Skip to content
2000
image of Combating Cholera in Syria: A Comprehensive Approach to Clean Water, Sanitation, and Vaccination

Abstract

Introduction

This study presents a comprehensive strategy for combating cholera in Syria, with a focus on clean water initiatives, treatment, surveillance, and vaccination, and the critical role of clean water in halting disease transmission.

Methods

The review design has involved a thorough research and review of existing literature and data on cholera outbreaks in Syria. It has also included an analysis of vaccination and treatment options, as well as an exploration of cholera surveillance systems and clean water initiatives.

Results

Key findings have indicated that prioritizing access to clean water through community water management plans and water purification technologies is essential for cholera prevention. Case studies, supported by epidemiological data up to September 2023, have underscored the importance of clean water in stopping cholera spread.

Conclusion

The study has highlighted the urgent need for a comprehensive strategy to protect millions in Syria through enhanced water, sanitation, and vaccination measures. It has advocated for improved cholera surveillance and response systems, along with continued efforts to ensure clean water access for all.

Loading

Article metrics loading...

/content/journals/covid/10.2174/0126667975342773241120054659
2024-12-03
2025-01-19
Loading full text...

Full text loading...

References

  1. Parija S.C. Vibrio, Aeromonas and Plesiomonas. Microbiology and Immunology. Springer 2023 563 578 10.1007/978‑981‑19‑3315‑8_39
    [Google Scholar]
  2. Montero D.A. Vidal R.M. Velasco J. Vibrio cholerae, classification, pathogenesis, immune response, and trends in vaccine development. Front. Med. (Lausanne) 2023 10 1155751 10.3389/fmed.2023.1155751 37215733
    [Google Scholar]
  3. Muraya M. Comparison of selected rapid diagnostic kits and stool culture in cholera diagnosis among patients presenting with diarrhoea symptoms attending nairobi womens hospital (Adams). Thesis, JKUAT-COHES> 2023
    [Google Scholar]
  4. Ilic I. Ilic M. Global patterns of trends in cholera mortality. Trop. Med. Infect. Dis. 2023 8 3 169 10.3390/tropicalmed8030169 36977170
    [Google Scholar]
  5. Ali A. Parisi A. Conversano M.C. Food-borne bacteria associated with seafoods: A brief review. J Food Qual Hazards Cont 2020 10.18502/jfqhc.7.1.2446
    [Google Scholar]
  6. Brogren C.H. Louis Pasteur—The life of a controversial scientist with a prepared mind, driven by curiosity, motivation, and competition. Wiley 2024 7 30
    [Google Scholar]
  7. Asamoah EK Isolation and antibiotic susceptibility of vibrio cholerae from various water sources in Makurdi, Nigeria. IJARIIE 2023 9 6
    [Google Scholar]
  8. Xu J. Abe K. Kodama T. The role of morphological adaptability in Vibrio cholerae’s motility and pathogenicity. bioRxiv 2024
    [Google Scholar]
  9. Jamil M. Abdullah S. Talib F. Vibrionaceae and fish zoonosis. Faisalabad Unique Scientific Publishers 2023 468 480
    [Google Scholar]
  10. Handzel T. Water, sanitation, and hygiene (WASH). Health in Humanitarian Emergencies: Principles and Practice for Public Health and Healthcare Practitioners. Cambridge University Press 2018 136 160
    [Google Scholar]
  11. Maurya V.K. Kumar S. Saxena S.K. Conventional Treatments of Water-Associated Infectious Diseases. Water-Associated Infectious Diseases 2020 105 118 10.1007/978‑981‑13‑9197‑2_11
    [Google Scholar]
