Skip to content
2000
image of Comparative Clinical, Proteomic, and Serologic Evaluation in Non-Hospitalized COVID-19 Patients and Healthy Individuals

Abstract

Introduction

The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has had a significant global impact since its declaration as a public health emergency in January 2020. Symptoms of COVID-19 can range from mild to severe, including fever, cough, fatigue, and shortness of breath. This study aimed to investigate the clinical symptoms and proteomic differences between non-hospitalized COVID-19 patients and healthy individuals.

Method

Clinical data of 6231 COVID-19 patients of different age groups and sexes were collected and analyzed. Proteins were separated by SDS-PAGE and identified by MALDI-TOF. 900 serum samples were collected, with 100 samples per patient group and one healthy control group.

Result

In the control group of healthy individuals, five proteins (HAPTO, IGKC, FUT10, CO3, SESQ2) were expressed with a score of 1+, serving as a reference for the other groups. Group 9, consisting of individuals who had recovered (IgG positive), showed negative results for all five proteins due to anti-IgG antibody production in memory cells. The significant differences in protein expression compared to the control group indicated up-regulation and down-regulation of these proteins. Positive PCR or IgG and IgM results led to notable differences in protein expression across all studied groups.

Conclusion

The altered protein expression in infected individuals compared to healthy controls may suggest the potential for these proteins to serve as biomarkers for disease diagnosis and prognosis.

Loading

Article metrics loading...

/content/journals/cp/10.2174/0115701646312544240924204420
2024-10-14
2024-11-18
Loading full text...

Full text loading...

