Skip to content
2000
image of Neurofunctional Impacts of COVID-19: Memory Loss and Cognitive Decline and Treatment

Abstract

Although SARS-CoV-2, the virus that causes COVID-19 has been responsible for pneumonia, recent studies indicate that it also affects the kidneys, heart, and brain, among other vital organs. Evidence suggests that this virus may travel retrogradely from the olfactory epithelium to brain stem sections, causing neurological impairments in a significant number of individuals. Individuals with severe COVID-19 frequently have elevated cytokines that promote inflammation and acute respiratory failure and require frequent supportive ventilation. These factors are believed to contribute to cognitive deterioration. Severe neurological outcomes in COVID-19 patients include- paralysis, stroke, cranial nerve deficits, delirium, encephalopathy, seizures, and meningitis. The virus, with its unique structure, and a high binding affinity for the human enzyme ACE2 (used as an entry point by the virus), contributes significantly to its deadly nature. Furthermore, to address the outbreak effectively, researchers worldwide must develop precise treatment strategies. Advancing new diagnostic and treatment methods to mitigate the long-term effects of COVID-19 on cognition requires further epidemiological research and clinical experience. Additionally, by understanding the virus's impact on cognitive functions, healthcare professionals can develop targeted treatments to alleviate these severe neurological consequences.

Loading

Article metrics loading...

/content/journals/covid/10.2174/0126667975336646241216051258
2024-12-27
2025-01-19
Loading full text...

Full text loading...

References

  1. Kahn J. S. McIntosh K. History and recent advances in coronavirus discovery. Pediat. Infect. Dis. J. 2005 24 S S223 S227 10.1097/01.inf.0000188166.17324.60
    [Google Scholar]
  2. Baig A.M. Khaleeq A. Ali U. Syeda H. Evidence of the COVID-19 virus targeting the CNS: Tissue distribution, host-virus interaction, and proposed neurotropic mechanisms. ACS Chem. Neurosci. 2020 11 7 995 998 10.1021/acschemneuro.0c00122 32167747
    [Google Scholar]
  3. Mahalakshmi A.M. Ray B. Tuladhar S. Bhat A. Paneyala S. Patteswari D. Sakharkar M.K. Hamdan H. Ojcius D.M. Bolla S.R. Essa M.M. Chidambaram S.B. Qoronfleh M.W. Does COVID‐19 contribute to development of neurological disease? Immun. Inflamm. Dis. 2021 9 1 48 58 10.1002/iid3.387 33332737
    [Google Scholar]
  4. Suzuki R. Yamasoba D. Kimura I. Wang L. Kishimoto M. Ito J. Morioka Y. Nao N. Nasser H. Uriu K. Kosugi Y. Tsuda M. Orba Y. Sasaki M. Shimizu R. Kawabata R. Yoshimatsu K. Asakura H. Nagashima M. Sadamasu K. Yoshimura K. Suganami M. Oide A. Chiba M. Ito H. Tamura T. Tsushima K. Kubo H. Ferdous Z. Mouri H. Iida M. Kasahara K. Tabata K. Ishizuka M. Shigeno A. Tokunaga K. Ozono S. Yoshida I. Nakagawa S. Wu J. Takahashi M. Kaneda A. Seki M. Fujiki R. Nawai B.R. Suzuki Y. Kashima Y. Abe K. Imamura K. Shirakawa K. Takaori-Kondo A. Kazuma Y. Nomura R. Horisawa Y. Nagata K. Kawai Y. Yanagida Y. Tashiro Y. Takahashi O. Kitazato K. Hasebe H. Motozono C. Toyoda M. Tan T.S. Ngare I. Ueno T. Saito A. Butlertanaka E.P. Tanaka Y.L. Morizako N. Sawa H. Ikeda T. Irie T. Matsuno K. Tanaka S. Fukuhara T. Sato K. Attenuated fusogenicity and pathogenicity of SARS-CoV-2 Omicron variant. Nature 2022 603 7902 700 705 10.1038/s41586‑022‑04462‑1 35104835
