Skip to content
2000
Volume 21, Issue 5
  • ISSN: 1570-1646
  • E-ISSN: 1875-6247

Abstract

Introduction

The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has had a significant global impact since its declaration as a public health emergency in January 2020. Symptoms of COVID-19 can range from mild to severe, including fever, cough, fatigue, and shortness of breath. This study aimed to investigate the clinical symptoms and proteomic differences between non-hospitalized COVID-19 patients and healthy individuals.

Methods

Clinical data of 6231 COVID-19 patients of different age groups and sexes were collected and analyzed. Proteins were separated by SDS-PAGE and identified by MALDI-TOF. 900 serum samples were collected, with 100 samples per patient group and one healthy control group.

Results

In the control group of healthy individuals, five proteins (HAPTO, IGKC, FUT10, CO3, SESQ2) were expressed with a score of 1+, serving as a reference for the other groups. Group 9, consisting of individuals who had recovered (IgG positive), showed negative results for all five proteins due to anti-IgG antibody production in memory cells. The significant differences in protein expression compared to the control group indicated up-regulation and down-regulation of these proteins. Positive PCR or IgG and IgM results led to notable differences in protein expression across all studied groups.

Conclusion

The altered protein expression in infected individuals compared to healthy controls may suggest the potential for these proteins to serve as biomarkers for disease diagnosis and prognosis.

Loading

Article metrics loading...

/content/journals/cp/10.2174/0115701646312544240924204420
2024-10-10
2025-07-07
Loading full text...

Full text loading...