References

  1. Beimdiek J. Janciauskiene S. Wrenger S. Volland S. Rozy A. Fuge J. Olejnicka B. Pink I. Illig T. Popov A. Chorostowska J. Buettner F.F.R. Welte T. Plasma markers of COVID-19 severity: A pilot study. Respir. Res. 2022 23 1 343 10.1186/s12931‑022‑02272‑7 36514048
    [Google Scholar]
  2. Moradian S.T. Parandeh A. Khalili R. Karimi L. Delayed symptoms in patients recovered from COVID-19. Iran. J. Public Health 2020 49 11 2120 2127 33708732
    [Google Scholar]
  3. Cascella M. Rajnik M. Aleem A. Dulebohn S.C. Di Napoli R. Features, evaluation, and treatment of coronavirus (COVID-19). StatPearls Treasure Island (FL) StatPearls Publishing 2024 32150360
    [Google Scholar]
  4. Vabret N. Britton G.J. Gruber C. Hegde S. Kim J. Kuksin M. Levantovsky R. Malle L. Moreira A. Park M.D. Pia L. Risson E. Saffern M. Salomé B. Esai Selvan M. Spindler M.P. Tan J. van der Heide V. Gregory J.K. Alexandropoulos K. Bhardwaj N. Brown B.D. Greenbaum B. Gümüş Z.H. Homann D. Horowitz A. Kamphorst A.O. Curotto de Lafaille M.A. Mehandru S. Merad M. Samstein R.M. Agrawal M. Aleynick M. Belabed M. Brown M. Casanova-Acebes M. Catalan J. Centa M. Charap A. Chan A. Chen S.T. Chung J. Bozkus C.C. Cody E. Cossarini F. Dalla E. Fernandez N. Grout J. Ruan D.F. Hamon P. Humblin E. Jha D. Kodysh J. Leader A. Lin M. Lindblad K. Lozano-Ojalvo D. Lubitz G. Magen A. Mahmood Z. Martinez-Delgado G. Mateus-Tique J. Meritt E. Moon C. Noel J. O’Donnell T. Ota M. Plitt T. Pothula V. Redes J. Reyes Torres I. Roberto M. Sanchez-Paulete A.R. Shang J. Schanoski A.S. Suprun M. Tran M. Vaninov N. Wilk C.M. Aguirre-Ghiso J. Bogunovic D. Cho J. Faith J. Grasset E. Heeger P. Kenigsberg E. Krammer F. Laserson U. Immunology of COVID-19: Current State of the Science. Immunity 2020 52 6 910 941 10.1016/j.immuni.2020.05.002 32505227
    [Google Scholar]
  5. Murin C.D. Wilson I.A. Ward A.B. Antibody responses to viral infections: A structural perspective across three different enveloped viruses. Nat. Microbiol. 2019 4 5 734 747 10.1038/s41564‑019‑0392‑y 30886356
    [Google Scholar]
  6. Li Z. Yi Y. Luo X. Xiong N. Liu Y. Li S. Sun R. Wang Y. Hu B. Chen W. Zhang Y. Wang J. Huang B. Lin Y. Yang J. Cai W. Wang X. Cheng J. Chen Z. Sun K. Pan W. Zhan Z. Chen L. Ye F. Development and clinical application of a rapid IgM‐IgG combined antibody test for SARS‐CoV‐2 infection diagnosis. J. Med. Virol. 2020 92 9 1518 1524 10.1002/jmv.25727 32104917
    [Google Scholar]
  7. Silva M.J.A. Ribeiro L.R. Lima K.V.B. Lima L.N.G.C. Adaptive immunity to SARS-CoV-2 infection: A systematic review. Front. Immunol. 2022 13 1001198 10.3389/fimmu.2022.1001198 36300105
    [Google Scholar]
  8. Sapir T. Averch Z. Lerman B. Bodzin A. Fishman Y. Maitra R. COVID-19 and the immune response: A multi-phasic approach to the treatment of COVID-19. Int. J. Mol. Sci. 2022 23 15 8606 10.3390/ijms23158606 35955740
    [Google Scholar]
  9. Ghasemi D. Araeynejad F. Maghsoud O. Gerami N. Keihan A.H. Rezaie E. Mehdizadeh S. Hosseinzadeh R. Mohammadi R. Bahardoust M. Heiat M. The Trend of IgG and IgM Antibodies During 6-Month Period After the Disease Episode in COVID-19 Patients. Iran. J. Sci. Technol. Trans. A Sci. 2022 46 6 1555 1562 10.1007/s40995‑022‑01382‑7 36466050
    [Google Scholar]
  10. Carvalho Á. Henriques A.R. Queirós P. Rodrigues J. Mendonça N. Rodrigues A.M. Canhão H. de Sousa G. Antunes F. Guimarães M. Persistence of IgG COVID-19 antibodies: A longitudinal analysis. Front. Public Health 2023 10 1069898 10.3389/fpubh.2022.1069898 36703818
