L. (Akkoub): A review of a valuable wild vegetable from Eastern Mediterranean. Genet. Resour. Crop Evol. 2024 10.1007/s10722‑024‑01927‑2
    [Google Scholar]
  59. Kadan S. Saad B. Sasson Y. Zaid H. In vitro evaluations of cytotoxicity of eight antidiabetic medicinal plants and their effect on GLUT4 translocation. Evid. Based Complement. Alternat. Med. 2013 2013 1 9 10.1155/2013/549345 23606883
    [Google Scholar]
  60. Daina A. Michielin O. Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017 7 1 42717 10.1038/srep42717 28256516
    [Google Scholar]
  61. Domínguez-Villa F.X. Durán-Iturbide N.A. Ávila-Zárraga J.G. Synthesis, molecular docking, and in silico ADME/Tox profiling studies of new 1-aryl-5-(3-azidopropyl)indol-4-ones: Potential inhibitors of SARS CoV-2 main protease. Bioorg. Chem. 2021 106 104497 10.1016/j.bioorg.2020.104497 33261847
    [Google Scholar]
  62. Zaid H. Talior-Volodarsky I. Antonescu C. Liu Z. Klip A. GAPDH binds GLUT4 reciprocally to hexokinase-II and regulates glucose transport activity. Biochem. J. 2009 419 2 475 484 10.1042/BJ20081319 19140804
    [Google Scholar]
  63. Kim S. Thiessen P.A. Bolton E.E. Chen J. Fu G. Gindulyte A. Han L. He J. He S. Shoemaker B.A. Wang J. Yu B. Zhang J. Bryant S.H. PubChem substance and compound databases. Nucleic Acids Res. 2016 44 D1 D1202 D1213 10.1093/nar/gkv951 26400175
    [Google Scholar]
  64. Lowe D.M. Corbett P.T. Murray-Rust P. Glen R.C. Chemical name to structure: OPSIN, an open source solution. J. Chem. Inf. Model. 2011 51 3 739 753 10.1021/ci100384d 21384929
    [Google Scholar]
  65. Rizvi S.M.D. Shakil S. Haneef M. A simple click by click protocol to perform docking: AutoDock 4.2 made easy for non-bioinformaticians. EXCLI J. 2013 12 831 857 26648810
    [Google Scholar]
  66. Sriramulu D.K. Lee S.G. Effect of molecular properties of the protein-ligand complex on the prediction accuracy of AutoDock. J. Mol. Graph. Model. 2021 106 107921 10.1016/j.jmgm.2021.107921 33887523
    [Google Scholar]
  67. Berman H.M. Kleywegt G.J. Nakamura H. Markley J.L. The Protein Data Bank archive as an open data resource. J. Comput. Aided Mol. Des. 2014 28 10 1009 1014 10.1007/s10822‑014‑9770‑y 25062767
    [Google Scholar]
  68. Borsari C. Keles E. Rageot D. Treyer A. Bohnacker T. Bissegger L. De Pascale M. Melone A. Sriramaratnam R. Beaufils F. Hamburger M. Hebeisen P. Löscher W. Fabbro D. Hillmann P. Wymann M.P. 4-(difluoromethyl)-5-(4-((3 R, 5 S )-3,5-dimethylmorpholino)-6-(( R )-3-methylmorpholino)-1,3,5-triazin-2-yl)pyridin-2-amine (PQR626), a potent, orally available, and brain-penetrant mTOR inhibitor for the treatment of neurological disorders. J. Med. Chem. 2020 63 22 13595 13617 10.1021/acs.jmedchem.0c00620 33166139
    [Google Scholar]
  69. Garcia-Viloca M. Bayascas J.R. Lluch J.M. González-Lafont À. Molecular insights into the regulation of 3-phosphoinositide-dependent protein kinase 1: Modeling the interaction between the kinase and the pleckstrin homology domains. ACS Omega 2022 7 29 25186 25199 10.1021/acsomega.2c02020 35910176
    [Google Scholar]
  70. Du-Cuny L. Song Z. Moses S. Powis G. Mash E.A. Meuillet E.J. Zhang S. Computational modeling of novel inhibitors targeting the Akt pleckstrin homology domain. Bioorg. Med. Chem. 2009 17 19 6983 6992 10.1016/j.bmc.2009.08.022 19734051
    [Google Scholar]