  12. Nguyen M. Wu T.H. Danielson K.J. Khan N.M. Zhang J.Z. Craig L. Mechanism of secretion of TcpF by the Vibrio cholerae toxin-coregulated pilus. Proc. Natl. Acad. Sci. USA 2023 120 16 e2212664120 10.1073/pnas.2212664120 37040409
    [Google Scholar]
  13. Kamareddine L. Wong A.C.N. Vanhove A.S. Activation of Vibrio cholerae quorum sensing promotes survival of an arthropod host. Nat. Microbiol. 2017 3 2 243 252 10.1038/s41564‑017‑0065‑7 29180725
    [Google Scholar]
  14. Ganesan D. Gupta S.S. Legros D. Cholera surveillance and estimation of burden of cholera. Vaccine 2020 38 Suppl. 1 A13 A17 10.1016/j.vaccine.2019.07.036 31326254
    [Google Scholar]
  15. Davide O. Martini M. The insidious return of cholera in the Eastern Mediterranean Region, Lebanon and Syria: A worrying signal! Past, present, and future forthcoming. J. Prev. Med. Hyg. 2023 64 1 E27 E33 37293457
    [Google Scholar]
  16. Baker-Austin C. Oliver J.D. Alam M. Vibrio spp. infections. Nat. Rev. Dis. Primers 2018 4 1 1 19 10.1038/s41572‑018‑0005‑8 30002421
    [Google Scholar]
  17. Shehu B. Nazim F. Clean water and sanitation for All: Study on SDGs 6.1 and 6.2 targets with state policies and interventions in Nigeria. Environ Sci Proc 2022 15 1 71
    [Google Scholar]
  18. Persaud A. Day G. Ventriglio A. Geopolitical factors, foreign aid and mental health II: Value for money. Int. J. Soc. Psychiatry 2018 64 8 786 798 10.1177/0020764018808552 30760106
    [Google Scholar]
  19. Bhuiyan T.R. Qadri F. Chowdhury F. Cholera: Resurgence of fatal yet preventable disease. BMJ 2023 382 1831
    [Google Scholar]
  20. Tabor R. Almhawish N. Aladhan I. Disruption to water supply and waterborne communicable diseases in northeast Syria: A spatiotemporal analysis. Confl. Health 2023 17 1 4 10.1186/s13031‑023‑00502‑3 36739427
    [Google Scholar]
  21. Tabor R. Almhawish N. Aladhan I. Water disruption and waterborne communicable diseases in northeast Syria: A spatiotemporal analysis. Confl. Health 2022 17 1 4 10.21203/rs.3.rs‑2031442/v1
    [Google Scholar]
  22. Hmaideh A. Tarnas M.C. Zakaria W. Geographical origin, WASH Access, and clinical descriptions for patients admitted to a cholera treatment center in northwest Syria between october and december 2022. Avicenna J. Med. 2023 13 4 223 229 10.1055/s‑0043‑1776045 38144910
    [Google Scholar]
  23. Shanmugam K. Megharethnam K. Jayappriyan K. Water and access to sanitation and hygiene. Water, the Environment and the Sustainable Development Goals. Elsevier 2024 67 84 10.1016/B978‑0‑443‑15354‑9.00018‑9
    [Google Scholar]
  24. Vambe S. Rwizi S. Hough E. Cholera outbreak–an overview of management and prevention. S. Afr. Pharm. J. 2023 90 4 24 28
    [Google Scholar]
  25. Abdi AM Abdi KH Epidemiology and molecular biology of Vibrio Cholerae O139.
    [Google Scholar]
  26. Kauna R. Sobi K. Pameh W. Vince J.D. Duke T. Oral rehydration in children with acute diarrhoea and moderate dehydration—effectiveness of an ORS tolerance test. J. Trop. Pediatr. 2019 65 6 583 591 10.1093/tropej/fmz017 31330028
    [Google Scholar]
  27. Schwartz D. Anoko J. Abramowitz S. Pregnant in the Time of Ebola:Women and Their Children in the 2013-2015 West African Epidemic. Springer 2015 339 364
    [Google Scholar]
  28. Pietroni M.A.C. Case management of cholera. Vaccine 2020 38 Suppl. 1 A105 A109 10.1016/j.vaccine.2019.09.098 31668817
    [Google Scholar]
  29. Ahmed S. Ahmed M.Z. Rafique S. Recent approaches for downplaying antibiotic resistance: Molecular mechanisms. BioMed Res. Int. 2023 2023 5250040 10.1155/2023/5250040
    [Google Scholar]