    [Google Scholar]
  11. Tosta E. The protective immunity induced by SARS-CoV-2 infection and vaccination: a critical appraisal. Explor. Immunol. 2021 1 199 225 10.37349/ei.2021.00014
    [Google Scholar]
  12. Li Q. Wang Y. Sun Q. Knopf J. Herrmann M. Lin L. Jiang J. Shao C. Li P. He X. Hua F. Niu Z. Ma C. Zhu Y. Ippolito G. Piacentini M. Estaquier J. Melino S. Weiss F.D. Andreano E. Latz E. Schultze J.L. Rappuoli R. Mantovani A. Mak T.W. Melino G. Shi Y. Immune response in COVID-19: What is next? Cell Death Differ. 2022 29 6 1107 1122 10.1038/s41418‑022‑01015‑x 35581387
    [Google Scholar]
  13. Harne R. Williams B. Abdelaal H.F.M. Baldwin S.L. Coler R.N. SARS-CoV-2 infection and immune responses. AIMS Microbiol. 2023 9 2 245 276 10.3934/microbiol.2023015 37091818
    [Google Scholar]
  14. Catanzaro M. Fagiani F. Racchi M. Corsini E. Govoni S. Lanni C. Immune response in COVID-19: addressing a pharmacological challenge by targeting pathways triggered by SARS-CoV-2. Signal Transduct. Target. Ther. 2020 5 1 84 10.1038/s41392‑020‑0191‑1 32467561
    [Google Scholar]
  15. Minkoff J.M. tenOever B. Innate immune evasion strategies of SARS-CoV-2. Nat. Rev. Microbiol. 2023 21 3 178 194 36631691
    [Google Scholar]
  16. Islamuddin M. Mustfa S.A. Ullah S.N.M.N. Omer U. Kato K. Parveen S. Innate immune response and inflammasome activation during SARS-CoV-2 infection. Inflammation 2022 45 5 1849 1863 10.1007/s10753‑022‑01651‑y 35953688
    [Google Scholar]
  17. Sartorius R. Trovato M. Manco R. D’Apice L. De Berardinis P. Exploiting viral sensing mediated by Toll-like receptors to design innovative vaccines. NPJ Vaccines 2021 6 1 127 10.1038/s41541‑021‑00391‑8 34711839
    [Google Scholar]
  18. Mortaz E. Tabarsi P. Varahram M. Folkerts G. Adcock I.M. The immune response and immunopathology of COVID-19. Front. Immunol. 2020 11 2037 10.3389/fimmu.2020.02037 32983152
    [Google Scholar]
  19. Annunziato F. Romagnani C. Romagnani S. The 3 major types of innate and adaptive cell-mediated effector immunity. J. Allergy Clin. Immunol. 2015 135 3 626 635 10.1016/j.jaci.2014.11.001 25528359
    [Google Scholar]
  20. Shah V.K. Firmal P. Alam A. Ganguly D. Chattopadhyay S. Overview of immune response during SARS-CoV-2 infection: Lessons from the past. Front. Immunol. 2020 11 1949 10.3389/fimmu.2020.01949 32849654
    [Google Scholar]
  21. Wang X. Guan F. Miller H. Byazrova M.G. Candotti F. Benlagha K. Camara N.O.S. Lei J. Filatov A. Liu C. The role of dendritic cells in COVID-19 infection. Emerg. Microbes Infect. 2023 12 1 2195019 10.1080/22221751.2023.2195019 36946172
    [Google Scholar]
  22. Pérez-Gómez A. Vitallé J. Gasca-Capote C. Gutierrez-Valencia A. Trujillo-Rodriguez M. Serna-Gallego A. Muñoz-Muela E. Jiménez-Leon M.R. Rafii-El-Idrissi Benhnia M. Rivas-Jeremias I. Sotomayor C. Roca-Oporto C. Espinosa N. Infante-Domínguez C. Crespo-Rivas J.C. Fernández-Villar A. Pérez-González A. López-Cortés L.F. Poveda E. Ruiz-Mateos E. Cisneros J.M. Salto-Alejandre S. Berastegui-Cabrera J. Camacho-Martínez P. Infante-Domínguez C. Carretero-Ledesma M. Crespo-Rivas J.C. Márquez E. Lomas J.M. Bueno C. Amaya R. Lepe J.A. Pachón J. Cordero E. Sánchez-Céspedes J. Aguilar-Guisado M. Aguilera A. Aguilera C. Aldabo-Pallas T. Alfaro-Lara V. Amodeo C. Ampuero J. Avilés M.D. Asensio M. Barón-Franco B. Barrera-Pulido L. Bellido-Alba R. Bernabeu-Wittel M. Caballero-Eraso C. Cabrera M. Calderón E. Carbajal-Guerrero J. Cid-Cumplido M. Corcia-Palomo Y. Delgado J. Domínguez-Petit A. Deniz