Skip to content
2000
Volume 21, Issue 5
  • ISSN: 1570-1646
  • E-ISSN: 1875-6247

Abstract

Aims

Acute myeloid leukemia (LAML) is among the most prevalent subtypes of acute leukemia. Consequently, it is essential to understand the molecular causes of LAML and find its predictive and diagnostic biomarkers. The aim of this study is to determine the molecular functions of fibroblast growth factor receptor 1(FGFR1) involved in LAML pathogenesis and its potential therapeutic effect for LAML treatment.

Methods

The molecular docking interaction of the Cytarabine with its target FGFR1 was examined. The Gene Expression Profiling Interactive Analysis, version 2 (GEPIA2), and UALCAN tools database were used to obtain the LAML gene expression datasets. Gene functional annotation was performed to investigate the DEGs' possible role. Using the interactive gene database retrieval tool STRING and a few chosen hub modules from the GeneMANIA database, the gene-gene and protein-protein interaction (PPI) network were constructed. A survival analysis was performed on the effects of hub genes on the overall survival of LAML patients.

Results

As a result of docking, a strong interaction was observed between cytarabine and FGFR1. It has been discovered that cytarabine can reverse FGFR1 expression. The survival study results showed an association between the prognosis of LAML patients and one of the central genes, FGFR1.

Conclusion

The expression profile and functions of FGFR1 were determined in LAML patients. It has been shown that FGFR1 can be a viable therapeutic target for LAML and a possible biomarker for diagnosis.

Loading

Article metrics loading...

/content/journals/cp/10.2174/0115701646326324240924163955
2024-10-09
2025-06-26
Loading full text...

Full text loading...

