Skip to content
2000
Volume 21, Issue 5
  • ISSN: 1570-1646
  • E-ISSN: 1875-6247

Abstract

Background

Necrosis, a form of uncontrolled cell death, can be triggered by a variety of stressors, including infection, injury, toxins, and ischemia. Such necrotic events, particularly when induced by pathogenic infections, can lead to severe health complications. The mixed lineage kinase domain-like pseudokinase (MLKL) has been identified as a crucial drug target for mitigating necrosis.

Objective

The objective of this study is to identify potential MLKL inhibitors that act against necroptosis a pharmacophore model and virtual screening.

Methods

In this study, we developed a ligand-based pharmacophore model to facilitate the identification of inhibitors that target MLKL. Comprehensive ADMET analysis, virtual screening, and molecular docking were employed to identify potential therapeutic candidates. Subsequently, molecular dynamics (MD) simulations and free energy calculation of a leading candidate were conducted using GROMACS and gmxMMPBSA tool to assess the stability of the MLKL-inhibitor complex.

Results

Our investigations identified 26 potential MLKL binders, with three compounds emerging as frontrunners on the basis of their favorable pharmacokinetic profiles, including high/low gastrointestinal absorption, optimal bioavailability, solubility, and non-hepatotoxicity. The MD simulations further corroborated the structural stability of the MLKL-drug complex.

Conclusion

The integrated computational approach adopted here could serve as a model for accelerating the discovery of drug candidates in other therapeutic areas as well. These findings necessitate further experimental validation before progressing to clinical trials.

Loading

Article metrics loading...

/content/journals/cp/10.2174/0115701646327161241205072125
2025-01-03
2025-06-30
Loading full text...

Full text loading...