References

  1. BeimdiekJ. JanciauskieneS. WrengerS. VollandS. RozyA. FugeJ. OlejnickaB. PinkI. IlligT. PopovA. ChorostowskaJ. BuettnerF.F.R. WelteT. Plasma markers of COVID-19 severity: A pilot study.Respir. Res.202223134310.1186/s12931‑022‑02272‑7 36514048
    [Google Scholar]
  2. MoradianS.T. ParandehA. KhaliliR. KarimiL. Delayed symptoms in patients recovered from COVID-19.Iran. J. Public Health2020491121202127 33708732
    [Google Scholar]
  3. CascellaM. RajnikM. AleemA. DulebohnS.C. Di NapoliR. Features, evaluation, and treatment of coronavirus (COVID-19).StatPearls.Treasure Island (FL)StatPearls Publishing2024 32150360
    [Google Scholar]
  4. VabretN. BrittonG.J. GruberC. HegdeS. KimJ. KuksinM. LevantovskyR. MalleL. MoreiraA. ParkM.D. PiaL. RissonE. SaffernM. SaloméB. Esai SelvanM. SpindlerM.P. TanJ. van der HeideV. GregoryJ.K. AlexandropoulosK. BhardwajN. BrownB.D. GreenbaumB. GümüşZ.H. HomannD. HorowitzA. KamphorstA.O. Curotto de LafailleM.A. MehandruS. MeradM. SamsteinR.M. AgrawalM. AleynickM. BelabedM. BrownM. Casanova-AcebesM. CatalanJ. CentaM. CharapA. ChanA. ChenS.T. ChungJ. BozkusC.C. CodyE. CossariniF. DallaE. FernandezN. GroutJ. RuanD.F. HamonP. HumblinE. JhaD. KodyshJ. LeaderA. LinM. LindbladK. Lozano-OjalvoD. LubitzG. MagenA. MahmoodZ. Martinez-DelgadoG. Mateus-TiqueJ. MerittE. MoonC. NoelJ. O’DonnellT. OtaM. PlittT. PothulaV. RedesJ. Reyes TorresI. RobertoM. Sanchez-PauleteA.R. ShangJ. SchanoskiA.S. SuprunM. TranM. VaninovN. WilkC.M. Aguirre-GhisoJ. BogunovicD. ChoJ. FaithJ. GrassetE. HeegerP. KenigsbergE. KrammerF. LasersonU. Immunology of COVID-19: Current State of the Science.Immunity202052691094110.1016/j.immuni.2020.05.002 32505227
    [Google Scholar]
  5. MurinC.D. WilsonI.A. WardA.B. Antibody responses to viral infections: A structural perspective across three different enveloped viruses.Nat. Microbiol.20194573474710.1038/s41564‑019‑0392‑y 30886356
    [Google Scholar]
  6. LiZ. YiY. LuoX. XiongN. LiuY. LiS. SunR. WangY. HuB. ChenW. ZhangY. WangJ. HuangB. LinY. YangJ. CaiW. WangX. ChengJ. ChenZ. SunK. PanW. ZhanZ. ChenL. YeF. Development and clinical application of a rapid IgM-IgG combined antibody test for SARS-CoV-2 infection diagnosis.J. Med. Virol.20209291518152410.1002/jmv.25727 32104917
    [Google Scholar]
  7. SilvaM.J.A. RibeiroL.R. LimaK.V.B. LimaL.N.G.C. Adaptive immunity to SARS-CoV-2 infection: A systematic review.Front. Immunol.202213100119810.3389/fimmu.2022.1001198 36300105
    [Google Scholar]
  8. SapirT. AverchZ. LermanB. BodzinA. FishmanY. MaitraR. COVID-19 and the immune response: A multi-phasic approach to the treatment of COVID-19.Int. J. Mol. Sci.20222315860610.3390/ijms23158606 35955740
    [Google Scholar]
  9. GhasemiD. AraeynejadF. MaghsoudO. GeramiN. KeihanA.H. RezaieE. MehdizadehS. HosseinzadehR. MohammadiR. BahardoustM. HeiatM. The Trend of IgG and IgM Antibodies During 6-Month Period After the Disease Episode in COVID-19 Patients.Iran. J. Sci. Technol. Trans. A Sci.20224661555156210.1007/s40995‑022‑01382‑7 36466050
    [Google Scholar]
  10. CarvalhoÁ. HenriquesA.R. QueirósP. RodriguesJ. MendonçaN. RodriguesA.M. CanhãoH. de SousaG. AntunesF. GuimarãesM. Persistence of IgG COVID-19 antibodies: A longitudinal analysis.Front. Public Health202310106989810.3389/fpubh.2022.1069898 36703818
    [Google Scholar]