  30. Julia Lynch M. Consensus meeting on international standards for oral whole cell killed cholera vaccines Vaccin Res Open J 2019 4 1 12-8 10.17140/VROJ‑4‑112
    [Google Scholar]
  31. Jamgochian H.H. Zamakhaev M.V. Sluchanko N.N. Goncharenko A.V. Shumkov M.S. Development of heterologous expression system and optimization of the method of cholera toxin β-Subunit production in E. coli. Biochemistry (Mosc.) 2023 88 9 1304 1317 10.1134/S0006297923090109 37770397
    [Google Scholar]
  32. Chavda V.P. Vuppu S. Mishra T. Combatting infectious diarrhea: Innovations in treatment and vaccination strategies. Expert Rev. Vaccines 2024 23 1 246 265 10.1080/14760584.2023.2295015 38372023
    [Google Scholar]
  33. Blake A. Walder A. Hanks E. Impact of a multi-pronged cholera intervention in an endemic setting. medRxiv 2023 10.1101/2023.12.14.23299970
    [Google Scholar]
  34. Organization W.H. International coordinating group on vaccine provision for cholera: Report of the annual meeting 23-24 September 2020. In: World Health Organization. 2021
    [Google Scholar]
  35. Organization WH WHO’s response to health emergencies: Annual report 2022. World Health Organization 2023 1 46
    [Google Scholar]
  36. Li Z. Pang B. Wang D. Expanding dynamics of the virulence-related gene variations in the toxigenic Vibrio cholerae serogroup O1. BMC Genomics 2019 20 1 360 10.1186/s12864‑019‑5725‑y 31072300
    [Google Scholar]
  37. Akolkar J.K. Matson J.S. Stress responses in pathogenic Vibrios and their role in host and environmental survival.Vibrio spp Infections. Springer 2023 213 232 10.1007/978‑3‑031‑22997‑8_11
    [Google Scholar]
  38. Ramamurthy T. Nandy R.K. Mukhopadhyay A.K. Virulence regulation and innate host response in the pathogenicity of Vibrio cholerae. Front. Cell. Infect. Microbiol. 2020 10 572096 10.3389/fcimb.2020.572096 33102256
    [Google Scholar]
  39. Wood T.E. Aksoy E. Hachani A. From welfare to warfare: The arbitration of host-microbiota interplay by the type VI secretion system. Front. Cell. Infect. Microbiol. 2020 10 587948 10.3389/fcimb.2020.587948 33194832
    [Google Scholar]
  40. Muhammad A.Y. Amonov M. Murugaiah C. Baig A.A. Yusoff M. Intestinal colonization against Vibrio cholerae: Host and microbial resistance mechanisms. AIMS Microbiol. 2023 9 2 346 374 10.3934/microbiol.2023019 37091815
    [Google Scholar]
  41. Lloyd C.J. Guo S. Kinrade B. Characterization of the peptide-binding domain of FrhA in Vibrio cholerae. Proc. Natl. Acad. Sci. 2023 120 e2308238120
    [Google Scholar]
  42. Sajeevan A. Ramamurthy T. Solomon A.P. Vibrio cholerae virulence and its suppression through the quorum-sensing system. Crit. Rev. Microbiol. 2024 1 22 10.1080/1040841X.2024.2320823 38441045
    [Google Scholar]
  43. Islam M.T. Khan A.I. Sayeed M.A. Field evaluation of a locally produced rapid diagnostic test for early detection of cholera in Bangladesh. PLoS Negl. Trop. Dis. 2019 13 1 e0007124 10.1371/journal.pntd.0007124 30703097
    [Google Scholar]
  44. Buliva E. Elnossery S. Okwarah P. Tayyab M. Brennan R. Abubakar A. Cholera prevention, control strategies, challenges and World Health Organization initiatives in the eastern mediterranean region: A narrative review. Heliyon 2023 9 5 e15598 10.1016/j.heliyon.2023.e15598 37153427
    [Google Scholar]
  45. Al-Nuaim M.A. Alwasiti A.A. Shnain Z.Y. The photocatalytic process in the treatment of polluted water. Chem. Zvesti 2023 77 2 677 701 10.1007/s11696‑022‑02468‑7 36213320
    [Google Scholar]