References

  1. GalluzziL. KeppO. ChanF.K.M. KroemerG. Necroptosis: Mechanisms and relevance to disease.Annu. Rev. Pathol.201712110313010.1146/annurev‑pathol‑052016‑100247 27959630
    [Google Scholar]
  2. HuangD. ZhengX. WangZ. ChenX. HeW. ZhangY. XuJ.G. ZhaoH. ShiW. WangX. ZhuY. HanJ. The MLKL channel in necroptosis is an octamer formed by tetramers in a dyadic process.Mol. Cell. Biol.2017375e00497e1610.1128/MCB.00497‑16 27920255
    [Google Scholar]
  3. LawlorK.E. KhanN. MildenhallA. GerlicM. CrokerB.A. D’CruzA.A. HallC. Kaur SpallS. AndertonH. MastersS.L. RashidiM. WicksI.P. AlexanderW.S. MitsuuchiY. BenetatosC.A. CondonS.M. WongW.W.L. SilkeJ. VauxD.L. VinceJ.E. RIPK3 promotes cell death and NLRP3 inflammasome activation in the absence of MLKL.Nat. Commun.201561628210.1038/ncomms7282 25693118
    [Google Scholar]
  4. LiccardiG. AnnibaldiA. MLKL post-translational modifications: Road signs to infection, inflammation and unknown destinations.Cell Death Differ.202330226927810.1038/s41418‑022‑01061‑5 36175538
    [Google Scholar]
  5. MurphyJ.M. CzabotarP.E. HildebrandJ.M. LucetI.S. ZhangJ.G. Alvarez-DiazS. LewisR. LalaouiN. MetcalfD. WebbA.I. YoungS.N. VargheseL.N. TannahillG.M. HatchellE.C. MajewskiI.J. OkamotoT. DobsonR.C.J. HiltonD.J. BabonJ.J. NicolaN.A. StrasserA. SilkeJ. AlexanderW.S. The pseudokinase MLKL mediates necroptosis via a molecular switch mechanism.Immunity201339344345310.1016/j.immuni.2013.06.018 24012422
    [Google Scholar]
  6. HildebrandJ.M. TanzerM.C. LucetI.S. YoungS.N. SpallS.K. SharmaP. PierottiC. GarnierJ.M. DobsonR.C.J. WebbA.I. TripaydonisA. BabonJ.J. MulcairM.D. ScanlonM.J. AlexanderW.S. WilksA.F. CzabotarP.E. LesseneG. MurphyJ.M. SilkeJ. Activation of the pseudokinase MLKL unleashes the four-helix bundle domain to induce membrane localization and necroptotic cell death.Proc. Natl. Acad. Sci. USA201411142150721507710.1073/pnas.1408987111 25288762
    [Google Scholar]
  7. ChenX. LiW. RenJ. HuangD. HeW. SongY. YangC. LiW. ZhengX. ChenP. HanJ. Translocation of mixed lineage kinase domain-like protein to plasma membrane leads to necrotic cell death.Cell Res.201424110512110.1038/cr.2013.171 24366341
    [Google Scholar]
  8. SunL. WangH. WangZ. HeS. ChenS. LiaoD. WangL. YanJ. LiuW. LeiX. WangX. Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase.Cell20121481-221322710.1016/j.cell.2011.11.031 22265413
    [Google Scholar]
  9. HeS. WangL. MiaoL. WangT. DuF. ZhaoL. WangX. Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha.Cell200913761100111110.1016/j.cell.2009.05.021 19524512
    [Google Scholar]
  10. ChoY. ChallaS. MoquinD. GengaR. RayT.D. GuildfordM. ChanF.K.M. Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation.Cell200913761112112310.1016/j.cell.2009.05.037 19524513
    [Google Scholar]
  11. KolbrinkB. RiebelingT. KunzendorfU. KrautwaldS. Plasma membrane pores drive inflammatory cell death.Front. Cell Dev. Biol.2020881710.3389/fcell.2020.00817 32974349
    [Google Scholar]
  12. BerthelootD. LatzE. FranklinB.S. Necroptosis, pyroptosis and apoptosis: An intricate game of cell death.Cell. Mol. Immunol.20211851106112110.1038/s41423‑020‑00630‑3 33785842
    [Google Scholar]
  13. TanzerM.C. MattiI. HildebrandJ.M. YoungS.N. WardakA. TripaydonisA. PetrieE.J. MildenhallA.L. VauxD.L. VinceJ.E. CzabotarP.E. SilkeJ. MurphyJ.M. Evolutionary divergence of the necroptosis effector MLKL.Cell Death Differ.20162371185119710.1038/cdd.2015.169 26868910
    [Google Scholar]
  14. DondelingerY. DeclercqW. MontessuitS. RoelandtR. GoncalvesA. BruggemanI. HulpiauP. WeberK. SehonC.A. MarquisR.W. BertinJ. GoughP.J. SavvidesS. MartinouJ.C. BertrandM.J.M. VandenabeeleP. MLKL compromises plasma membrane integrity by binding to phosphatidylinositol phosphates.Cell Rep.20147497198110.1016/j.celrep.2014.04.026 24813885
    [Google Scholar]
  15. ZhangD.W. ShaoJ. LinJ. ZhangN. LuB.J. LinS.C. DongM.Q. HanJ. RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis.Science2009325593833233610.1126/science.1172308 19498109
    [Google Scholar]
  16. RodriguezD.A. WeinlichR. BrownS. GuyC. FitzgeraldP. DillonC.P. OberstA. QuaratoG. LowJ. CrippsJ.G. ChenT. GreenD.R. Characterization of RIPK3-mediated phosphorylation of the activation loop of MLKL during necroptosis.Cell Death Differ.2016231768810.1038/cdd.2015.70 26024392
    [Google Scholar]
  17. ZhanC. HuangM. YangX. HouJ. MLKL: Functions beyond serving as the executioner of necroptosis.Theranostics202111104759476910.7150/thno.54072 33754026
    [Google Scholar]
  18. YoonS. BogdanovK. WallachD. Site-specific ubiquitination of MLKL targets it to endosomes and targets Listeria and Yersinia to the lysosomes.Cell Death Differ.202229230632210.1038/s41418‑021‑00924‑7 34999730