    [Google Scholar]
  5. Lu X. Zhang L. Du H. Zhang J. Li Y.Y. Qu J. Zhang W. Wang Y. Bao S. Li Y. Wu C. Liu H. Liu D. Shao J. Peng X. Yang Y. Liu Z. Xiang Y. Zhang F. Silva R.M. Pinkerton K.E. Shen K. Xiao H. Xu S. Wong G.W.K. SARS-CoV-2 Infection in Children. N. Engl. J. Med. 2020 382 17 1663 1665 10.1056/NEJMc2005073 32187458
    [Google Scholar]
  6. Naqvi A.A.T. Fatima K. Mohammad T. Fatima U. Singh I.K. Singh A. Atif S.M. Hariprasad G. Hasan G.M. Hassan M.I. Insights into SARS-CoV-2 genome, structure, evolution, pathogenesis and therapies: Structural genomics approach. Biochim. Biophys. Acta Mol. Basis Dis. 2020 1866 10 165878 10.1016/j.bbadis.2020.165878 32544429
    [Google Scholar]
  7. Wang M.-Y. Zhao R. Gao L.-J. Gao Y.-F. Wang D.-P. Cao J.-M. SARS-CoV-2: Structure, biology, and structure-based therapeutics development. Front Cell Infect. Microbiol. 2020 10 587269 10.3389/fcimb.2020.587269
    [Google Scholar]
  8. Polatoğlu I. Oncu-Oner T. Dalman I. Ozdogan S. COVID‐19 in early 2023: Structure, replication mechanism, variants of SARS‐CoV‐2, diagnostic tests, and vaccine & drug development studies. MedComm 2023 4 2 e228 10.1002/mco2.228 37041762
    [Google Scholar]
  9. Li F. Li W. Farzan M. Harrison S.C. Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science 2005 309 5742 1864 1868 10.1126/science.1116480 16166518
    [Google Scholar]
  10. Li R. Pei S. Chen B. Song Y. Zhang T. Yang W. Shaman J. Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV-2). Science 2020 368 6490 489 493 10.1126/science.abb3221 32179701
    [Google Scholar]
  11. Walls A.C. Park Y.J. Tortorici M.A. Wall A. McGuire A.T. Veesler D. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell 2020 181 2 281 292.e6 10.1016/j.cell.2020.02.058 32155444
    [Google Scholar]
  12. Wrapp D. Wang N. Corbett K. S. Goldsmith J. A. Hsieh C. L. Abiona O. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Sci. 2020 367 1260 1263 10.1126/science.abb2507
    [Google Scholar]
  13. Letko M. Marzi A. Munster V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat. Microbiol. 2020 5 4 562 569 10.1038/s41564‑020‑0688‑y 32094589
    [Google Scholar]
  14. Shang J. Ye G. Shi K. Wan Y. Luo C. Aihara H. Geng Q. Auerbach A. Li F. Structural basis of receptor recognition by SARS-CoV-2. Nature 2020 581 7807 221 224 10.1038/s41586‑020‑2179‑y 32225175
    [Google Scholar]
  15. Cheng Q. Yang Y. Gao J. Infectivity of human coronavirus in the brain. EBioMedicine 2020 56 102799 10.1016/j.ebiom.2020.102799 32474399
    [Google Scholar]
  16. Pathak K. Pathak M.P. Gogoi U. Saikia R. Das A. COVID19: Preventive and Protective Control Management Strategies. Coronaviruses 2021 2 32 62 10.2174/9789814998604121020004
    [Google Scholar]
  17. Netland J. Meyerholz D.K. Moore S. Cassell M. Perlman S. Severe acute respiratory syndrome coronavirus infection causes neuronal death in the absence of encephalitis in mice transgenic for human ACE2. J. Virol. 2008 82 15 7264 7275 10.1128/JVI.00737‑08 18495771
    [Google Scholar]
  18. Li Z. Liu T. Yang N. Han D. Mi X. Li Y. Liu K. Vuylsteke A. Xiang H. Guo X. Neurological manifestations of patients with COVID-19: potential routes of SARS-CoV-2 neuroinvasion from the periphery to the brain. Front. Med. 2020 14 5 533 541 10.1007/s11684‑020‑0786‑5 32367431
    [Google Scholar]
  19. Gonzalez-Scarano F. Tyler K.L. Molecular pathogenesis of neurotropic viral infections. Ann. Neurol. 1987 22 5 565 574 10.1002/ana.410220502 3322182