A. Dusseck-Brutus R. Escoresca-Ortega A. Espinosa F. Espinosa N. Espinoza M. Ferrándiz-Millón C. Ferrer M. Ferrer T. Gallego-Texeira I. Gámez-Mancera R. García E. García-Delgado H. García-Gutiérrez M. Gascón-Castillo M.L. González-Estrada A. González D. Gómez-González C. González-León R. Grande-Cabrerizo C. Gutiérrez S. Hernández-Quiles C. Herrera-Melero I.C. Herrero-Romero M. Jara L. Jiménez-Juan C. Jiménez-Jorge S. Jiménez-Sánchez M. Lanseros-Tenllado J. López C. López I. López-Barrios Á. López-Cortés L.F. Luque-Márquez R. Macías-García D. Martín-Gutiérrez G. Martín-Villén L. Molina J. Morillo A. Navarro-Amuedo M.D. Nieto-Martín D. Ortega F. Paniagua-García M. Peña-Rodríguez A. Pérez E. Poyato M. Praena-Segovia J. Ríos R. Roca-Oporto C. Rodríguez J.F. Rodríguez-Hernández M.J. Rodríguez-Suárez S. Rodríguez-Villodres Á. Romero-Rodríguez N. Ruiz R. de Azua Z.R. Salamanca C. Sánchez S. Sánchez-Montagut V.M. Sotomayor C. Benjumea A.S. Toral J. Dendritic cell deficiencies persist seven months after SARS-CoV-2 infection. Cell. Mol. Immunol. 2021 18 9 2128 2139 10.1038/s41423‑021‑00728‑2 34290398
    [Google Scholar]
  23. Gulhar R. Ashraf M.A. Jialal I. Physiology, acute phase reactants. StatPearls Treasure Island (FL) StatPearls Publishing 2023 30137854
    [Google Scholar]
  24. di Flora D.C. Dionizio A. Pereira H.A.B.S. Garbieri T.F. Grizzo L.T. Dionisio T.J. Leite A.L. Silva-Costa L.C. Buzalaf N.R. Reis F.N. Pereira V.B.R. Rosa D.M.C. dos Santos C.F. Buzalaf M.A.R. Analysis of plasma proteins involved in inflammation, immune response/complement system, and blood coagulation upon admission of COVID-19 patients to hospital may help to predict the prognosis of the disease. Cells 2023 12 12 1601 10.3390/cells12121601 37371071
    [Google Scholar]
  25. Luz M.S. da Silva Júnior R.T. Santos de Santana G.A. Rodrigues G.S. Crivellaro H.L. Calmon M.S. dos Santos C.F.S.M. Silva L.G.O. Ferreira Q.R. Mota G.R. Heim H. Silva F.A.F. de Brito B.B. de Melo F.F. Molecular and serology methods in the diagnosis of COVID-19: An overview. World J. Methodol. 2022 12 3 83 91 10.5662/wjm.v12.i3.83 35721247
    [Google Scholar]
  26. Ong D.S.Y. Fragkou P.C. Schweitzer V.A. Chemaly R.F. Moschopoulos C.D. Skevaki C. How to interpret and use COVID-19 serology and immunology tests. Clin Microbiol Infect 2021 27 7 981 986 10.1016/j.cmi.2021.05.001.
    [Google Scholar]
  27. Ejazi S.A. Ghosh S. Ali N. Antibody detection assays for COVID‐19 diagnosis: An early overview. Immunol. Cell Biol. 2021 99 1 21 33 10.1111/imcb.12397 32864735
    [Google Scholar]
  28. Guevara-Hoyer K. Fuentes-Antrás J. De la Fuente-Muñoz E. Rodríguez de la Peña A. Viñuela M. Cabello-Clotet N. Estrada V. Culebras E. Delgado-Iribarren A. Martínez-Novillo M. Torrejón M.J. Pérez de Diego R. Fernández-Arquero M. Ocaña A. Pérez-Segura P. Sánchez-Ramón S. Serological Tests in the Detection of SARS-CoV-2 Antibodies. Diagnostics (Basel) 2021 11 4 678 10.3390/diagnostics11040678 33918840
    [Google Scholar]
  29. Grzelak L. Temmam S. Planchais C. Demeret C. Tondeur L. Huon C. Guivel-Benhassine F. Staropoli I. Chazal M. Dufloo J. Planas D. Buchrieser J. Rajah M.M. Robinot R. Porrot F. Albert M. Chen K.Y. Crescenzo-Chaigne B. Donati F. Anna F. Souque P. Gransagne M. Bellalou J. Nowakowski M. Backovic M. Bouadma L. Le Fevre L. Le Hingrat Q. Descamps D. Pourbaix A. Laouénan C. Ghosn J. Yazdanpanah Y. Besombes C. Jolly N. Pellerin-Fernandes S. Cheny O. Ungeheuer M.N. Mellon G. Morel P. Rolland S. Rey F.A. Behillil S. Enouf V. Lemaitre A. Créach M.A. Petres S. Escriou N. Charneau P. Fontanet A. Hoen B. Bruel T. Eloit M. Mouquet H. Schwartz O. van der Werf S. A comparison of four serological assays for detecting anti–SARS-CoV-2 antibodies in human serum samples from different populations. Sci. Transl. Med. 2020 12 559 eabc3103 10.1126/scitranslmed.abc3103 32817357