References

  1. FanH. LiY. LiuC. LiuY. BaiJ. LiW. Circular RNA-100290 promotes cell proliferation and inhibits apoptosis in acute myeloid leukemia cells via sponging miR-203.Biochem. Biophys. Res. Commun.20185071-417818410.1016/j.bbrc.2018.11.00230424877
    [Google Scholar]
  2. WangY. GuoX. WangL. XingL. ZhangX. RenJ. miR-342-3p Inhibits Acute Myeloid Leukemia Progression by Targeting SOX12.Oxid. Med. Cell. Longev.2022202211010.1155/2022/127514136120594
    [Google Scholar]
  3. WangH. HeH. YangC. YangC. miR-342 suppresses the proliferation and invasion of acute myeloid leukemia by targeting Naa10p.Artif. Cells Nanomed. Biotechnol.20194713671367610.1080/21691401.2019.159693031496296
    [Google Scholar]
  4. MisirS. Ozer YamanS. PetrovićN. ŠamiA. AkidanO. HepokurC. AliyaziciogluY. Identification of a Novel hsa_circ_0058058/miR-324-5p Axis and Prognostic/Predictive Molecules for Acute Myeloid Leukemia Outcome by Bioinformatics-Based Analysis.Biology (Basel)202413748710.3390/biology1307048739056681
    [Google Scholar]
  5. LuY. ZhongL. LuoX. LiuC. DanW. ChuX. WanP. ZhangZ. WangX. LiuZ. LiuB. MiRNA-301b-3p induces proliferation and inhibits apoptosis in AML cells by targeting FOXF2 and regulating Wnt/β-catenin axis.Mol. Cell. Probes20226310180510.1016/j.mcp.2022.10180535259424
    [Google Scholar]
  6. ElhamamsyA.R. El SharkawyM.S. ZanatyA.F. MahrousM.A. MohamedA.E. AbushaabanE.A. Circulating miR-92a, miR-143 and miR-342 in Plasma are Novel Potential Biomarkers for Acute Myeloid Leukemia.Int. J. Mol. Cell. Med.201762778628890884
    [Google Scholar]
  7. HsuW.Y. ChiouS.S. LinP.C. LiaoY.M. YehC.Y. TsengY.H. Prediction of miRNA-mRNA network regulating the migration ability of cytarabine-resistant HL60 cells.Biomed. Rep.20232022010.3892/br.2023.170838170076
    [Google Scholar]
  8. ShahabadiN. FalsafiM. MaghsudiM. DNA-binding study of anticancer drug cytarabine by spectroscopic and molecular docking techniques.Nucleosides Nucleotides Nucleic Acids2017361496510.1080/15257770.2016.121802127759491
    [Google Scholar]
  9. BhiseN.S. ChauhanL. ShinM. CaoX. PoundsS. LambaV. LambaJ.K. MicroRNA-mRNA pairs associated with outcome in AML: From in vitro cell-based studies to AML patients.Front. Pharmacol.2016632410.3389/fphar.2015.0032426858643
    [Google Scholar]
  10. WangS.Y. ShihY.H. ShiehT.M. TsengY.H. Proteasome inhibitors interrupt the activation of non-canonical nf-κb signaling pathway and induce cell apoptosis in cytarabine-resistant HL60 cells.Int. J. Mol. Sci.202123136110.3390/ijms2301036135008789
    [Google Scholar]
  11. KontomanolisE.N. KoutrasA. SyllaiosA. SchizasD. MastorakiA. GarmpisN. DiakosavvasM. AngelouK. TsatsarisG. PagkalosA. NtounisT. FasoulakisZ. Role of oncogenes and tumor-suppressor genes in carcinogenesis: A review.Anticancer Res.202040116009601510.21873/anticanres.1462233109539
    [Google Scholar]
  12. FolkmanJ. The role of angiogenesis in tumor growth.Semin. Cancer Biol.19923265711378311
    [Google Scholar]
  13. DiasS. HattoriK. HeissigB. ZhuZ. WuY. WitteL. HicklinD.J. TatenoM. BohlenP. MooreM.A.S. RafiiS. Inhibition of both paracrine and autocrine VEGF/ VEGFR-2 signaling pathways is essential to induce long-term remission of xenotransplanted human leukemias.Proc. Natl. Acad. Sci. USA20019819108571086210.1073/pnas.19111749811553814
    [Google Scholar]
  14. ZhuZ. HattoriK. ZhangH. JimenezX. LudwigD.L. DiasS. KussieP. KooH. KimH.J. LuD. LiuM. TejadaR. FriedrichM. BohlenP. WitteL. RafiiS. Inhibition of human leukemia in an animal model with human antibodies directed against vascular endothelial growth factor receptor 2. Correlation between antibody affinity and biological activity.Leukemia200317360461110.1038/sj.leu.240283112646950
    [Google Scholar]
  15. SantosS.C.R. DiasS. Internal and external autocrine VEGF/KDR loops regulate survival of subsets of acute leukemia through distinct signaling pathways.Blood2004103103883388910.1182/blood‑2003‑05‑163414726393
    [Google Scholar]