    [Google Scholar]
  20. Chen H. Guo J. Wang C. Luo F. Yu X. Zhang W. Li J. Zhao D. Xu D. Gong Q. Liao J. Yang H. Hou W. Zhang Y. Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records. Lancet 2020 395 10226 809 815 10.1016/S0140‑6736(20)30360‑3 32151335
    [Google Scholar]
  21. Suen W. Prow N. Hall R. Bielefeldt-Ohmann H. Mechanism of West Nile virus neuroinvasion: a critical appraisal. Viruses 2014 6 7 2796 2825 10.3390/v6072796 25046180
    [Google Scholar]
  22. Paniz-Mondolfi A. Bryce C. Grimes Z. Gordon R.E. Reidy J. Lednicky J. Sordillo E.M. Fowkes M. Central nervous system involvement by severe acute respiratory syndrome coronavirus‐2 (SARS‐CoV‐2). J. Med. Virol. 2020 92 7 699 702 10.1002/jmv.25915 32314810
    [Google Scholar]
  23. Lima M. Siokas V. Aloizou A.M. Liampas I. Mentis A.F.A. Tsouris Z. Papadimitriou A. Mitsias P.D. Tsatsakis A. Bogdanos D.P. Baloyannis S.J. Dardiotis E. Unraveling the Possible Routes of SARS-COV-2 Invasion into the Central Nervous System. Curr. Treat. Options Neurol. 2020 22 11 37 10.1007/s11940‑020‑00647‑z 32994698
    [Google Scholar]
  24. Koyuncu O.O. Hogue I.B. Enquist L.W. Virus infections in the nervous system. Cell Host Microbe 2013 13 4 379 393 10.1016/j.chom.2013.03.010 23601101
    [Google Scholar]
  25. Li Y.C. Bai W.Z. Hirano N. Hayashida T. Hashikawa T. Coronavirus infection of rat dorsal root ganglia: Ultrastructural characterization of viral replication, transfer, and the early response of satellite cells. Virus Res. 2012 163 2 628 635 10.1016/j.virusres.2011.12.021 22248641
    [Google Scholar]
  26. Li Y.C. Bai W.Z. Hirano N. Hayashida T. Taniguchi T. Sugita Y. Tohyama K. Hashikawa T. Neurotropic virus tracing suggests a membranous‐coating‐mediated mechanism for transsynaptic communication. J. Comp. Neurol. 2013 521 1 203 212 10.1002/cne.23171 22700307
    [Google Scholar]
  27. Matsuda K. Park C.H. Sunden Y. Kimura T. Ochiai K. Kida H. Umemura T. The vagus nerve is one route of transneural invasion for intranasally inoculated influenza a virus in mice. Vet. Pathol. 2004 41 2 101 107 10.1354/vp.41‑2‑101 15017022
    [Google Scholar]
  28. Hoffmann M. Kleine-Weber H. Schroeder S. Krüger N. Herrler T. Erichsen S. Schiergens T.S. Herrler G. Wu N.H. Nitsche A. Müller M.A. Drosten C. Pöhlmann S. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 2020 181 2 271 280.e8 10.1016/j.cell.2020.02.052 32142651
    [Google Scholar]
  29. Bohmwald K. Gálvez N.M.S. Ríos M. Kalergis A.M. Neurologic Alterations Due to Respiratory Virus Infections. Front. Cell. Neurosci. 2018 12 386 10.3389/fncel.2018.00386 30416428
    [Google Scholar]
  30. Jacomy H. Talbot P.J. Vacuolating encephalitis in mice infected by human coronavirus OC43. Virology 2003 315 1 20 33 10.1016/S0042‑6822(03)00323‑4 14592756
    [Google Scholar]
  31. St-Jean J. Jacomy H. Desforges M. Vabret A. Freymuth F. Talbot P. Human respiratory coronavirus OC43: Genetic stability and neuroinvasion. J. Virol. 2004 78 16 8824 8834 10.1128/jvi.78.16.8824‑8834.2004
    [Google Scholar]
  32. Lochhead J. Kellohen K. Ronaldson P. Davis T. Distribution of insulin in trigeminal nerve and brain after intranasal administration. Scient. Rep. 2004 9 1 10.1038/s41598‑019‑39191‑5
    [Google Scholar]
  33. Lochhead J.J. Thorne R.G. Intranasal delivery of biologics to the central nervous system. Adv. Drug Deliv. Rev. 2012 64 7 614 628 10.1016/j.addr.2011.11.002 22119441