    [Google Scholar]
  30. Rostamzadeh D. Mortezagholi S. Alinejad M. Jooya S.R. Eskandarian M. Metvaei A. Vafaei S. Aboulghasemi H. Younesi V. Shabani M. Serological assay for anti-SARS-CoV-2 antibodies improves sensitivity of diagnosis of COVID-19 patients. Med. Microbiol. Immunol. (Berl.) 2021 210 5-6 283 289 10.1007/s00430‑021‑00721‑6 34564742
    [Google Scholar]
  31. Costanzo M. Caterino M. Fedele R. Cevenini A. Pontillo M. Barra L. Ruoppolo M. COVIDomics: The proteomic and metabolomic signatures of COVID-19. Int. J. Mol. Sci. 2022 23 5 2414 10.3390/ijms23052414 35269564
    [Google Scholar]
  32. McArdle A. Washington K.E. Chazarin Orgel B. Binek A. Manalo D.M. Rivas A. Ayres M. Pandey R. Phebus C. Raedschelders K. Fert-Bober J. Van Eyk J.E. Discovery proteomics for COVID-19: Where we are now. J. Proteome Res. 2021 20 10 4627 4639 10.1021/acs.jproteome.1c00475 34550702
    [Google Scholar]
  33. Shu T. Ning W. Wu D. Xu J. Han Q. Huang M. Zou X. Yang Q. Yuan Y. Bie Y. Pan S. Mu J. Han Y. Yang X. Zhou H. Li R. Ren Y. Chen X. Yao S. Qiu Y. Zhang D.Y. Xue Y. Shang Y. Zhou X. Plasma proteomics identify biomarkers and pathogenesis of COVID-19. Immunity 2020 53 5 1108 1122.e5 10.1016/j.immuni.2020.10.008 33128875
    [Google Scholar]
  34. Haas P. Muralidharan M. Krogan N.J. Kaake R.M. Hüttenhain R. Proteomic approaches to study SARS-CoV-2 biology and COVID-19 pathology. J. Proteome Res. 2021 20 2 1133 1152 10.1021/acs.jproteome.0c00764 33464917
    [Google Scholar]
  35. Ciccosanti F. Antonioli M. Sacchi A. Notari S. Farina A. Beccacece A. Fusto M. Vergori A. D’Offizi G. Taglietti F. Antinori A. Nicastri E. Marchioni L. Palmieri F. Ippolito G. Piacentini M. Agrati C. Fimia G.M. Proteomic analysis identifies a signature of disease severity in the plasma of COVID-19 pneumonia patients associated to neutrophil, platelet and complement activation. Clin. Proteomics 2022 19 1 38 10.1186/s12014‑022‑09377‑7 36348270
    [Google Scholar]
  36. Filbin M.R. Mehta A. Schneider A.M. Kays K.R. Guess J.R. Gentili M. Fenyves B.G. Charland N.C. Gonye A.L.K. Gushterova I. Khanna H.K. LaSalle T.J. Lavin-Parsons K.M. Lilley B.M. Lodenstein C.L. Manakongtreecheep K. Margolin J.D. McKaig B.N. Rojas-Lopez M. Russo B.C. Sharma N. Tantivit J. Thomas M.F. Gerszten R.E. Heimberg G.S. Hoover P.J. Lieb D.J. Lin B. Ngo D. Pelka K. Reyes M. Smillie C.S. Waghray A. Wood T.E. Zajac A.S. Jennings L.L. Grundberg I. Bhattacharyya R.P. Parry B.A. Villani A.C. Sade-Feldman M. Hacohen N. Goldberg M.B. Longitudinal proteomic analysis of severe COVID-19 reveals survival-associated signatures, tissue-specific cell death, and cell-cell interactions. Cell Rep. Med. 2021 2 5 100287 10.1016/j.xcrm.2021.100287 33969320
    [Google Scholar]
  37. Yu S. Li X. Xin Z. Sun L. Shi J. Proteomic insights into SARS-CoV-2 infection mechanisms, diagnosis, therapies and prognostic monitoring methods. Front. Immunol. 2022 13 923387 10.3389/fimmu.2022.923387 36203586
    [Google Scholar]
  38. Cañas B. López-Ferrer D. Ramos-Fernández A. Camafeita E. Calvo E. Mass spectrometry technologies for proteomics. Brief. Funct. Genomics Proteomics 2006 4 4 295 320 10.1093/bfgp/eli002 17202122