  11. TostaE. The protective immunity induced by SARS-CoV-2 infection and vaccination: a critical appraisal.Explor. Immunol.2021119922510.37349/ei.2021.00014
    [Google Scholar]
  12. LiQ. WangY. SunQ. KnopfJ. HerrmannM. LinL. JiangJ. ShaoC. LiP. HeX. HuaF. NiuZ. MaC. ZhuY. IppolitoG. PiacentiniM. EstaquierJ. MelinoS. WeissF.D. AndreanoE. LatzE. SchultzeJ.L. RappuoliR. MantovaniA. MakT.W. MelinoG. ShiY. Immune response in COVID-19: What is next?Cell Death Differ.20222961107112210.1038/s41418‑022‑01015‑x 35581387
    [Google Scholar]
  13. HarneR. WilliamsB. AbdelaalH.F.M. BaldwinS.L. ColerR.N. SARS-CoV-2 infection and immune responses.AIMS Microbiol.20239224527610.3934/microbiol.2023015 37091818
    [Google Scholar]
  14. CatanzaroM. FagianiF. RacchiM. CorsiniE. GovoniS. LanniC. Immune response in COVID-19: addressing a pharmacological challenge by targeting pathways triggered by SARS-CoV-2.Signal Transduct. Target. Ther.2020518410.1038/s41392‑020‑0191‑1 32467561
    [Google Scholar]
  15. MinkoffJ.M. tenOeverB. Innate immune evasion strategies of SARS-CoV-2.Nat. Rev. Microbiol.2023213178194 36631691
    [Google Scholar]
  16. IslamuddinM. MustfaS.A. UllahS.N.M.N. OmerU. KatoK. ParveenS. Innate immune response and inflammasome activation during SARS-CoV-2 infection.Inflammation20224551849186310.1007/s10753‑022‑01651‑y 35953688
    [Google Scholar]
  17. SartoriusR. TrovatoM. MancoR. D’ApiceL. De BerardinisP. Exploiting viral sensing mediated by Toll-like receptors to design innovative vaccines.NPJ Vaccines20216112710.1038/s41541‑021‑00391‑8 34711839
    [Google Scholar]
  18. MortazE. TabarsiP. VarahramM. FolkertsG. AdcockI.M. The immune response and immunopathology of COVID-19.Front. Immunol.202011203710.3389/fimmu.2020.02037 32983152
    [Google Scholar]
  19. AnnunziatoF. RomagnaniC. RomagnaniS. The 3 major types of innate and adaptive cell-mediated effector immunity.J. Allergy Clin. Immunol.2015135362663510.1016/j.jaci.2014.11.001 25528359
    [Google Scholar]
  20. ShahV.K. FirmalP. AlamA. GangulyD. ChattopadhyayS. Overview of immune response during SARS-CoV-2 infection: Lessons from the past.Front. Immunol.202011194910.3389/fimmu.2020.01949 32849654
    [Google Scholar]
  21. WangX. GuanF. MillerH. ByazrovaM.G. CandottiF. BenlaghaK. CamaraN.O.S. LeiJ. FilatovA. LiuC. The role of dendritic cells in COVID-19 infection.Emerg. Microbes Infect.2023121219501910.1080/22221751.2023.2195019 36946172
    [Google Scholar]
  22. Pérez-GómezA. VitalléJ. Gasca-CapoteC. Gutierrez-ValenciaA. Trujillo-RodriguezM. Serna-GallegoA. Muñoz-MuelaE. Jiménez-LeonM.R. Rafii-El-Idrissi BenhniaM. Rivas-JeremiasI. SotomayorC. Roca-OportoC. EspinosaN. Infante-DomínguezC. Crespo-RivasJ.C. Fernández-VillarA. Pérez-GonzálezA. López-CortésL.F. PovedaE. Ruiz-MateosE. CisnerosJ.M. Salto-AlejandreS. Berastegui-CabreraJ. Camacho-MartínezP. Infante-DomínguezC. Carretero-LedesmaM. Crespo-RivasJ.C. MárquezE. LomasJ.M. BuenoC. AmayaR. LepeJ.A. PachónJ. CorderoE. Sánchez-CéspedesJ. Aguilar-GuisadoM. AguileraA. AguileraC. Aldabo-PallasT. Alfaro-LaraV. AmodeoC. AmpueroJ. AvilésM.D. AsensioM. Barón-FrancoB. Barrera-PulidoL. Bellido-AlbaR. Bernabeu-WittelM. Caballero-ErasoC. CabreraM. CalderónE. Carbajal-GuerreroJ. Cid-CumplidoM. Corcia-PalomoY. DelgadoJ. Domínguez-PetitA. DenizA. Dusseck-BrutusR. Escoresca-OrtegaA. EspinosaF. EspinosaN. EspinozaM. Ferrándiz-MillónC. FerrerM. FerrerT. Gallego-TexeiraI. Gámez-ManceraR. GarcíaE. García-DelgadoH. García-GutiérrezM. Gascón-CastilloM.L. González-EstradaA. GonzálezD. Gómez-GonzálezC. González-LeónR. Grande-CabrerizoC. GutiérrezS. Hernández-QuilesC. Herrera-MeleroI.C. Herrero-RomeroM. JaraL. Jiménez-JuanC. Jiménez-JorgeS. Jiménez-SánchezM. Lanseros-TenlladoJ. LópezC. LópezI. López-BarriosÁ. López-CortésL.F. Luque-MárquezR. Macías-GarcíaD. Martín-GutiérrezG. Martín-VillénL. MolinaJ. MorilloA. Navarro-AmuedoM.D. Nieto-MartínD. OrtegaF. Paniagua-GarcíaM. Peña-RodríguezA. PérezE. PoyatoM. Praena-SegoviaJ. RíosR. Roca-OportoC. RodríguezJ.F. Rodríguez-HernándezM.J. Rodríguez-SuárezS. Rodríguez-VillodresÁ. Romero-RodríguezN. RuizR. de AzuaZ.R. SalamancaC. SánchezS. Sánchez-MontagutV.M. SotomayorC. BenjumeaA.S. ToralJ. Dendritic cell deficiencies persist seven months after SARS-CoV-2 infection.Cell. Mol. Immunol.20211892128213910.1038/s41423‑021‑00728‑2 34290398
    [Google Scholar]
  23. GulharR. AshrafM.A. JialalI. Physiology, acute phase reactants.StatPearls.Treasure Island (FL)StatPearls Publishing2023 30137854
    [Google Scholar]
  24. di FloraD.C. DionizioA. PereiraH.A.B.S. GarbieriT.F. GrizzoL.T. DionisioT.J. LeiteA.L. Silva-CostaL.C. BuzalafN.R. ReisF.N. PereiraV.B.R. RosaD.M.C. dos SantosC.F. BuzalafM.A.R. Analysis of plasma proteins involved in inflammation, immune response/complement system, and blood coagulation upon admission of COVID-19 patients to hospital may help to predict the prognosis of the disease.Cells20231212160110.3390/cells12121601 37371071
    [Google Scholar]
  25. LuzM.S. da Silva JúniorR.T. Santos de SantanaG.A. RodriguesG.S. CrivellaroH.L. CalmonM.S. dos SantosC.F.S.M. SilvaL.G.O. FerreiraQ.R. MotaG.R. HeimH. SilvaF.A.F. de BritoB.B. de MeloF.F. Molecular and serology methods in the diagnosis of COVID-19: An overview.World J. Methodol.2022123839110.5662/wjm.v12.i3.83 35721247
    [Google Scholar]
  26. OngD.S.Y. FragkouP.C. SchweitzerV.A. ChemalyR.F. MoschopoulosC.D. SkevakiC. How to interpret and use COVID-19 serology and immunology tests.Clin. Microbiol. Infect.202127798198610.1016/j.cmi.2021.05.001
    [Google Scholar]
  27. EjaziS.A. GhoshS. AliN. Antibody detection assays for COVID-19 diagnosis: An early overview.Immunol. Cell Biol.2021991213310.1111/imcb.12397 32864735
    [Google Scholar]
  28. Guevara-HoyerK. Fuentes-AntrásJ. De la Fuente-MuñozE. Rodríguez de la PeñaA. ViñuelaM. Cabello-ClotetN. EstradaV. CulebrasE. Delgado-IribarrenA. Martínez-NovilloM. TorrejónM.J. Pérez de DiegoR. Fernández-ArqueroM. OcañaA. Pérez-SeguraP. Sánchez-RamónS. Serological Tests in the Detection of SARS-CoV-2 Antibodies.Diagnostics (Basel)202111467810.3390/diagnostics11040678 33918840
    [Google Scholar]
  29. GrzelakL. TemmamS. PlanchaisC. DemeretC. TondeurL. HuonC. Guivel-BenhassineF. StaropoliI. ChazalM. DuflooJ. PlanasD. BuchrieserJ. RajahM.M. RobinotR. PorrotF. AlbertM. ChenK.Y. Crescenzo-ChaigneB. DonatiF. AnnaF. SouqueP. GransagneM. BellalouJ. NowakowskiM. BackovicM. BouadmaL. Le FevreL. Le HingratQ. DescampsD. PourbaixA. LaouénanC. GhosnJ. YazdanpanahY. BesombesC. JollyN. Pellerin-FernandesS. ChenyO. UngeheuerM.N. MellonG. MorelP. RollandS. ReyF.A. BehillilS. EnoufV. LemaitreA. CréachM.A. PetresS. EscriouN. CharneauP. FontanetA. HoenB. BruelT. EloitM. MouquetH. SchwartzO. van der WerfS. A comparison of four serological assays for detecting anti–SARS-CoV-2 antibodies in human serum samples from different populations.Sci. Transl. Med.202012559eabc310310.1126/scitranslmed.abc3103 32817357