    [Google Scholar]
  34. Zhang X. Chen X. Chen L. Deng C. Zou X. Liu W. Yu H. Chen B. Sun X. The evidence of SARS-CoV-2 infection on ocular surface. Ocul. Surf. 2020 18 3 360 362 10.1016/j.jtos.2020.03.010 32289466
    [Google Scholar]
  35. Phillips M.I. de Oliveira E.M. Brain renin angiotensin in disease. J. Mol. Med. (Berl.) 2008 86 6 715 722 10.1007/s00109‑008‑0331‑5 18385968
    [Google Scholar]
  36. Johnson A.K. Epstein A.N. The cerebral ventricles as the avenue for the dipsogenic action of intracranial angiotensin. Brain Res. 1975 86 3 399 418 10.1016/0006‑8993(75)90891‑4 234776
    [Google Scholar]
  37. Tipnis S.R. Hooper N.M. Hyde R. Karran E. Christie G. Turner A.J. A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase. J. Biol. Chem. 2000 275 43 33238 33243 10.1074/jbc.M002615200 10924499
    [Google Scholar]
  38. Donoghue M. Hsieh F. Baronas E. Godbout K. Gosselin M. Stagliano N. Donovan M. Woolf B. Robison K. Jeyaseelan R. Breitbart R.E. Acton S. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circ. Res. 2000 87 5 E1 E9 10.1161/01.RES.87.5.e1 10969042
    [Google Scholar]
  39. Crackower M.A. Sarao R. Oudit G.Y. Yagil C. Kozieradzki I. Scanga S.E. Oliveira-dos-Santos A.J. da Costa J. Zhang L. Pei Y. Scholey J. Ferrario C.M. Manoukian A.S. Chappell M.C. Backx P.H. Yagil Y. Penninger J.M. Angiotensin-converting enzyme 2 is an essential regulator of heart function. Nature 2002 417 6891 822 828 10.1038/nature00786 12075344
    [Google Scholar]
  40. Hankey G.J. Bryant J. Gerzanich V. Simard M.J. Makar T.K. Stroke. Lancet 2017 389 10069 641 654 10.1016/S0140‑6736(16)30962‑X
    [Google Scholar]
  41. Moskowitz M.A. Lo E.H. Iadecola C. The science of stroke: mechanisms in search of treatments. Neuron 2010 67 2 181 198 10.1016/j.neuron.2010.07.002 20670828
    [Google Scholar]
  42. Hamming I. Cooper M.E. Haagmans B.L. Hooper N.M. Korstanje R. Osterhaus A.D.M.E. Timens W. Turner A.J. Navis G. van Goor H. The emerging role of ACE2 in physiology and disease. J. Pathol. 2007 212 1 1 11 10.1002/path.2162 17464936
    [Google Scholar]
  43. Arroja M.M.C. Reid E. McCabe C. Therapeutic potential of the renin angiotensin system in ischaemic stroke. Exp. Transl. Stroke Med. 2016 8 1 8 10.1186/s13231‑016‑0022‑1 27761230
    [Google Scholar]
  44. Chen C.C.V. Chen Y.C. Hsiao H.Y. Chang C. Chern Y. Neurovascular abnormalities in brain disorders: highlights with angiogenesis and magnetic resonance imaging studies. J. Biomed. Sci. 2013 20 1 47 10.1186/1423‑0127‑20‑47 23829868
    [Google Scholar]
  45. Zhang Y. Xiao M. Zhang S. Xia P. Cao W. Jiang W. Chen H. Ding X. Zhao H. Zhang H. Wang C. Zhao J. Sun X. Tian R. Wu W. Wu D. Ma J. Chen Y. Zhang D. Xie J. Yan X. Zhou X. Liu Z. Wang J. Du B. Qin Y. Gao P. Qin X. Xu Y. Zhang W. Li T. Zhang F. Zhao Y. Li Y. Zhang S. Coagulopathy and Antiphospholipid Antibodies in Patients with Covid-19. N. Engl. J. Med. 2020 382 17 e38 10.1056/NEJMc2007575 32268022
    [Google Scholar]
  46. Helms J. Tacquard C. Severac F. Leonard-Lorant I. Ohana M. Delabranche X. Merdji H. Clere-Jehl R. Schenck M. Fagot Gandet F. Fafi-Kremer S. Castelain V. Schneider F. Grunebaum L. Anglés-Cano E. Sattler L. Mertes P.M. Meziani F. High risk of thrombosis in patients with severe SARS-CoV-2 infection: a multicenter prospective cohort study. Intensive Care Med. 2020 46 6 1089 1098 10.1007/s00134‑020‑06062‑x 32367170
    [Google Scholar]