    [Google Scholar]
  39. Bhatt M. Rai V. Kumar A. Kiran A.K. Avasthe R.K. SDS-PAGE and Western Blotting: Basic Principles and Protocol Springer 2022 313 328
    [Google Scholar]
  40. Sugiyama Y. Uezato Y. Analysis of protein kinases by Phos-tag SDS-PAGE. J. Proteomics 2022 255 104485 10.1016/j.jprot.2022.104485 35065289
    [Google Scholar]
  41. Torres-Sangiao E. Leal Rodriguez C. García-Riestra C. Application and perspectives of MALDI-TOF mass spectrometry in clinical microbiology laboratories. Microorganisms 2021 9 7 1539 10.3390/microorganisms9071539.
    [Google Scholar]
  42. Falkner J.A. Kachman M. Veine D.M. Walker A. Strahler J.R. Andrews P.C. Validated MALDI-TOF/TOF mass spectra for protein standards. J. Am. Soc. Mass Spectrom. 2007 18 5 850 855 10.1016/j.jasms.2007.01.010 17329120
    [Google Scholar]
  43. Doncheva N.T. Morris J.H. Gorodkin J. Jensen L.J. Cytoscape StringApp: Network analysis and visualization of proteomics data. J. Proteome Res. 2019 18 2 623 632 10.1021/acs.jproteome.8b00702 30450911
    [Google Scholar]
  44. Doncheva N.T. Morris J.H. Holze H. Kirsch R. Nastou K.C. Cuesta-Astroz Y. Rattei T. Szklarczyk D. von Mering C. Jensen L.J. Cytoscape stringApp 2.0: Analysis and visualization of heterogeneous biological networks. J. Proteome Res. 2023 22 2 637 646 10.1021/acs.jproteome.2c00651 36512705
    [Google Scholar]
  45. Grant M.C. Geoghegan L. Arbyn M. Mohammed Z. McGuinness L. Clarke E.L. Wade R.G. The prevalence of symptoms in 24,410 adults infected by the novel coronavirus (SARS-CoV-2; COVID-19): A systematic review and meta-analysis of 148 studies from 9 countries. PLoS One 2020 15 6 e0234765 10.1371/journal.pone.0234765 32574165
    [Google Scholar]
  46. Kadirvelu B. Burcea G. Quint J.K. Costelloe C.E. Faisal A.A. Variation in global COVID-19 symptoms by geography and by chronic disease: A global survey using the COVID-19 Symptom Mapper. EClinicalMedicine 2022 45 101317 10.1016/j.eclinm.2022.101317 35265823
    [Google Scholar]
  47. Unim B. Palmieri L. Lo Noce C. Brusaferro S. Onder G. Prevalence of COVID-19-related symptoms by age group. Aging Clin. Exp. Res. 2021 33 4 1145 1147 10.1007/s40520‑021‑01809‑y 33650071
    [Google Scholar]
  48. Fernández-de-las-Peñas C. Palacios-Ceña D. Gómez-Mayordomo V. Florencio L.L. Cuadrado M.L. Plaza-Manzano G. Navarro-Santana M. Prevalence of post-COVID-19 symptoms in hospitalized and non-hospitalized COVID-19 survivors: A systematic review and meta-analysis. Eur. J. Intern. Med. 2021 92 55 70 10.1016/j.ejim.2021.06.009 34167876
    [Google Scholar]
  49. Liu K. Chen Y. Lin R. Han K. Clinical features of COVID-19 in elderly patients: A comparison with young and middle-aged patients. J. Infect. 2020 80 6 e14 e18 10.1016/j.jinf.2020.03.005 32171866
    [Google Scholar]
  50. Zheng X. Duan R. Gong F. Wei X. Dong Y. Chen R. yue Liang M. Tang C. Lu L. Accuracy of serological tests for COVID-19: A systematic review and meta-analysis. Front. Public Health 2022 10 923525 10.3389/fpubh.2022.923525 36589993
    [Google Scholar]
  51. Sobhani K. Cheng S. Binder R.A. Mantis N.J. Crawford J.M. Okoye N. Braun J.G. Joung S. Wang M. Lozanski G. King C.L. Roback J.D. Granger D.A. Boppana S.B. Karger A.B. Clinical utility of SARS-CoV-2 serological testing and defining a correlate of protection. Vaccines (Basel) 2023 11 11 1644 10.3390/vaccines11111644 38005976
    [Google Scholar]