    [Google Scholar]
  30. RostamzadehD. MortezagholiS. AlinejadM. JooyaS.R. EskandarianM. MetvaeiA. VafaeiS. AboulghasemiH. YounesiV. ShabaniM. Serological assay for anti-SARS-CoV-2 antibodies improves sensitivity of diagnosis of COVID-19 patients.Med. Microbiol. Immunol. (Berl.)20212105-628328910.1007/s00430‑021‑00721‑6 34564742
    [Google Scholar]
  31. CostanzoM. CaterinoM. FedeleR. CeveniniA. PontilloM. BarraL. RuoppoloM. COVIDomics: The proteomic and metabolomic signatures of COVID-19.Int. J. Mol. Sci.2022235241410.3390/ijms23052414 35269564
    [Google Scholar]
  32. McArdleA. WashingtonK.E. Chazarin OrgelB. BinekA. ManaloD.M. RivasA. AyresM. PandeyR. PhebusC. RaedscheldersK. Fert-BoberJ. Van EykJ.E. Discovery proteomics for COVID-19: Where we are now.J. Proteome Res.202120104627463910.1021/acs.jproteome.1c00475 34550702
    [Google Scholar]
  33. ShuT. NingW. WuD. XuJ. HanQ. HuangM. ZouX. YangQ. YuanY. BieY. PanS. MuJ. HanY. YangX. ZhouH. LiR. RenY. ChenX. YaoS. QiuY. ZhangD.Y. XueY. ShangY. ZhouX. Plasma proteomics identify biomarkers and pathogenesis of COVID-19.Immunity202053511081122.e510.1016/j.immuni.2020.10.008 33128875
    [Google Scholar]
  34. HaasP. MuralidharanM. KroganN.J. KaakeR.M. HüttenhainR. Proteomic approaches to study SARS-CoV-2 biology and COVID-19 pathology.J. Proteome Res.20212021133115210.1021/acs.jproteome.0c00764 33464917
    [Google Scholar]
  35. CiccosantiF. AntonioliM. SacchiA. NotariS. FarinaA. BeccaceceA. FustoM. VergoriA. D’OffiziG. TagliettiF. AntinoriA. NicastriE. MarchioniL. PalmieriF. IppolitoG. PiacentiniM. AgratiC. FimiaG.M. Proteomic analysis identifies a signature of disease severity in the plasma of COVID-19 pneumonia patients associated to neutrophil, platelet and complement activation.Clin. Proteomics20221913810.1186/s12014‑022‑09377‑7 36348270
    [Google Scholar]
  36. FilbinM.R. MehtaA. SchneiderA.M. KaysK.R. GuessJ.R. GentiliM. FenyvesB.G. CharlandN.C. GonyeA.L.K. GushterovaI. KhannaH.K. LaSalleT.J. Lavin-ParsonsK.M. LilleyB.M. LodensteinC.L. ManakongtreecheepK. MargolinJ.D. McKaigB.N. Rojas-LopezM. RussoB.C. SharmaN. TantivitJ. ThomasM.F. GersztenR.E. HeimbergG.S. HooverP.J. LiebD.J. LinB. NgoD. PelkaK. ReyesM. SmillieC.S. WaghrayA. WoodT.E. ZajacA.S. JenningsL.L. GrundbergI. BhattacharyyaR.P. ParryB.A. VillaniA.C. Sade-FeldmanM. HacohenN. GoldbergM.B. Longitudinal proteomic analysis of severe COVID-19 reveals survival-associated signatures, tissue-specific cell death, and cell-cell interactions.Cell Rep. Med.20212510028710.1016/j.xcrm.2021.100287 33969320
    [Google Scholar]
  37. YuS. LiX. XinZ. SunL. ShiJ. Proteomic insights into SARS-CoV-2 infection mechanisms, diagnosis, therapies and prognostic monitoring methods.Front. Immunol.20221392338710.3389/fimmu.2022.923387 36203586
    [Google Scholar]
  38. CañasB. López-FerrerD. Ramos-FernándezA. CamafeitaE. CalvoE. Mass spectrometry technologies for proteomics.Brief. Funct. Genomics Proteomics20064429532010.1093/bfgp/eli002 17202122
    [Google Scholar]