  47. Klok F.A. Kruip M.J.H.A. van der Meer N.J.M. Arbous M.S. Gommers D. Kant K.M. Kaptein F.H.J. van Paassen J. Stals M.A.M. Huisman M.V. Endeman H. Confirmation of the high cumulative incidence of thrombotic complications in critically ill ICU patients with COVID-19: An updated analysis. Thromb. Res. 2020 191 148 150 10.1016/j.thromres.2020.04.041 32381264
    [Google Scholar]
  48. Mao L. Jin H. Wang M. Hu Y. Chen S. He Q. Chang J. Hong C. Zhou Y. Wang D. Miao X. Li Y. Hu B. Neurologic Manifestations of Hospitalized Patients With Coronavirus Disease 2019 in Wuhan, China. JAMA Neurol. 2020 77 6 683 690 10.1001/jamaneurol.2020.1127 32275288
    [Google Scholar]
  49. Merkler A.E. Parikh N.S. Mir S. Gupta A. Kamel H. Lin E. Lantos J. Schenck E.J. Goyal P. Bruce S.S. Kahan J. Lansdale K.N. LeMoss N.M. Murthy S.B. Stieg P.E. Fink M.E. Iadecola C. Segal A.Z. Cusick M. Campion T.R. Jr Diaz I. Zhang C. Navi B.B. Risk of Ischemic Stroke in Patients With Coronavirus Disease 2019 (COVID-19) vs Patients With Influenza. JAMA Neurol. 2020 77 11 1366 10.1001/jamaneurol.2020.2730 32614385
    [Google Scholar]
  50. Zhai P. Ding Y. Li Y. The impact of COVID-19 on ischemic stroke. Diagn. Pathol. 2020 15 1 78 10.1186/s13000‑020‑00994‑0 32600350
    [Google Scholar]
  51. Pacha O. Sallman M.A. Evans S.E. COVID-19: a case for inhibiting IL-17? Nat. Rev. Immunol. 2020 20 6 345 346 10.1038/s41577‑020‑0328‑z 32358580
    [Google Scholar]
  52. Mehta P. McAuley D.F. Brown M. Sanchez E. Tattersall R.S. Manson J.J. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet 2020 395 10229 1033 1034 10.1016/S0140‑6736(20)30628‑0 32192578
    [Google Scholar]
  53. Jose R.J. Manuel A. COVID-19 cytokine storm: the interplay between inflammation and coagulation. Lancet Respir. Med. 2020 8 6 e46 e47 10.1016/S2213‑2600(20)30216‑2 32353251
    [Google Scholar]
  54. Hudock K.M. Collins M.S. Imbrogno M. Snowball J. Kramer E.L. Brewington J.J. Gollomp K. McCarthy C. Ostmann A.J. Kopras E.J. Davidson C.R. Srdiharan A. Arumugam P. Sengupta S. Xu Y. Worthen G.S. Trapnell B.C. Clancy J.P. Neutrophil extracellular traps activate IL-8 and IL-1 expression in human bronchial epithelia. Am. J. Physiol. Lung Cell. Mol. Physiol. 2020 319 1 L137 L147 10.1152/ajplung.00144.2019 32159969
    [Google Scholar]
  55. Pliyev B.K. Menshikov M. Differential effects of the autophagy inhibitors 3-methyladenine and chloroquine on spontaneous and TNF-α-induced neutrophil apoptosis. Apoptosis 2012 17 10 1050 1065 10.1007/s10495‑012‑0738‑x 22638980
    [Google Scholar]
  56. Li T. Wang C. Liu Y. Li B. Zhang W. Wang L. Yu M. Zhao X. Du J. Zhang J. Dong Z. Jiang T. Xie R. Ma R. Fang S. Zhou J. Shi J. Neutrophil Extracellular Traps Induce Intestinal Damage and Thrombotic Tendency in Inflammatory Bowel Disease. J. Crohn’s Colitis 2020 14 2 240 253 10.1093/ecco‑jcc/jjz132 31325355
    [Google Scholar]
  57. Zubair A.S. McAlpine L.S. Gardin T. Farhadian S. Kuruvilla D.E. Spudich S. Neuropathogenesis and Neurologic Manifestations of the Coronaviruses in the Age of Coronavirus Disease 2019. JAMA Neurol. 2020 77 8 1018 1027 10.1001/jamaneurol.2020.2065 32469387
    [Google Scholar]
  58. Al Saiegh F. Ghosh R. Leibold A. Avery M.B. Schmidt R.F. Theofanis T. Mouchtouris N. Philipp L. Peiper S.C. Wang Z.X. Rincon F. Tjoumakaris S.I. Jabbour P. Rosenwasser R.H. Gooch M.R. Status of SARS-CoV-2 in cerebrospinal fluid of patients with COVID-19 and stroke. J. Neurol. Neurosurg. Psychiatry 2020 91 8 846 848 10.1136/jnnp‑2020‑323522 32354770