  16. ListA.F. Glinsmann-GibsonB. StadheimC. MeuilletE.J. BellamyW. PowisG. Vascular endothelial growth factor receptor-1 and receptor-2 initiate a phosphatidylinositide 3-kinase–dependent clonogenic response in acute myeloid leukemia cells.Exp. Hematol.200432652653510.1016/j.exphem.2004.03.00515183893
    [Google Scholar]
  17. ZhangH. LiY. LiH. BassiR. JimenezX. WitteL. BohlenP. HicklinD.J. ZhuZ. Inhibition of both the autocrine and the paracrine growth of human leukemia with a fully human antibody directed against vascular endothelial growth factor receptor 2.Leuk. Lymphoma20044591887189710.1080/1042819041000171222515223651
    [Google Scholar]
  18. YangY. LuT. LiZ. LuS. FGFR1 regulates proliferation and metastasis by targeting CCND1 in FGFR1 amplified lung cancer.Cell Adhes. Migr.2020141829510.1080/19336918.2020.176630832380883
    [Google Scholar]
  19. FarooqM. KhanA.W. KimM.S. ChoiS. The role of fibroblast growth factor (FGF) signaling in tissue repair and regeneration.Cells20211011324210.3390/cells1011324234831463
    [Google Scholar]
  20. DoreyK. AmayaE. FGF signalling: Diverse roles during early vertebrate embryogenesis.Development2010137223731374210.1242/dev.03768920978071
    [Google Scholar]
  21. CowellJ.K. QinH. HuT. WuQ. BholeA. RenM. Mutation in the FGFR1 tyrosine kinase domain or inactivation of PTEN is associated with acquired resistance to FGFR inhibitors in FGFR1-driven leukemia/lymphomas.Int. J. Cancer201714191822182910.1002/ijc.3084828646488
    [Google Scholar]
  22. KarajannisM.A. VincentL. DiRenzoR. ShmelkovS.V. ZhangF. FeldmanE.J. BohlenP. ZhuZ. SunH. KussieP. RafiiS. Activation of FGFR1β signaling pathway promotes survival, migration and resistance to chemotherapy in acute myeloid leukemia cells.Leukemia200620697998610.1038/sj.leu.240420316598308
    [Google Scholar]
  23. YuS. YeJ. WangY. LuT. LiuY. LiuN. ZhangJ. LuF. MaD. GaleR.P. JiC. DNA damage to bone marrow stromal cells by antileukemia drugs induces chemoresistance in acute myeloid leukemia via paracrine FGF10–FGFR2 signaling.J. Biol. Chem.2023299110278710.1016/j.jbc.2022.10278736509141
    [Google Scholar]
  24. SilvaJ. ChangC.S. HuT. QinH. KitamuraE. HawthornL. RenM. CowellJ.K. Distinct signaling programs associated with progression of FGFR1 driven leukemia in a mouse model of stem cell leukemia lymphoma syndrome.Genomics201911161566157310.1016/j.ygeno.2018.10.01530439482
    [Google Scholar]
  25. ÇakmakE. A Bioinformatics Approach to Identify Potential Biomarkers in Non-Small Cell Lung Cancer.Cumhur. Sci. J.202243161310.17776/csj.976510
    [Google Scholar]
  26. FerreiraL. Dos SantosR. OlivaG. AndricopuloA. Molecular docking and structure-based drug design strategies.Molecules2015207133841342110.3390/molecules20071338426205061
    [Google Scholar]
  27. Glide, Version 2.New York, NY, USASchrodinger. LLC2021
    [Google Scholar]
  28. LigPrep, Version 2.New York, NY, USASchrodinger. LLC2021
    [Google Scholar]
  29. MacroModel, Version 2.New York, NY, USASchrodinger. LLC2021
    [Google Scholar]
  30. LinQ. DaiS. QuL. LinH. GuoM. WeiH. ChenY. ChenX. Structural basis and selectivity of sulfatinib binding to FGFR and CSF-1R.Commun. Chem.202471310.1038/s42004‑023‑01084‑038172256
    [Google Scholar]
  31. LiT. FanJ. WangB. TraughN. ChenQ. LiuJ.S. LiB. LiuX.S. TIMER: A web server for comprehensive analysis of tumor- infiltrating immune cells.Cancer Res.20177721e108e11010.1158/0008‑5472.CAN‑17‑030729092952
    [Google Scholar]
  32. LiT. FuJ. ZengZ. CohenD. LiJ. ChenQ. LiB. LiuX.S. TIMER2.0 for analysis of tumor-infiltrating immune cells.Nucleic Acids Res.202048W1W509W51410.1093/nar/gkaa40732442275
    [Google Scholar]
  33. TangZ. LiC. KangB. GaoG. LiC. ZhangZ. GEPIA: A web server for cancer and normal gene expression profiling and interactive analyses.Nucleic Acids Res.201745W1W98W10210.1093/nar/gkx24728407145
    [Google Scholar]
  34. ChandrashekarD.S. BashelB. BalasubramanyaS.A.H. CreightonC.J. Ponce-RodriguezI. ChakravarthiB.V.S.K. VaramballyS. UALCAN: A Portal for Facilitating Tumor Subgroup Gene Expression and Survival Analyses.Neoplasia201719864965810.1016/j.neo.2017.05.00228732212