  39. BhattM. RaiV. KumarA. KiranA.K. AvastheR.K. SDS-PAGE and Western Blotting: Basic Principles and Protocol.Springer2022313328
    [Google Scholar]
  40. SugiyamaY. UezatoY. Analysis of protein kinases by Phos-tag SDS-PAGE.J. Proteomics202225510448510.1016/j.jprot.2022.104485 35065289
    [Google Scholar]
  41. Torres-SangiaoE. Leal RodriguezC. García-RiestraC. Application and perspectives of MALDI-TOF mass spectrometry in clinical microbiology laboratories.Microorganisms202197153910.3390/microorganisms9071539
    [Google Scholar]
  42. FalknerJ.A. KachmanM. VeineD.M. WalkerA. StrahlerJ.R. AndrewsP.C. Validated MALDI-TOF/TOF mass spectra for protein standards.J. Am. Soc. Mass Spectrom.200718585085510.1016/j.jasms.2007.01.010 17329120
    [Google Scholar]
  43. DonchevaN.T. MorrisJ.H. GorodkinJ. JensenL.J. Cytoscape StringApp: Network analysis and visualization of proteomics data.J. Proteome Res.201918262363210.1021/acs.jproteome.8b00702 30450911
    [Google Scholar]
  44. DonchevaN.T. MorrisJ.H. HolzeH. KirschR. NastouK.C. Cuesta-AstrozY. RatteiT. SzklarczykD. von MeringC. JensenL.J. Cytoscape stringApp 2.0: Analysis and visualization of heterogeneous biological networks.J. Proteome Res.202322263764610.1021/acs.jproteome.2c00651 36512705
    [Google Scholar]
  45. GrantM.C. GeogheganL. ArbynM. MohammedZ. McGuinnessL. ClarkeE.L. WadeR.G. The prevalence of symptoms in 24,410 adults infected by the novel coronavirus (SARS-CoV-2; COVID-19): A systematic review and meta-analysis of 148 studies from 9 countries.PLoS One2020156e023476510.1371/journal.pone.0234765 32574165
    [Google Scholar]
  46. KadirveluB. BurceaG. QuintJ.K. CostelloeC.E. FaisalA.A. Variation in global COVID-19 symptoms by geography and by chronic disease: A global survey using the COVID-19 Symptom Mapper.EClinicalMedicine20224510131710.1016/j.eclinm.2022.101317 35265823
    [Google Scholar]
  47. UnimB. PalmieriL. Lo NoceC. BrusaferroS. OnderG. Prevalence of COVID-19-related symptoms by age group.Aging Clin. Exp. Res.20213341145114710.1007/s40520‑021‑01809‑y 33650071
    [Google Scholar]
  48. Fernández-de-las-PeñasC. Palacios-CeñaD. Gómez-MayordomoV. FlorencioL.L. CuadradoM.L. Plaza-ManzanoG. Navarro-SantanaM. Prevalence of post-COVID-19 symptoms in hospitalized and non-hospitalized COVID-19 survivors: A systematic review and meta-analysis.Eur. J. Intern. Med.202192557010.1016/j.ejim.2021.06.009 34167876
    [Google Scholar]
  49. LiuK. ChenY. LinR. HanK. Clinical features of COVID-19 in elderly patients: A comparison with young and middle-aged patients.J. Infect.2020806e14e1810.1016/j.jinf.2020.03.005 32171866
    [Google Scholar]
  50. ZhengX. DuanR. GongF. WeiX. DongY. ChenR. yue Liang, M.; Tang, C.; Lu, L. Accuracy of serological tests for COVID-19: A systematic review and meta-analysis.Front. Public Health20221092352510.3389/fpubh.2022.923525 36589993
    [Google Scholar]
  51. SobhaniK. ChengS. BinderR.A. MantisN.J. CrawfordJ.M. OkoyeN. BraunJ.G. JoungS. WangM. LozanskiG. KingC.L. RobackJ.D. GrangerD.A. BoppanaS.B. KargerA.B. Clinical utility of SARS-CoV-2 serological testing and defining a correlate of protection.Vaccines (Basel)20231111164410.3390/vaccines11111644 38005976
    [Google Scholar]
  52. LongQ-x. DengH-j. ChenJ. HuJ-l. LiuB-z. LiaoP. LinY. YuL-h. MoZ. XuY-y. Antibody responses to SARS-CoV-2 in COVID-19 patients: The perspective application of serological tests in clinical practice.MedRxiv20202020.200310.1101/2020.03.18.20038018