    [Google Scholar]
  59. Xu P. Zhou Q. Xu J. Mechanism of thrombocytopenia in COVID-19 patients. Ann. Hematol. 2020 99 6 1205 1208 10.1007/s00277‑020‑04019‑0 32296910
    [Google Scholar]
  60. Hottz E.D. Bozza F.A. Bozza P.T. Platelets in Immune Response to Virus and Immunopathology of Viral Infections. Front. Med. (Lausanne) 2018 5 121 10.3389/fmed.2018.00121 29761104
    [Google Scholar]
  61. Martinod K. Wagner D.D. Thrombosis: tangled up in NETs. Blood 2014 123 18 2768 2776 10.1182/blood‑2013‑10‑463646 24366358
    [Google Scholar]
  62. Heydenreich N. Nolte M.W. Göb E. Langhauser F. Hofmeister M. Kraft P. Albert-Weissenberger C. Brede M. Varallyay C. Göbel K. Meuth S.G. Nieswandt B. Dickneite G. Stoll G. Kleinschnitz C. C1-inhibitor protects from brain ischemia-reperfusion injury by combined antiinflammatory and antithrombotic mechanisms. Stroke 2012 43 9 2457 2467 10.1161/STROKEAHA.112.660340 22744646
    [Google Scholar]
  63. Gupta N. Zhao Y.Y. Evans C.E. The stimulation of thrombosis by hypoxia. Thromb. Res. 2019 181 77 83 10.1016/j.thromres.2019.07.013 31376606
    [Google Scholar]
  64. Frangou E. Chrysanthopoulou A. Mitsios A. Kambas K. Arelaki S. Angelidou I. Arampatzioglou A. Gakiopoulou H. Bertsias G.K. Verginis P. Ritis K. Boumpas D.T. REDD1/autophagy pathway promotes thromboinflammation and fibrosis in human systemic lupus erythematosus (SLE) through NETs decorated with tissue factor (TF) and interleukin-17A (IL-17A). Ann. Rheum. Dis. 2019 78 2 238 248 10.1136/annrheumdis‑2018‑213181 30563869
    [Google Scholar]
  65. Meunier N. Briand L. Jacquin-Piques A. Brondel L. Pénicaud L. COVID 19-Induced Smell and Taste Impairments: Putative Impact on Physiology. Front. Physiol. 2021 11 625110 10.3389/fphys.2020.625110 33574768
    [Google Scholar]
  66. Vallamkondu J. John A. Wani W.Y. Ramadevi S.P. Jella K.K. Reddy P.H. Kandimalla R. SARS-CoV-2 pathophysiology and assessment of coronaviruses in CNS diseases with a focus on therapeutic targets. Biochim. Biophys. Acta Mol. Basis Dis. 2020 1866 10 165889 10.1016/j.bbadis.2020.165889 32603829
    [Google Scholar]
  67. Kilic O. Kalcioglu M.T. Cag Y. Tuysuz O. Pektas E. Caskurlu H. Cetın F. Could sudden sensorineural hearing loss be the sole manifestation of COVID-19? An investigation into SARS-COV-2 in the etiology of sudden sensorineural hearing loss. Int. J. Infect. Dis. 2020 97 208 211 10.1016/j.ijid.2020.06.023 32535294
    [Google Scholar]
  68. Heneka M.T. Golenbock D. Latz E. Morgan D. Brown R. Immediate and long-term consequences of COVID-19 infections for the development of neurological disease. Alzheimers Res. Ther. 2020 12 1 69 10.1186/s13195‑020‑00640‑3 32498691
    [Google Scholar]
  69. Guerrero J.I. Barragán L.A. Martínez J.D. Montoya J.P. Peña A. Sobrino F.E. Tovar-Spinoza Z. Ghotme K.A. Central and peripheral nervous system involvement by COVID-19: a systematic review of the pathophysiology, clinical manifestations, neuropathology, neuroimaging, electrophysiology, and cerebrospinal fluid findings. BMC Infect. Dis. 2021 21 1 515 10.1186/s12879‑021‑06185‑6 34078305
    [Google Scholar]
  70. Elkind M. S. V. Cucchiara B. L. Koralnik I. J. Neurologic complications and management of neurologic conditions. 2021 Available from: https://www.uptodate.com/contents/covid-19-neurologic-complications-and-management-of-neurologic-conditions