    [Google Scholar]
  19. NewtonK. ManningG. Necroptosis and Inflammation.Annu. Rev. Biochem.201685174376310.1146/annurev‑biochem‑060815‑014830 26865533
    [Google Scholar]
  20. AlagarsamyV. Shyam SundarP. Raja SolomonV. NarendharB. SulthanaM.T. RohithaK. DhanwarS. Dharshini AishwaryaA. MurugesanS. Pharmacophore modelling-based drug repurposing approaches for monkeypox therapeutics.J. Biomol. Struct. Dyn.20234120106781068910.1080/07391102.2023.2188428 36905675
    [Google Scholar]
  21. SanachaiK. SomboonT. WilasluckP. DeetanyaP. WolschannP. LangerT. LeeV.S. WangkanontK. RungrotmongkolT. HannongbuaS. Identification of repurposing therapeutics toward SARS-CoV-2 main protease by virtual screening.PLoS One2022176e026956310.1371/journal.pone.0269563 35771802
    [Google Scholar]
  22. GiordanoD. BiancanielloC. ArgenioM.A. FacchianoA. Drug design by pharmacophore and virtual screening approach.Pharmaceuticals202215564610.3390/ph15050646 35631472
    [Google Scholar]
  23. DaisyP. SinghS.K. VijayalakshmiP. SelvarajC. RajalakshmiM. SuveenaS. A database for the predicted pharmacophoric features of medicinal compounds.Bioinformation20116416716810.6026/97320630006167 21572886
    [Google Scholar]
  24. SeidelT. WiederO. GaronA. LangerT. Applications of the pharmacophore concept in natural product inspired drug design.Mol. Inform.20203911200005910.1002/minf.202000059 32578959
    [Google Scholar]
  25. WoollerS.K. Benstead-HumeG. ChenX. AliY. PearlF.M.G. Bioinformatics in translational drug discovery.Biosci. Rep.2017374BSR2016018010.1042/BSR20160180 28487472
    [Google Scholar]
  26. PierottiC.L. TanzerM.C. JacobsenA.V. HildebrandJ.M. GarnierJ.M. SharmaP. LucetI.S. CowanA.D. KerstenW.J.A. LuoM.X. LiangL.Y. FitzgibbonC. GarnishS.E. HempelA. NachburU. HuangD.C.S. CzabotarP.E. SilkeJ. van DelftM.F. MurphyJ.M. LesseneG. Potent inhibition of necroptosis by simultaneously targeting multiple effectors of the pathway.ACS Chem. Biol.202015102702271310.1021/acschembio.0c00482 32902249
    [Google Scholar]
  27. BanerjeeP. KemmlerE. DunkelM. PreissnerR. ProTox 3.0: A webserver for the prediction of toxicity of chemicals.Nucleic Acids Res.202452W1W513W52010.1093/nar/gkae303 38647086
    [Google Scholar]
  28. SmithK. ColieM. MooreT. SchislerJ.C. Die hard: Necroptosis and its impact on age-dependent neuroinflammatory diseases.Front. Cell Death20243134815310.3389/fceld.2024.1348153
    [Google Scholar]
  29. PrasanthD.S.N.B.K. SinghG. PandaS. In silico screening of plant-derived anti-virals from Shorea hemsleyana (King) king ex foxw against SARS CoV-2 main protease.Chem. Africa2023634536610.1007/s42250‑022‑00521‑2
    [Google Scholar]
  30. PritamM. DuttaS. MedicherlaK.M. KumarR. SinghS.P. Computational analysis of spike protein of SARS-CoV-2 (Omicron variant) for development of peptide-based therapeutics and diagnostics.J. Biomol. Struct. Dyn.20232023119 37498146
    [Google Scholar]
  31. O’BoyleN.M. BanckM. JamesC.A. MorleyC. VandermeerschT. HutchisonG.R. Open Babel: An open chemical toolbox.J. Cheminform.2011313310.1186/1758‑2946‑3‑33 21982300
    [Google Scholar]
  32. KrivákR. HokszaD. P2Rank: machine learning based tool for rapid and accurate prediction of ligand binding sites from protein structure.J. Cheminform.20181013910.1186/s13321‑018‑0285‑8 30109435
    [Google Scholar]
  33. JayabalD. JayanthiS. ThirumalaisamyR. KarthikaR. IqbalM.N. Comparative anti-Diabetic potential of phytocompounds from Dr. Duke’s phytochemical and ethnobotanical database and standard antidiabetic drugs against diabetes hyperglycemic target proteins: an in silico validation.J. Biomol. Struct. Dyn.20234124151371514910.1080/07391102.2023.2187231 37011006
    [Google Scholar]
  34. MohanrajK. KarthikeyanB.S. Vivek-AnanthR.P. ChandR.P.B. AparnaS.R. MangalapandiP. SamalA. IMPPAT: A curated database of Indian Medicinal Plants, Phytochemistry And Therapeutics.Sci. Rep.201881432910.1038/s41598‑018‑22631‑z 29531263
    [Google Scholar]
  35. RamnathM.G. ThirugnanasampandanR. NagaSundaram, N.; Bhuvaneswari, G. Molecular Docking and Dynamic Simulation Studies of Terpenoids of I. wightii (Bentham) H. Hara against Acetylcholinesterase and Histone Deacetylase3 Receptors.Curr. Computeraided Drug Des.201814323424510.2174/1573409914666180321111925 29564983
    [Google Scholar]
  36. AnwarM.A. ChoiS. Structure-Activity Relationship in TLR4 Mutations: Atomistic Molecular Dynamics Simulations and Residue Interaction Network Analysis.Sci. Rep.2017714380710.1038/srep43807 28272553
    [Google Scholar]