    [Google Scholar]
  53. JinY. WangM. ZuoZ. FanC. YeF. CaiZ. WangY. CuiH. PanK. XuA. Diagnostic value and dynamic variance of serum antibody in coronavirus disease 2019.Int. J. Infect. Dis.202094495210.1016/j.ijid.2020.03.065 32251798
    [Google Scholar]
  54. HuangY. YangC. XuX. XuW. LiuS. Structural and functional properties of SARS-CoV-2 spike protein: Potential antivirus drug development for COVID-19.Acta Pharmacol. Sin.20204191141114910.1038/s41401‑020‑0485‑4 32747721
    [Google Scholar]
  55. BandyopadhyayA.R. ChatterjeeD. GhoshK. Haptoglobin (hp) polymorphism and covid-19: A review.Innov Int J Med Pharm Sci2021614
    [Google Scholar]
  56. di MasiA. De SimoneG. CiaccioC. D’OrsoS. ColettaM. AscenziP. Haptoglobin: From hemoglobin scavenging to human health.Mol. Aspects Med.20207310085110.1016/j.mam.2020.100851 32660714
    [Google Scholar]
  57. CooperC.E. SchaerD.J. BuehlerP.W. WilsonM.T. ReederB.J. SilkstoneG. SvistunenkoD.A. BulowL. AlayashA.I. Haptoglobin binding stabilizes hemoglobin ferryl iron and the globin radical on tyrosine β 145.Antioxid. Redox Signal.201318172264227310.1089/ars.2012.4547.test 22702311
    [Google Scholar]
  58. BuehlerP.W. HumarR. SchaerD.J. Haptoglobin therapeutics and compartmentalization of cell-free hemoglobin toxicity.Trends Mol. Med.202026768369710.1016/j.molmed.2020.02.004 32589936
    [Google Scholar]
  59. Yağcı, S.; Serin, E.; Acicbe, Ö.; Zeren, M.İ.; Odabaşı M.S. The relationship between serum erythropoietin, hepcidin, and haptoglobin levels with disease severity and other biochemical values in patients with COVID-19.Int. J. Lab. Hematol.202143S114215110.1111/ijlh.13479 33554466
    [Google Scholar]
  60. NaryznyS.N. LeginaO.K. Haptoglobin as a Biomarker. Biochem. (Mosc.) Suppl. Ser. B Biomed.Chem202115318419810.1134/S1990750821030069 34422226
    [Google Scholar]
  61. PisoschiA.M. PopA. IordacheF. StancaL. GeicuO.I. BilteanuL. SerbanA.I. Antioxidant, anti-inflammatory and immunomodulatory roles of vitamins in COVID-19 therapy.Eur. J. Med. Chem.202223211417510.1016/j.ejmech.2022.114175 35151223
    [Google Scholar]
  62. MomeniM. RashidifarM. BalamF.H. RoointanA. GholaminejadA. A comprehensive analysis of gene expression profiling data in COVID-19 patients for discovery of specific and differential blood biomarker signatures.Sci. Rep.2023131559910.1038/s41598‑023‑32268‑2 37019895
    [Google Scholar]
  63. OnievaJ.L. XiaoQ. Berciano-GuerreroM.Á. Laborda-IllanesA. de AndreaC. ChavesP. PiñeiroP. Garrido-ArandaA. GallegoE. SojoB. GálvezL. Chica-ParradoR. PrietoD. Pérez-RuizE. FarngrenA. LozanoM.J. ÁlvarezM. JiménezP. Sánchez-MuñozA. OliverJ. CoboM. AlbaE. BarragánI. High IGKC-expressing intratumoral plasma cells predict response to immune checkpoint blockade.Int. J. Mol. Sci.20222316912410.3390/ijms23169124 36012390
    [Google Scholar]
  64. LohrM. EdlundK. BotlingJ. HammadS. HellwigB. OthmanA. BerglundA. LambeM. HolmbergL. EkmanS. BergqvistM. PonténF. CadenasC. MarchanR. HengstlerJ.G. RahnenführerJ. MickeP. The prognostic relevance of tumour-infiltrating plasma cells and immunoglobulin kappa C indicates an important role of the humoral immune response in non-small cell lung cancer.Cancer Lett.2013333222222810.1016/j.canlet.2013.01.036 23370224