  71. Diagrams- Created with BioRender.com 2021.
  72. Wu C. Liu Y. Yang Y. Zhang P. Zhong W. Wang Y. Wang Q. Xu Y. Li M. Li X. Zheng M. Chen L. Li H. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm. Sin. B 2020 10 5 766 788 10.1016/j.apsb.2020.02.008 32292689
    [Google Scholar]
  73. Islam M.A. Pathak K. Saikia R. Pramanik P. Das A. Ahmad M.Z. Karmakar S. Emerging synthetic drug approaches for COVID-19 treatment: an extensive review of recent findings. Coronaviruses 2024 5 1 e26667975278587 10.2174/0126667975278587240817154042
    [Google Scholar]
  74. Harmer D. Gilbert M. Borman R. Clark K.L. Quantitative mRNA expression profiling of ACE 2, a novel homologue of angiotensin converting enzyme. FEBS Lett. 2002 532 1-2 107 110 10.1016/S0014‑5793(02)03640‑2 12459472
    [Google Scholar]
  75. Zhang L. Liu Y. Potential interventions for novel coronavirus in China: A systematic review. J. Med. Virol. 2020 92 5 479 490 10.1002/jmv.25707 32052466
    [Google Scholar]
  76. Zhang Y. Xu Q. Sun Z. Zhou L. Current targeted therapeutics against COVID-19: Based on first-line experience in China. Pharmacol. Res. 2020 157 104854 10.1016/j.phrs.2020.104854 32360585
    [Google Scholar]
  77. Al-Tawfiq J.A. Al-Homoud A.H. Memish Z.A. Remdesivir as a possible therapeutic option for the COVID-19. Travel Med. Infect. Dis. 2020 34 101615 10.1016/j.tmaid.2020.101615 32145386
    [Google Scholar]
  78. Shiraki K. Daikoku T. Favipiravir, an anti-influenza drug against life-threatening RNA virus infections. Pharmacol. Ther. 2020 209 107512 10.1016/j.pharmthera.2020.107512 32097670
    [Google Scholar]
  79. Kamali A. Holodniy M. Influenza treatment and prophylaxis with neuraminidase inhibitors: a review. Infect. Drug Resist. 2013 6 187 198 10.2147/IDR.S36604 24277988
    [Google Scholar]
  80. McCauley J.A. Rudd M.T. Hepatitis C virus NS3/4a protease inhibitors. Curr. Opin. Pharmacol. 2016 30 84 92 10.1016/j.coph.2016.07.015 27544488
    [Google Scholar]
  81. Beck B.R. Shin B. Choi Y. Park S. Kang K. Predicting commercially available antiviral drugs that may act on the novel coronavirus (SARS-CoV-2) through a drug-target interaction deep learning model. Comput. Struct. Biotechnol. J. 2020 18 784 790 10.1016/j.csbj.2020.03.025 32280433
    [Google Scholar]
  82. Atta M.G. De Seigneux S. Lucas G.M. Clinical pharmacology in HIV therapy. Clin. J. Am. Soc. Nephrol. 2019 14 3 435 444 10.2215/CJN.02240218 29844056
    [Google Scholar]
  83. Bulduk I. Taktak F. Isolation and characterization of antitumor alkaloid from poppy capsules (Papaver somniferum). J. Chem. 2012 2013 10.1155/2013/298797
    [Google Scholar]
  84. Touret F. de Lamballerie X. Of chloroquine and COVID-19. Antiviral Res. 2020 177 104762 10.1016/j.antiviral.2020.104762 32147496
    [Google Scholar]
  85. Favalli E.G. Biggioggero M. Maioli G. Caporali R. Baricitinib for COVID-19: a suitable treatment? Lancet Infect. Dis. 2020 20 9 1012 1013 10.1016/S1473‑3099(20)30262‑0 32251638
    [Google Scholar]
  86. Cantini F. Niccoli L. Matarrese D. Nicastri E. Stobbione P. Goletti D. Baricitinib therapy in COVID-19: A pilot study on safety and clinical impact. J. Infect. 2020 81 2 318 356 10.1016/j.jinf.2020.04.017 32333918
    [Google Scholar]
  87. Mesa R.A. Yasothan U. Kirkpatrick P. Ruxolitinib. Nat. Rev. Drug Discov. 2012 11 2 103 104 10.1038/nrd3652 22293561
    [Google Scholar]
  88. Lu H. Drug treatment options for the 2019-new coronavirus (2019-nCoV). Biosci. Trends 2020 14 1 69 71 10.5582/bst.2020.01020 31996494
    [Google Scholar]
  89. Haviernik J. Štefánik M. Fojtíková M. Kali S. Tordo N. Rudolf I. Hubálek Z. Eyer L. Ruzek D. Arbidol (Umifenovir): A broad-spectrum antiviral drug that inhibits medically important arthropod-borne flaviviruses. Viruses 2018 10 4 184 10.3390/v10040184 29642580
    [Google Scholar]
  90. Laporte M. Naesens L. Airway proteases: an emerging drug target for influenza and other respiratory virus infections. Curr. Opin. Virol. 2017 24 16 24 10.1016/j.coviro.2017.03.018 28414992
    [Google Scholar]
  91. Chen Y. Guo Y. Pan Y. Zhao Z.J. Structure analysis of the receptor binding of 2019-nCoV. Biochem. Biophys. Res. Commun. 2020 525 1 135 140 10.1016/j.bbrc.2020.02.071 32081428