  52. Long Q-x. Deng H-j. Chen J. Hu J-l. Liu B-z. Liao P. Lin Y. Yu L-h. Mo Z. Xu Y-y. Antibody responses to SARS-CoV-2 in COVID-19 patients: The perspective application of serological tests in clinical practice. MedRxiv 2020 2020.2003 10.1101/2020.03.18.20038018
    [Google Scholar]
  53. Jin Y. Wang M. Zuo Z. Fan C. Ye F. Cai Z. Wang Y. Cui H. Pan K. Xu A. Diagnostic value and dynamic variance of serum antibody in coronavirus disease 2019. Int. J. Infect. Dis. 2020 94 49 52 10.1016/j.ijid.2020.03.065 32251798
    [Google Scholar]
  54. Huang Y. Yang C. Xu X. Xu W. Liu S. Structural and functional properties of SARS-CoV-2 spike protein: Potential antivirus drug development for COVID-19. Acta Pharmacol. Sin. 2020 41 9 1141 1149 10.1038/s41401‑020‑0485‑4 32747721
    [Google Scholar]
  55. Bandyopadhyay A.R. Chatterjee D. Ghosh K. Haptoglobin (hp) polymorphism and covid-19: A review. Innov Int J Med Pharm Sci 2021 6 1 4
    [Google Scholar]
  56. di Masi A. De Simone G. Ciaccio C. D’Orso S. Coletta M. Ascenzi P. Haptoglobin: From hemoglobin scavenging to human health. Mol. Aspects Med. 2020 73 100851 10.1016/j.mam.2020.100851 32660714
    [Google Scholar]
  57. Cooper C.E. Schaer D.J. Buehler P.W. Wilson M.T. Reeder B.J. Silkstone G. Svistunenko D.A. Bulow L. Alayash A.I. Haptoglobin binding stabilizes hemoglobin ferryl iron and the globin radical on tyrosine β145. Antioxid. Redox Signal. 2013 18 17 2264 2273 10.1089/ars.2012.4547.test 22702311
    [Google Scholar]
  58. Buehler P.W. Humar R. Schaer D.J. Haptoglobin therapeutics and compartmentalization of cell-free hemoglobin toxicity. Trends Mol. Med. 2020 26 7 683 697 10.1016/j.molmed.2020.02.004 32589936
    [Google Scholar]
  59. Yağcı S. Serin E. Acicbe Ö. Zeren M.İ. Odabaşı M.S. The relationship between serum erythropoietin, hepcidin, and haptoglobin levels with disease severity and other biochemical values in patients with COVID‐19. Int. J. Lab. Hematol. 2021 43 S1 142 151 10.1111/ijlh.13479 33554466
    [Google Scholar]
  60. Naryzny S.N. Legina O.K. Haptoglobin as a Biomarker. Biochem. (Mosc.) Suppl. Ser. B Biomed. Chem. 2021 15 3 184 198 10.1134/S1990750821030069 34422226
    [Google Scholar]
  61. Pisoschi A.M. Pop A. Iordache F. Stanca L. Geicu O.I. Bilteanu L. Serban A.I. Antioxidant, anti-inflammatory and immunomodulatory roles of vitamins in COVID-19 therapy. Eur. J. Med. Chem. 2022 232 114175 10.1016/j.ejmech.2022.114175 35151223
    [Google Scholar]
  62. Momeni M. Rashidifar M. Balam F.H. Roointan A. Gholaminejad A. A comprehensive analysis of gene expression profiling data in COVID-19 patients for discovery of specific and differential blood biomarker signatures. Sci. Rep. 2023 13 1 5599 10.1038/s41598‑023‑32268‑2 37019895
    [Google Scholar]
  63. Onieva J.L. Xiao Q. Berciano-Guerrero M.Á. Laborda-Illanes A. de Andrea C. Chaves P. Piñeiro P. Garrido-Aranda A. Gallego E. Sojo B. Gálvez L. Chica-Parrado R. Prieto D. Pérez-Ruiz E. Farngren A. Lozano M.J. Álvarez M. Jiménez P. Sánchez-Muñoz A. Oliver J. Cobo M. Alba E. Barragán I. High IGKC-expressing intratumoral plasma cells predict response to immune checkpoint blockade. Int. J. Mol. Sci. 2022 23 16 9124 10.3390/ijms23169124 36012390
    [Google Scholar]
  64. Lohr M. Edlund K. Botling J. Hammad S. Hellwig B. Othman A. Berglund A. Lambe M. Holmberg L. Ekman S. Bergqvist M. Pontén F. Cadenas C. Marchan R. Hengstler J.G. Rahnenführer J. Micke P. The prognostic relevance of tumour-infiltrating plasma cells and immunoglobulin kappa C indicates an important role of the humoral immune response in non-small cell lung cancer. Cancer Lett. 2013 333 2 222 228 10.1016/j.canlet.2013.01.036 23370224