    [Google Scholar]
  65. YuH. LiM. WenX. YangJ. LiangX. LiX. BaoX. ShuJ. RenX. ChenW. LiZ. LiY. Elevation of α-1,3 fucosylation promotes the binding ability of TNFR1 to TNF-α and contributes to osteoarthritic cartilage destruction and apoptosis.Arthritis Res. Ther.20222419310.1186/s13075‑022‑02776‑z 35488351
    [Google Scholar]
  66. ZhangN.Z. ZhaoL.F. ZhangQ. FangH. SongW.L. LiW.Z. GeY.S. GaoP. Core fucosylation and its roles in gastrointestinal glycoimmunology.World J. Gastrointest. Oncol.20231571119113410.4251/wjgo.v15.i7.1119 37546555
    [Google Scholar]
  67. LiaoC. AnJ. YiS. TanZ. WangH. LiH. GuanX. LiuJ. WangQ. FUT8 and protein core fucosylation in tumours: From diagnosis to treatment.J. Cancer202112134109412010.7150/jca.58268 34093814
    [Google Scholar]
  68. ChengW. HornungR. XuK. YangC. LiJ. Complement C3 identified as a unique risk factor for disease severity among young COVID-19 patients in Wuhan, China.Sci. Rep.2021111785710.1038/s41598‑021‑82810‑3 33846344
    [Google Scholar]
  69. ZelekW.M. HarrisonR.A. Complement and COVID-19: Three years on, what we know, what we don’t know, and what we ought to know.Immunobiology2023228315239310.1016/j.imbio.2023.152393 37187043
    [Google Scholar]
  70. JiangH. ChenQ. ZhengS. GuoC. LuoJ. WangH. ZhengX. WengZ. Association of complement C3 with clinical deterioration among hospitalized patients with COVID-19.Int. J. Gen. Med.20221584985710.2147/IJGM.S348519 35115811
    [Google Scholar]
  71. Santiesteban-LoresL.E. AmamuraT.A. da SilvaT.F. MidonL.M. CarneiroM.C. IsaacL. BaviaL. A double edged-sword - The Complement System during SARS-CoV-2 infection.Life Sci.202127211924510.1016/j.lfs.2021.119245 33609539
    [Google Scholar]
  72. ZinelluA. MangoniA.A. Serum Complement C3 and C4 and COVID-19 severity and mortality: A systematic review and meta-analysis with meta-regression.Front. Immunol.20211269608510.3389/fimmu.2021.696085 34163491
    [Google Scholar]
  73. LuC.L. KimJ. Craniofacial diseases caused by defects in intracellular trafficking.Genes (Basel)202112572610.3390/genes12050726 34068038
    [Google Scholar]
  74. OsmanogluÖ. GuptaS.K. AlmasiA. YagciS. SrivastavaM. AraujoG.H.M. NagyZ. BalkenholJ. DandekarT. Signaling network analysis reveals fostamatinib as a potential drug to control platelet hyperactivation during SARS-CoV-2 infection.Front. Immunol.202314128534510.3389/fimmu.2023.1285345 38187394
    [Google Scholar]
  75. AtesK.M. WangT. MorelandT. Veeranan-KarmegamR. MaM. JeterC. AnandP. WenzelW. KimH.G. WolfeL.A. StephenJ.A. AdamsD.R. MarkelloT. TifftC.J. SettlageR. GahlW.A. GonsalvezG.B. MalicdanM.C. Flanagan-SteetH. PanY.A. Deficiency in the endocytic adaptor proteins PHETA1/2 impair renal and craniofacial development.Dis. Model. Mech.2020135dmm.04191310.1242/dmm.041913 32152089
    [Google Scholar]
  76. PirruccelloM. De CamilliP. Inositol 5-phosphatases: Insights from the Lowe syndrome protein OCRL.Trends Biochem. Sci.201237413414310.1016/j.tibs.2012.01.002 22381590
    [Google Scholar]
/content/journals/cp/10.2174/0115701646312544240924204420
Loading
/content/journals/cp/10.2174/0115701646312544240924204420
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keyword(s): bioinformatic; biomarker discovery; Covid-19; MALDI-TOF; proteomics; SDS_PAGE
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test