  37. BhardwajV. SinghR. SinghP. PurohitR. KumarS. Elimination of bitter-off taste of stevioside through structure modification and computational interventions.J. Theor. Biol.202048611009410.1016/j.jtbi.2019.110094 31783061
    [Google Scholar]
  38. Valdés-TresancoM.S. Valdés-TresancoM.E. ValienteP.A. MorenoE. gmx_MMPBSA: A New Tool to Perform End-State Free Energy Calculations with GROMACS.J. Chem. Theory Comput.202117106281629110.1021/acs.jctc.1c00645 34586825
    [Google Scholar]
  39. ZhouY. ZhangY. LianX. LiF. WangC. ZhuF. QiuY. ChenY. Therapeutic target database update 2022: facilitating drug discovery with enriched comparative data of targeted agents.Nucleic Acids Res.202250D1D1398D140710.1093/nar/gkab953 34718717
    [Google Scholar]
  40. MahitaJ. SowdhaminiR. Probing subtle conformational changes induced by phosphorylation and point mutations in the TIR domains of TLR 2 and TLR 3.Proteins201886552453510.1002/prot.25471 29383749
    [Google Scholar]
  41. SunseriJ. KoesD.R. Pharmit: interactive exploration of chemical space.Nucleic Acids Res.201644W1W442W44810.1093/nar/gkw287 27095195
    [Google Scholar]
  42. LoganathanL. Briget KuriakoseB. Lobelle SampayanE. MuthusamyK. Targeting renin receptor for the inhibition of renin angiotensin aldosterone system: An alternative approach through in silico drug discovery.Comput. Theor. Chem.2022120811354110.1016/j.comptc.2021.113541
    [Google Scholar]
  43. PandeyR.K. NarulaA. NaskarM. SrivastavaS. VermaP. MalikR. ShahP. PrajapatiV.K. Exploring dual inhibitory role of febrifugine analogues against Plasmodium utilizing structure-based virtual screening and molecular dynamic simulation.J. Biomol. Struct. Dyn.201735479180410.1080/07391102.2016.1161560 26984239
    [Google Scholar]
  44. BanavathH.N. SharmaO.P. KumarM.S. BaskaranR. Identification of novel tyrosine kinase inhibitors for drug resistant T315I mutant BCR-ABL: a virtual screening and molecular dynamics simulations study.Sci. Rep.201441694810.1038/srep06948 25382104
    [Google Scholar]
  45. NaikB. GuptaN. OjhaR. SinghS. PrajapatiV.K. PrustyD. High throughput virtual screening reveals SARS-CoV-2 multi-target binding natural compounds to lead instant therapy for COVID-19 treatment.Int. J. Biol. Macromol.202016011710.1016/j.ijbiomac.2020.05.184 32470577
    [Google Scholar]
  46. PundirH. JoshiT. JoshiT. SharmaP. MathpalS. ChandraS. TamtaS. Using Chou’s 5-steps rule to study pharmacophore-based virtual screening of SARS-CoV-2 Mpro inhibitors.Mol. Divers.20212531731174410.1007/s11030‑020‑10148‑5 33079314
    [Google Scholar]
  47. LobanovM.Iu. BogatyrevaN.S. GalzitskaiaO.V. Radius of gyration is indicator of compactness of protein structure.Mol. Biol. (Mosk.)2008424701706 18856071
    [Google Scholar]
  48. KumariM. SubbaraoN. Identification of novel multitarget antitubercular inhibitors against mycobacterial peptidoglycan biosynthetic Mur enzymes by structure-based virtual screening.J. Biomol. Struct. Dyn.202240188185819610.1080/07391102.2021.1908913 33826470
    [Google Scholar]
  49. NaikB. MattaparthiV.S.K. GuptaN. OjhaR. DasP. SinghS. PrajapatiV.K. PrustyD. Chemical system biology approach to identify multi-targeting FDA inhibitors for treating COVID-19 and associated health complications.J. Biomol. Struct. Dyn.202240199543956710.1080/07391102.2021.1931451 34062110
    [Google Scholar]
  50. MarshJ.A. TeichmannS.A. Relative solvent accessible surface area predicts protein conformational changes upon binding.Structure201119685986710.1016/j.str.2011.03.010 21645856
    [Google Scholar]
  51. PandaS.K. Sen GuptaP.S. BiswalS. RayA.K. RanaM.K. ACE-2-derived biomimetic peptides for the inhibition of spike protein of SARS-CoV-2.J. Proteome Res.20212021296130310.1021/acs.jproteome.0c00686 33472369
    [Google Scholar]
  52. Al-KarmalawyA.A. DahabM.A. MetwalyA.M. ElhadyS.S. ElkaeedE.B. EissaI.H. DarwishK.M. Molecular docking and dynamics simulation revealed the potential inhibitory activity of ACEIs against SARS-CoV-2 targeting the hACE2 receptor.Front Chem.2021966123010.3389/fchem.2021.661230 34017819
    [Google Scholar]
  53. OlotuF.A. OmolabiK.F. SolimanM.E.S. Piece of the puzzle: Remdesivir disassembles the multimeric SARS-CoV-2 RNA-dependent RNA polymerase complex.Cell Biochem. Biophys.202179217518710.1007/s12013‑021‑00977‑y 33792836
    [Google Scholar]
/content/journals/cp/10.2174/0115701646327161241205072125
Loading
/content/journals/cp/10.2174/0115701646327161241205072125
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keyword(s): Docking; drug; free energy; MLKL; molecular dynamics; necrosis; pharmacophore
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test