    [Google Scholar]
  35. LiC. TangZ. ZhangW. YeZ. LiuF. GEPIA2021: Integrating multiple deconvolution-based analysis into GEPIA.Nucleic Acids Res.202149W1W242W24610.1093/nar/gkab41834050758
    [Google Scholar]
  36. SzklarczykD. FranceschiniA. KuhnM. SimonovicM. RothA. MinguezP. DoerksT. StarkM. MullerJ. BorkP. JensenL.J. MeringC. The STRING database in 2011: Functional interaction networks of proteins, globally integrated and scored.Nucleic Acids Res.201139DatabaseD561D56810.1093/nar/gkq97321045058
    [Google Scholar]
  37. Warde-FarleyD. DonaldsonS.L. ComesO. ZuberiK. BadrawiR. ChaoP. FranzM. GrouiosC. KaziF. LopesC.T. MaitlandA. MostafaviS. MontojoJ. ShaoQ. WrightG. BaderG.D. MorrisQ. The GeneMANIA prediction server: Biological network integration for gene prioritization and predicting gene function.Nucleic Acids Res.201038W214W22010.1093/nar/gkq53720576703
    [Google Scholar]
  38. ChandrashekarD.S. KarthikeyanS.K. KorlaP.K. PatelH. ShovonA.R. AtharM. NettoG.J. QinZ.S. KumarS. ManneU. CreightonC.J. VaramballyS. UALCAN: An update to the integrated cancer data analysis platform.Neoplasia202225182710.1016/j.neo.2022.01.00135078134
    [Google Scholar]
  39. SircarA. SinghS. Xu-MonetteZ.Y. CoyleK.M. HiltonL.K. ChavdoulaE. RanganathanP. JainN. HanelW. TsichlisP. AlinariL. PetersonB.R. TaoJ. MuthusamyN. BaiocchiR. EpperlaN. YoungK.H. MorinR. SehgalL. Exploiting the fibroblast growth factor receptor-1 vulnerability to therapeutically restrict the MYC-EZH2-CDKN1C axis-driven proliferation in Mantle cell lymphoma.Leukemia202337102094210610.1038/s41375‑023‑02006‑837598282
    [Google Scholar]
  40. KommalapatiA. TellaS.H. BoradM. JavleM. MahipalA. Fgfr inhibitors in oncology: Insight on the management of toxicities in clinical practice.Cancers (Basel)20211312296810.3390/cancers1312296834199304
    [Google Scholar]
  41. KatohM. FGFR inhibitors: Effects on cancer cells, tumor microenvironment and whole-body homeostasis (Review).Int. J. Mol. Med.201638131510.3892/ijmm.2016.262027245147
    [Google Scholar]
  42. FergusonH.R. SmithM.P. FrancavillaC. Fibroblast growth factor receptors (FGFRS) and noncanonical partners in cancer signaling.Cells2021105120110.3390/cells1005120134068954
    [Google Scholar]
  43. XieY. SuN. YangJ. TanQ. HuangS. JinM. NiZ. ZhangB. ZhangD. LuoF. ChenH. SunX. FengJ.Q. QiH. ChenL. FGF/FGFR signaling in health and disease.Signal Transduct. Target. Ther.20205118110.1038/s41392‑020‑00222‑732879300
    [Google Scholar]
  44. PanneerselvamS. YesudhasD. DuraiP. AnwarM. GosuV. ChoiS. A combined molecular docking/dynamics approach to probe the binding mode of cancer drugs with cytochrome P450 3A4.Molecules2015208149151493510.3390/molecules20081491526287147
    [Google Scholar]
  45. DodsonG.G. LaneD.P. VermaC.S. Molecular simulations of protein dynamics: new windows on mechanisms in biology.EMBO Rep.20089214415010.1038/sj.embor.740116018246106
    [Google Scholar]
  46. AguP.C. AfiukwaC.A. OrjiO.U. EzehE.M. OfokeI.H. OgbuC.O. UgwujaE.I. AjaP.M. Molecular docking as a tool for the discovery of molecular targets of nutraceuticals in diseases management.Sci. Rep.20231311339810.1038/s41598‑023‑40160‑237592012
    [Google Scholar]
  47. GangadharanA.K. KundilV.T. JayanandanA. Computational Tools in Drug-Lead Identification and Development.Drugs from Nature: Targets, Assay Systems and Leads.SingaporeSpringer Nature Singapore20248911910.1007/978‑981‑99‑9183‑9_4
    [Google Scholar]
  48. ZhangL. YaoY. ZhangS. LiuY. GuoH. AhmedM. BellT. ZhangH. HanG. LorenceE. BadilloM. ZhouS. SunY. Di FrancescoM.E. FengN. HaunR. LanR. MackintoshS.G. MaoX. SongX. ZhangJ. PhamL.V. LorenziP.L. MarszalekJ. HeffernanT. DraettaG. JonesP. FutrealA. NomieK. WangL. WangM. Metabolic reprogramming toward oxidative phosphorylation identifies a therapeutic target for mantle cell lymphoma.Sci. Transl. Med.201911491eaau116710.1126/scitranslmed.aau116731068440
    [Google Scholar]