  71. Chirgadze Y.N. Battaile K.P. Likhachev I.V. Balabaev N.K. Gordon R.D. Romanov V. Lin A. Karisch R. Lam R. Ruzanov M. Brazhnikov E.V. Pai E.F. Neel B.G. Chirgadze N.Y. Signal transfer in human protein tyrosine phosphatase PTP1B from allosteric inhibitor P00058. J. Biomol. Struct. Dyn. 2022 40 24 13823 13832 10.1080/07391102.2021.1994879 34705594
    [Google Scholar]
  72. Cai W. Sakaguchi M. Kleinridders A. Gonzalez-Del Pino G. Dreyfuss J.M. O’Neill B.T. Ramirez A.K. Pan H. Winnay J.N. Boucher J. Eck M.J. Kahn C.R. Domain-dependent effects of insulin and IGF-1 receptors on signalling and gene expression. Nat. Commun. 2017 8 1 14892 10.1038/ncomms14892 28345670
    [Google Scholar]
  73. Xing Y. Xu Y. Chen Y. Jeffrey P.D. Chao Y. Lin Z. Li Z. Strack S. Stock J.B. Shi Y. Structure of protein phosphatase 2A core enzyme bound to tumor-inducing toxins. Cell 2006 127 2 341 353 10.1016/j.cell.2006.09.025 17055435
    [Google Scholar]
  74. Hubbard S.R. Crystal structure of the activated insulin receptor tyrosine kinase in complex with peptide substrate and ATP analog. EMBO J. 1997 16 18 5572 5581 10.1093/emboj/16.18.5572 9312016
    [Google Scholar]
  75. Park S.Y. Jin W. Woo J.R. Shoelson S.E. Crystal structures of human TBC1D1 and TBC1D4 (AS160) RabGTPase-activating protein (RabGAP) domains reveal critical elements for GLUT4 translocation. J. Biol. Chem. 2011 286 20 18130 18138 10.1074/jbc.M110.217323 21454505
    [Google Scholar]
  76. Lee J.O. Yang H. Georgescu M.M. Di Cristofano A. Maehama T. Shi Y. Dixon J.E. Pandolfi P. Pavletich N.P. Crystal structure of the PTEN tumor suppressor: Implications for its phosphoinositide phosphatase activity and membrane association. Cell 1999 99 3 323 334 10.1016/S0092‑8674(00)81663‑3 10555148
    [Google Scholar]
  77. Shanak S. Bassalat N. Albzoor R. Kadan S. Zaid H. In vitro and in silico evaluation for the inhibitory action of O. basilicum methanol extract on α-glucosidase and α-amylase. Evid. Based Complement. Alternat. Med. 2021 2021 1 9 10.1155/2021/5515775 34306136
    [Google Scholar]
  78. Chen T. Shu X. Zhou H. Beckford F.A. Misir M. Algorithm selection for protein–ligand docking: Strategies and analysis on ACE. Sci. Rep. 2023 13 1 8219 10.1038/s41598‑023‑35132‑5 37217655
    [Google Scholar]
  79. Zheng Y. Wang X. Zhuang Y. Li Y. Tian H. Shi P. Li G. Isolation of novel ACE-inhibitory and antioxidant peptides from quinoa bran albumin assisted with an in silico approach: Characterization, in vivo antihypertension, and molecular docking. Molecules 2019 24 24 4562 10.3390/molecules24244562 31842519
    [Google Scholar]
  80. Forli S. Huey R. Pique M.E. Sanner M.F. Goodsell D.S. Olson A.J. Computational protein–ligand docking and virtual drug screening with the AutoDock suite. Nat. Protoc. 2016 11 5 905 919 10.1038/nprot.2016.051 27077332
    [Google Scholar]
  81. Seeliger D. de Groot B.L. Ligand docking and binding site analysis with PyMOL and Autodock/Vina. J. Comput. Aided Mol. Des. 2010 24 5 417 422 10.1007/s10822‑010‑9352‑6 20401516
    [Google Scholar]
  82. Monteiro A.F.M. Viana J.D.O. Nayarisseri A. Zondegoumba E.N. Mendonça Junior F.J.B. Scotti M.T. Scotti L. Computational studies applied to flavonoids against alzheimer’s and parkinson’s diseases. Oxid. Med. Cell. Longev. 2018 2018 1 7912765 10.1155/2018/7912765 30693065
    [Google Scholar]
  83. Karami T.K. Hailu S. Feng S. Graham R. Gukasyan H.J. Eyes on Lipinski’s rule of five: A new “Rule of Thumb” for physicochemical design space of ophthalmic drugs. J. Ocul. Pharmacol. Ther. 2022 38 1 43 55 10.1089/jop.2021.0069 34905402
    [Google Scholar]