  46. García-Vara M. Orlando-Véliz D. Bonansea R.I. Postigo C. López de Alda M. Prioritization of organic contaminants in a reclaimed water irrigation system using wide-scope LC-HRMS screening. J. Hazard. Mater. 2023 459 132119 10.1016/j.jhazmat.2023.132119 37543020
    [Google Scholar]
  47. Mishra RK Fresh water availability and its global challenge. Br j multidiscip adv stud 2023 4 3 1 78 10.37745/bjmas.2022.0208
    [Google Scholar]
  48. Li X. Cai M. Wang L. Niu F. Yang D. Zhang G. Evaluation survey of microbial disinfection methods in UV-LED water treatment systems. Sci. Total Environ. 2019 659 1415 1427 10.1016/j.scitotenv.2018.12.344 31096352
    [Google Scholar]
  49. Phiri D.B. Bavumiragira J.P. Yin H. Efficacy of solar water disinfection treatment system in improving rural and peri-urban household drinking water quality and reducing waterborne diarrhoeal diseases. Aqua (Lond) 2023 72 7 1288 1308 10.2166/aqua.2023.086
    [Google Scholar]
  50. Wang J.J. Zhou Y.Y. Xiang J.L. Disinfection of wastewater by a complete equipment based on a novel ultraviolet light source of microwave discharge electrodeless lamp: Characteristics of bacteria inactivation, reactivation and full-scale studies. Sci. Total Environ. 2024 917 170200 10.1016/j.scitotenv.2024.170200 38296065
    [Google Scholar]
  51. Enwemeka C.S. Baker T.L. Bumah V.V. The role of UV and blue light in photo-eradication of microorganisms. J Photochem Photobiol 2021 8 100064 10.1016/j.jpap.2021.100064
    [Google Scholar]
  52. Ball R. Viruses in all dimensions: How an information code controls viruses, software and microorganisms. Springer Nature 2023 10.1007/978‑3‑658‑38826‑3
    [Google Scholar]
  53. Chen X. Chen Z. Ngo H.H. Comparison of inactivation characteristics between Gram-positive and Gram-negative bacteria in water by synergistic UV and chlorine disinfection. Environ. Pollut. 2023 333 122007 10.1016/j.envpol.2023.122007 37302789
    [Google Scholar]
  54. Kakoti S. Optimization of galtneset reverse osmosis plant-optimization of the RO process for a reduced permeate flow and testing the performance using computational program WAVE. Thesis, Chalmers University of Technology 2023
    [Google Scholar]
  55. Kumar R. Shakir A. Sandanayake S. Fluoride as a global groundwater contaminant. Inorganic Contaminants and Radionuclides. Elsevier 2024 319 350 10.1016/B978‑0‑323‑90400‑1.00010‑0
    [Google Scholar]
  56. Rabie M. Ali A.Y.M. Abo-Zahhad E.M. New hybrid concentrated photovoltaic/membrane distillation unit for simultaneous freshwater and electricity production. Desalination 2023 559 116630 10.1016/j.desal.2023.116630
    [Google Scholar]
  57. J. O. Optimisation of reverse osmosis reject in water treatment operation: A case study of mtu water treatment plant. Thesis, Mountain Top University 2022
    [Google Scholar]
  58. Pezeshki H. Hashemi M. Rajabi S. Removal of arsenic as a potentially toxic nlm from drinking water by filtration: A mini review of nanofiltration and reverse osmosis techniques. Heliyon 2023 9 3 e14246 10.1016/j.heliyon.2023.e14246 36938422
    [Google Scholar]
  59. Zubair M.M. Saleem H. Zaidi S.J. Recent progress in reverse osmosis modeling: An overview. Desalination 2023 564 116705 10.1016/j.desal.2023.116705
    [Google Scholar]
  60. Ahmed M.A. Amin S. Mohamed A.A. Fouling in reverse osmosis membranes: Monitoring, characterization, mitigation strategies and future directions. Heliyon 2023 9 4 e14908 10.1016/j.heliyon.2023.e14908 37064488
    [Google Scholar]
  61. Fikana E.R. Raafi’u B. Design of water treatment system to change Brackish water into fresh water using reverse osmosis method AIP Conf Proc 2023 2580 040008 10.1063/5.0124367