  49. KrejciP. FaitovaJ. LaurellH. HamplA. DvorakP. FGF-2 expression and its action in human leukemia and lymphoma cell lines.Leukemia200317481882010.1038/sj.leu.240286112682649
    [Google Scholar]
  50. WuQ. BholeA. QinH. KarpJ. MalekS. CowellJ.K. Targeting FGFR1 to suppress leukemogenesis in syndromic and de novo AML in murine models.Oncotarget20167497334974210.18632/oncotarget.10438
    [Google Scholar]
  51. ParishA. SchwaederleM. DanielsG. PiccioniD. FantaP. SchwabR. ShimabukuroK. ParkerB.A. HelstenT. KurzrockR. Fibroblast growth factor family aberrations in cancers: Clinical and molecular characteristics.Cell Cycle201514132121212810.1080/15384101.2015.104169125950492
    [Google Scholar]
  52. GorringeK.L. JacobsS. ThompsonE.R. SridharA. QiuW. ChoongD.Y.H. CampbellI.G. High-resolution single nucleotide polymorphism array analysis of epithelial ovarian cancer reveals numerous microdeletions and amplifications.Clin. Cancer Res.200713164731473910.1158/1078‑0432.CCR‑07‑050217699850
    [Google Scholar]
  53. RossJ.S. WangK. Al-RohilR.N. NazeerT. SheehanC.E. OttoG.A. HeJ. PalmerG. YelenskyR. LipsonD. AliS. BalasubramanianS. CurranJ.A. GarciaL. MahoneyK. DowningS.R. HawrylukM. MillerV.A. StephensP.J. Advanced urothelial carcinoma: Next-generation sequencing reveals diverse genomic alterations and targets of therapy.Mod. Pathol.201427227128010.1038/modpathol.2013.13523887298
    [Google Scholar]
  54. TsimafeyeuI. DemidovL. StepanovaE. WynnN. TaH. Overexpression of fibroblast growth factor receptors FGFR1 and FGFR2 in renal cell carcinoma.Scand. J. Urol. Nephrol.201145319019510.3109/00365599.2011.55243621329481
    [Google Scholar]
  55. YangF. ZhangY. ResslerS.J. IttmannM.M. AyalaG.E. DangT.D. WangF. RowleyD.R. FGFR1 is essential for prostate cancer progression and metastasis.Cancer Res.201373123716372410.1158/0008‑5472.CAN‑12‑327423576558
    [Google Scholar]
  56. KimH.S. LeeS.E. BaeY.S. KimD.J. LeeC.G. HurJ. ChungH. ParkJ.C. JungD.H. ShinS.K. LeeS.K. LeeY.C. KimH.R. MoonY.W. KimJ.H. ShimY.M. JewellS.S. KimH. ChoiY.L. ChoB.C. Fibroblast growth factor receptor 1 gene amplification is associated with poor survival in patients with resected esophageal squamous cell carcinoma.Oncotarget2015642562257210.18632/oncotarget.294425537505
    [Google Scholar]
  57. SchäferM.H. LingohrP. SträßerA. LehnenN.C. BraunM. PernerS. HöllerT. KristiansenG. KalffJ.C. GütgemannI. Fibroblast growth factor receptor 1 gene amplification in gastric adenocarcinoma.Hum. Pathol.201546101488149510.1016/j.humpath.2015.06.00726239623
    [Google Scholar]
  58. KawamataF. PatchA.M. NonesK. BondC. McKeoneD. PearsonS.A. HommaS. LiuC. FennellL. DumenilT. HartelG. KobayasiN. YokooH. FukaiM. NishiharaH. KamiyamaT. BurgeM.E. KarapetisC.S. TaketomiA. LeggettB. WaddellN. WhitehallV. Copy number profiles of paired primary and metastatic colorectal cancers.Oncotarget2018933394340510.18632/oncotarget.2327729423054
    [Google Scholar]
  59. GuanZ. LanH. SunD. WangX. JinK. A potential novel therapy for FGFR1-amplified pancreatic cancer with bone metastasis, screened by next-generation sequencing and a patient-derived xenograft model.Oncol. Lett.20191722303230730719110
    [Google Scholar]
  60. GiordanoM. DecioA. BattistiniC. BaronioM. BianchiF. VillaA. BertalotG. FreddiS. LupiaM. JodiceM.G. UbezioP. ColomboN. GiavazziR. CavallaroU. L1CAM promotes ovarian cancer stemness and tumor initiation via FGFR1/SRC/STAT3 signaling.J. Exp. Clin. Cancer Res.202140131910.1186/s13046‑021‑02117‑z34645505
    [Google Scholar]
  61. HuangS. LiangS. ChenG. ChenJ. YouK. YeH. LiZ. HeS. Overexpression of glycosyltransferase 8 domain containing 2 confers ovarian cancer to CDDP resistance by activating FGFR/PI3K signalling axis.Oncogenesis20211075510.1038/s41389‑021‑00343‑w34294681
    [Google Scholar]
/content/journals/cp/10.2174/0115701646326324240924163955
Loading
/content/journals/cp/10.2174/0115701646326324240924163955
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Acute myeloid leukemia; cytarabine; FGFR1; LAML; molecular docking
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test