    [Google Scholar]
  92. Portaccio E. Evidence-based assessment of potential use of fingolimod in treatment of relapsing multiple sclerosis. Core Evid. 2011 6 13 21 10.2147/CE.S10101 21468239
    [Google Scholar]
  93. Sato K. Niino M. Kawashima A. Yamada M. Miyazaki Y. Fukazawa T. Disease exacerbation after the cessation of fingolimod treatment in Japanese patients with multiple sclerosis. Intern. Med. 2018 57 18 2647 2655 10.2169/internalmedicine.0793‑18 29709955
    [Google Scholar]
  94. Thompson B.T. Glucocorticoids and acute lung injury. Crit. Care Med. 2003 31 4 Suppl. S253 S257 10.1097/01.CCM.0000057900.19201.55 12682449
    [Google Scholar]
  95. Zhang S. Li L. Shen A. Chen Y. Qi Z. Rational use of Tocilizumab in the treatment of novel coronavirus pneumonia. Clin. Drug Investig. 2020 40 6 511 518 10.1007/s40261‑020‑00917‑3 32337664
    [Google Scholar]
  96. Fang L. Karakiulakis G. Roth M. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? Lancet Respir. Med. 2020 8 4 e21 10.1016/S2213‑2600(20)30116‑8 32171062
    [Google Scholar]
  97. Xie Q-M. Tang H.F. Chen J.Q. Bian R.L. Pharmacological actions of tetrandrine in inflammatory pulmonary diseases. Acta Pharmacol. Sin. 2002 23 12 1107 1113 12466048
    [Google Scholar]
  98. Chen S. Pathophysiology-based mechanism and management strategies for deadly leaking lungs caused by 2019 novel coronavirus. Curr. Opin. Crit. Care. 2020 28 1 9 16 10.1097/MCC.0000000000000911 34907979
    [Google Scholar]
  99. De Luca D. Managing neonates with respiratory failure due to SARS-CoV-2. Lancet Child Adolesc. Health 2020 4 4 e8 10.1016/S2352‑4642(20)30073‑0 32151320
    [Google Scholar]
  100. Cohen A.H. Hanson K. Morris K. Fouty B. McMurty I.F. Clarke W. Rodman D.M. Inhibition of cyclic 3′-5′-guanosine monophosphate-specific phosphodiesterase selectively vasodilates the pulmonary circulation in chronically hypoxic rats. J. Clin. Invest. 1996 97 1 172 179 10.1172/JCI118386 8550830
    [Google Scholar]
  101. Duncan C. Omran G.J. Teh J. Davis N.F. Bolton D.M. Lawrentschuk N. Erectile dysfunction: a global review of intracavernosal injectables. World J. Urol. 2019 37 6 1007 1014 10.1007/s00345‑019‑02727‑5 30895359
    [Google Scholar]
  102. Ferrara N. Hillan K.J. Novotny W. Bevacizumab (Avastin), a humanized anti-VEGF monoclonal antibody for cancer therapy. Biochem. Biophys. Res. Commun. 2005 333 2 328 335 10.1016/j.bbrc.2005.05.132 15961063
    [Google Scholar]
  103. Wang Y. Use of carrimycin in mycobacterium tuberculosis infection resistance. US20170276566A 2016
  104. Rutkai I. Mayer M.G. Hellmers L.M. Ning B. Huang Z. Monjure C.J. Coyne C. Silvestri R. Golden N. Hensley K. Chandler K. Lehmicke G. Bix G.J. Maness N.J. Russell-Lodrigue K. Hu T.Y. Roy C.J. Blair R.V. Bohm R. Doyle-Meyers L.A. Rappaport J. Fischer T. Neuropathology and virus in brain of SARS-CoV-2 infected non-human primates. Nat. Commun. 2022 13 1 1745 10.1038/s41467‑022‑29440‑z 35365631
    [Google Scholar]
  105. Cao X. Li W. Wang T. Ran D. Davalos V. Planas-Serra L. Pujol A. Esteller M. Wang X. Yu H. Accelerated biological aging in COVID-19 patients. Nat. Commun. 2022 13 1 2135 10.1038/s41467‑022‑29801‑8 35440567
    [Google Scholar]
  106. Cascella M. Rajnik M. Cuomo A. Dulebohn S.C. Di Napoli R. 2020 b https://apps.dtic.mil/sti/pdfs/AD1127230.pdf
  107. Zhan L. Zhang Y. Li Y. Lin C. Zhang H. Liu Y. He J. The mediating role of inflammation and coagulation in the association between COVID-19 and 3-Month outcome after stroke during the Omicron wave. J. Inflamm. Res. 2024 17 7171 7182 10.2147/JIR.S465127 39403256
    [Google Scholar]
  108. Attiq A. Afzal S. Wahab H. Ahmad W. Kandeel M. Almofti Y. Alameen A. Wu Y.S. Cytokine storm-induced thyroid dysfunction in COVID-19: insights into pathogenesis and therapeutic approaches. Drug Des. Devel. Ther. 2024 18 4215 4240 10.2147/DDDT.S475005 39319193
    [Google Scholar]
/content/journals/covid/10.2174/0126667975336646241216051258
Loading
/content/journals/covid/10.2174/0126667975336646241216051258
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test