    [Google Scholar]
  65. Yu H. Li M. Wen X. Yang J. Liang X. Li X. Bao X. Shu J. Ren X. Chen W. Li Z. Li Y. Elevation of α-1,3 fucosylation promotes the binding ability of TNFR1 to TNF-α and contributes to osteoarthritic cartilage destruction and apoptosis. Arthritis Res. Ther. 2022 24 1 93 10.1186/s13075‑022‑02776‑z 35488351
    [Google Scholar]
  66. Zhang N.Z. Zhao L.F. Zhang Q. Fang H. Song W.L. Li W.Z. Ge Y.S. Gao P. Core fucosylation and its roles in gastrointestinal glycoimmunology. World J. Gastrointest. Oncol. 2023 15 7 1119 1134 10.4251/wjgo.v15.i7.1119 37546555
    [Google Scholar]
  67. Liao C. An J. Yi S. Tan Z. Wang H. Li H. Guan X. Liu J. Wang Q. FUT8 and protein core fucosylation in tumours: From diagnosis to treatment. J. Cancer 2021 12 13 4109 4120 10.7150/jca.58268 34093814
    [Google Scholar]
  68. Cheng W. Hornung R. Xu K. Yang C. Li J. Complement C3 identified as a unique risk factor for disease severity among young COVID-19 patients in Wuhan, China. Sci. Rep. 2021 11 1 7857 10.1038/s41598‑021‑82810‑3 33846344
    [Google Scholar]
  69. Zelek W.M. Harrison R.A. Complement and COVID-19: Three years on, what we know, what we don’t know, and what we ought to know. Immunobiology 2023 228 3 152393 10.1016/j.imbio.2023.152393 37187043
    [Google Scholar]
  70. Jiang H. Chen Q. Zheng S. Guo C. Luo J. Wang H. Zheng X. Weng Z. Association of complement C3 with clinical deterioration among hospitalized patients with COVID-19. Int. J. Gen. Med. 2022 15 849 857 10.2147/IJGM.S348519 35115811
    [Google Scholar]
  71. Santiesteban-Lores L.E. Amamura T.A. da Silva T.F. Midon L.M. Carneiro M.C. Isaac L. Bavia L. A double edged-sword - The Complement System during SARS-CoV-2 infection. Life Sci. 2021 272 119245 10.1016/j.lfs.2021.119245 33609539
    [Google Scholar]
  72. Zinellu A. Mangoni A.A. Serum Complement C3 and C4 and COVID-19 severity and mortality: A systematic review and meta-analysis with meta-regression. Front. Immunol. 2021 12 696085 10.3389/fimmu.2021.696085 34163491
    [Google Scholar]
  73. Lu C.L. Kim J. Craniofacial diseases caused by defects in intracellular trafficking. Genes (Basel) 2021 12 5 726 10.3390/genes12050726 34068038
    [Google Scholar]
  74. Osmanoglu Ö. Gupta S.K. Almasi A. Yagci S. Srivastava M. Araujo G.H.M. Nagy Z. Balkenhol J. Dandekar T. Signaling network analysis reveals fostamatinib as a potential drug to control platelet hyperactivation during SARS-CoV-2 infection. Front. Immunol. 2023 14 1285345 10.3389/fimmu.2023.1285345 38187394
    [Google Scholar]
  75. Ates K.M. Wang T. Moreland T. Veeranan-Karmegam R. Ma M. Jeter C. Anand P. Wenzel W. Kim H.G. Wolfe L.A. Stephen J.A. Adams D.R. Markello T. Tifft C.J. Settlage R. Gahl W.A. Gonsalvez G.B. Malicdan M.C. Flanagan-Steet H. Pan Y.A. Deficiency in the endocytic adaptor proteins PHETA1/2 impair renal and craniofacial development. Dis. Model. Mech. 2020 13 5 dmm.041913 10.1242/dmm.041913 32152089
    [Google Scholar]
  76. Pirruccello M. De Camilli P. Inositol 5-phosphatases: Insights from the Lowe syndrome protein OCRL. Trends Biochem. Sci. 2012 37 4 134 143 10.1016/j.tibs.2012.01.002 22381590
    [Google Scholar]
/content/journals/cp/10.2174/0115701646312544240924204420
Loading
/content/journals/cp/10.2174/0115701646312544240924204420
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keywords: SDS_PAGE ; MALDI-TOF ; Covid-19 ; proteomics ; biomarker discovery ; bioinformatic
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test