    [Google Scholar]
  62. Kadhim R.A. Khudhair B.H. Jaafar M.S. Comparative study of water desalination using Reverse Osmosis (RO) and Electro-dialysis Systems (ED).Review J. Eng. 2023 29 4 61 77 10.31026/j.eng.2023.04.04
    [Google Scholar]
  63. Kordbacheh F. Heidari G. Water pollutants and approaches for their removal. Mater Chem Horizons 2023 2 2 139 153
    [Google Scholar]
  64. Chinkaka E. Chauluka F. Chinkaka R. Kachingwe B. Latif E.B. Geospatial Variability of cholera cases in Malawi based on climatic and socioeconomic influences. J. Geogr. Inf. Syst. 2024 16 1 1 20 10.4236/jgis.2024.161001
    [Google Scholar]
  65. Harfouch R.M. Alhouri A.L. Alhouri S.L. Cholera outbreak in Syria: A brief reading. Ann Clin Case Stud 2022 4 4 1065
    [Google Scholar]
  66. Albitar L. Almasri I.A. Cholera in Syria, a crisis following crises: Assessment of knowledge, attitude, and practice in a cohort of syrian population. Heliyon 2023 9 7 e18278 10.1016/j.heliyon.2023.e18278 37539115
    [Google Scholar]
  67. Haar R. Rayes D. Tappis H. The cascading impacts of attacks on health in Syria: A qualitative study of health system and community impacts. medRxiv 2023 10.1101/2023.12.18.23300154
    [Google Scholar]
  68. Hammal A. Preparing new ceramic membranes from Syrian Zeolite coated with silver nanoparticles to treatment wells water. Baghdad Sci J 2023 20 6 10.21123/bsj.2023.7620
    [Google Scholar]
  69. Akinsulie OC Olukogbe O Idris I Covid-19 and cholera coinfection and comorbidity in Africa and Asia: A systematic review and meta analysis. J glob health econ policy 2024 3 3 2023011 10.21203/rs.3.rs‑3845510/v1
    [Google Scholar]
  70. Mavrouli M. Mavroulis S. Lekkas E. An emerging health crisis in Turkey and Syria after the earthquake disaster on 6 February 2023: Risk factors, prevention and management of infectious diseases. Health Care 2023 11 7 1022
    [Google Scholar]
  71. Organization W.H. Burden of disease attributable to unsafe drinking-water, sanitation and hygiene. World Health Organization 2023
    [Google Scholar]
  72. Sharma A. Wibawa B.S.S. Andhikaputra G. Spatial analysis of food and water-borne diseases in Ahmedabad, India: Implications for urban public health planning. Acta Trop. 2024 253 107170 10.1016/j.actatropica.2024.107170 38467234
    [Google Scholar]
  73. Cherono J. Risk factors associated with recurrent cholera outbreaks in Borno and Adamawa states, northeast Nigeria Thesis, Loughborough University
    [Google Scholar]
  74. Borgomeo E. Esha Z. Jason R. Water in the shadow of conflict in the Middle East and North Africa. Ebb and flow. Washington: World Bank citations 2021
    [Google Scholar]
  75. Zhang L. Guo W. Lv C. Modern technologies and solutions to enhance surveillance and response systems for emerging zoonotic diseases. Sci One Health 2024 3 100061 10.1016/j.soh.2023.100061 39077381
    [Google Scholar]
  76. Habboush A. Ekzayez A. Gilmore B. A framework for community health worker optimisation in conflict settings: Prerequisites and possibilities from Northwest Syria. BMJ Glob. Health 2023 8 7 e011837 10.1136/bmjgh‑2023‑011837 37407227
    [Google Scholar]
/content/journals/covid/10.2174/0126667975342773241120054659
Loading
/content/journals/covid/10.2174/0126667975342773241120054659
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: clean water ; epidemiological data ; sanitation ; vaccination ; gastrointestinal illness ; Cholera
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test