  84. Zaid H. Antonescu C.N. Randhawa V.K. Klip A. Insulin action on glucose transporters through molecular switches, tracks and tethers. Biochem. J. 2008 413 2 201 215 10.1042/BJ20080723 18570632
    [Google Scholar]
  85. Antonescu C.N. Ishikura S. Bilan P.J. Klip A. Measurement of GLUT4 Traffic to and from the Cell Surface in Muscle Cells. Curr. Protoc. 2023 3 6 e803 10.1002/cpz1.803 37367531
    [Google Scholar]
  86. Tokarz V.L. Mylvaganam S. Klip A. Palmitate-induced insulin resistance causes actin filament stiffness and GLUT4 mis-sorting without altered Akt signalling. J. Cell Sci. 2023 136 21 jcs261300 10.1242/jcs.261300 37815440
    [Google Scholar]
  87. Chen L. Teng H. Cao H. Chlorogenic acid and caffeic acid from Sonchus oleraceus Linn synergistically attenuate insulin resistance and modulate glucose uptake in HepG2 cells. Food Chem. Toxicol. 2019 127 182 187 10.1016/j.fct.2019.03.038 30914352
    [Google Scholar]
  88. Bhattacharya S. Oksbjerg N. Young J.F. Jeppesen P.B. Caffeic acid, naringenin and quercetin enhance glucose‐stimulated insulin secretion and glucose sensitivity in INS‐1E cells. Diabetes Obes. Metab. 2014 16 7 602 612 10.1111/dom.12236 24205999
    [Google Scholar]
  89. Narasimhan A. Chinnaiyan M. Karundevi B. Ferulic acid exerts its antidiabetic effect by modulating insulin-signalling molecules in the liver of high-fat diet and fructose-induced type-2 diabetic adult male rat. Appl. Physiol. Nutr. Metab. 2015 40 8 769 781 10.1139/apnm‑2015‑0002 26201855
    [Google Scholar]
  90. Prabhakar P.K. Prasad R. Ali S. Doble M. Synergistic interaction of ferulic acid with commercial hypoglycemic drugs in streptozotocin induced diabetic rats. Phytomedicine 2013 20 6 488 494 10.1016/j.phymed.2012.12.004 23490007
    [Google Scholar]
  91. Espíndola K.M.M. Ferreira R.G. Narvaez L.E.M. Silva Rosario A.C.R. da Silva A.H.M. Silva A.G.B. Vieira A.P.O. Monteiro M.C. Chemical and pharmacological aspects of caffeic acid and its activity in hepatocarcinoma. Front. Oncol. 2019 9 541 10.3389/fonc.2019.00541 31293975
    [Google Scholar]
  92. Salau V.F. Erukainure O.L. Ibeji C.U. Olasehinde T.A. Koorbanally N.A. Islam M.S. Ferulic acid modulates dysfunctional metabolic pathways and purinergic activities, while stalling redox imbalance and cholinergic activities in oxidative brain injury. Neurotox. Res. 2020 37 4 944 955 10.1007/s12640‑019‑00099‑7 31422569
    [Google Scholar]
  93. Ruamyod K. Watanapa W.B. Kakhai C. Nambundit P. Treewaree S. Wongsanupa P. Ferulic acid enhances insulin secretion by potentiating L-type Ca2+ channel activation. J. Integr. Med. 2023 21 1 99 105 10.1016/j.joim.2022.11.003 36481247
    [Google Scholar]
  94. Pavlíková N. Caffeic Acid and Diseases—Mechanisms of Action. Int. J. Mol. Sci. 2022 24 1 588 10.3390/ijms24010588 36614030
    [Google Scholar]
  95. Zhai Y. Wang T. Fu Y. Yu T. Ding Y. Nie H. Ferulic acid: A review of pharmacology, toxicology, and therapeutic effects on pulmonary diseases. Int. J. Mol. Sci. 2023 24 9 8011 10.3390/ijms24098011 37175715
    [Google Scholar]
  96. Rebollo-Hernanz M. Zhang Q. Aguilera Y. Martín-Cabrejas M.A. Gonzalez de Mejia E. Relationship of the phytochemicals from coffee and cocoa by-products with their potential to modulate biomarkers of metabolic syndrome in vitro. Antioxidants 2019 8 8 279 10.3390/antiox8080279 31387271
    [Google Scholar]
/content/journals/cp/10.2174/0115701646334678240913105521
Loading
/content/journals/cp/10.2174/0115701646334678240913105521
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test