Skip to content
2000
image of Assessing the Efficacy and Challenges of Tofacitinib in the Management of COVID-19: A Systematic Review and Meta-analysis of Cohort Studies

Abstract

Objectives

Global healthcare faces challenges in combating COVID-19, with rising cases despite widespread vaccination. Severe COVID-19 cases, marked by acute respiratory distress and cytokine release syndrome, highlight the importance of managing cytokine storms. Janus kinase (JAK) inhibitors, such as tofacitinib, show promise in this regard. While tofacitinib is recommended for severe cases, challenges include adverse effects, conflicting studies, and the need for further investigation of new virus strains. Overcoming these hurdles is crucial for developing an effective treatment protocol and reducing COVID-19 mortality.

Methods

This study conducted a comprehensive search across PubMed, Scopus, and ISI Web of Science for observational studies on tofacitinib treatment in human adults with COVID-19. The search covered a specified period up to 2024. Data extraction, including study characteristics and quality assessment, employed the Newcastle Ottawa Scale and a modified Cochrane tool. Statistical analysis, conducted with Comprehensive Meta-Analysis Software, assessed heterogeneity and significance levels.

Results

The meta-analysis of the three studies showed a significant reduction in mortality (Risk Ratio: 0.372, 95% CI: 0.213–0.649, P-value = 0.001) with low heterogeneity (Cochrane P-value = 0.793), while no significant reduction in the need for mechanical ventilation was observed (Cochrane P-value = 0.194).

Conclusion

Tofacitinib administration shows a significant reduction in COVID-19 mortality. However, the limited studies on its efficacy highlight the need for cautious interpretation in clinical assessments.

Loading

Article metrics loading...

/content/journals/covid/10.2174/0126667975308179241022110314
2024-10-29
2025-01-19
Loading full text...

Full text loading...

References

  1. Lai C.C. Liu Y.H. Wang C.Y. Wang Y.H. Hsueh S.C. Yen M.Y. Ko W.C. Hsueh P.R. Asymptomatic carrier state, acute respiratory disease, and pneumonia due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): Facts and myths. J. Microbiol. Immunol. Infect. 2020 53 3 404 412 10.1016/j.jmii.2020.02.012 32173241
    [Google Scholar]
  2. Maslennikov R. Ivashkin V. Vasilieva E. Chipurik M. Semikova P. Semenets V. Russkova T. Levshina A. Grigoriadis D. Magomedov S. Efremova I. Dzhakhaya N. Tofacitinib reduces mortality in coronavirus disease 2019 Tofacitinib in COVID-19. Pulm. Pharmacol. Ther. 2021 69 102039 10.1016/j.pupt.2021.102039 34023513
    [Google Scholar]
  3. Kim J.S. Lee J.Y. Yang J.W. Lee K.H. Effenberger M. Szpirt W. Kronbichler A. Shin J.I. Immunopathogenesis and treatment of cytokine storm in COVID-19. Theranostics 2021 11 1 316 329 10.7150/thno.49713 33391477
    [Google Scholar]
  4. Siemieniuk R.A.C. Bartoszko J.J. Zeraatkar D. Kum E. Qasim A. Díaz Martinez J.P. Izcovich A. Rochwerg B. Lamontagne F. Han M.A. Agarwal A. Agoritsas T. Azab M. Bravo G. Chu D.K. Couban R. Cusano E. Devji T. Escamilla Z. Foroutan F. Gao Y. Ge L. Ghadimi M. Heels-Ansdell D. Honarmand K. Hou L. Ibrahim S. Khamis A. Lam B. Mansilla C. Loeb M. Miroshnychenko A. Marcucci M. McLeod S.L. Motaghi S. Murthy S. Mustafa R.A. Pardo-Hernandez H. Rada G. Rizwan Y. Saadat P. Switzer C. Thabane L. Tomlinson G. Vandvik P.O. Vernooij R.W.M. Viteri-García A. Wang Y. Yao L. Zhao Y. Guyatt G.H. Brignardello-Petersen R. Drug treatments for covid-19: Living systematic review and network meta-analysis. BMJ 2020 370 m2980 10.1136/bmj.m2980 32732190
    [Google Scholar]
  5. Ngamprasertchai T. Kajeekul R. Sivakorn C. Ruenroegnboon N. Luvira V. Siripoon T. Luangasanatip N. Efficacy and safety of immunomodulators in patients with COVID-19: A systematic review and network meta-analysis of randomized controlled trials. Infect. Dis. Ther. 2022 11 1 231 248 10.1007/s40121‑021‑00545‑0 34757578
    [Google Scholar]
  6. Niu J. Lin Z. He Z. Yang X. Qin L. Feng S. Guan L. Zhou L. Chen R. Janus kinases inhibitors for coronavirus disease-2019: A pairwise and Bayesian network meta-analysis. Front. Med. (Lausanne) 2022 9 973688 10.3389/fmed.2022.973688 36507538
    [Google Scholar]
  7. Luo W. Li Y.X. Jiang L.J. Chen Q. Wang T. Ye D.W. Targeting JAK-STAT signaling to control cytokine release syndrome in COVID-19. Trends Pharmacol. Sci. 2020 41 8 531 543 10.1016/j.tips.2020.06.007 32580895
    [Google Scholar]
  8. Ye Q. Wang B. Mao J. The pathogenesis and treatment of the ‘Cytokine Storm’ in COVID-19. J. Infect. 2020 80 6 607 613 10.1016/j.jinf.2020.03.037 32283152
    [Google Scholar]
  9. Doshi P.B. Whittle J.S. Dungan G. Volakis L.I. Bublewicz M. Kearney J. Miller T.L. Dodge D. Harsch M.R. DeBellis R. Chambers K.A. The ventilatory effect of high velocity nasal insufflation compared to non-invasive positive-pressure ventilation in the treatment of hypercapneic respiratory failure: A subgroup analysis. Heart Lung 2020 49 5 610 615 10.1016/j.hrtlng.2020.03.008 32273085
    [Google Scholar]
  10. McLornan D.P. Pope J.E. Gotlib J. Harrison C.N. Current and future status of JAK inhibitors. Lancet 2021 398 10302 803 816 10.1016/S0140‑6736(21)00438‑4 34454676
    [Google Scholar]
  11. Meletiadis J. Tsiodras S. Tsirigotis P. Interleukin-6 blocking vs. JAK-STAT inhibition for prevention of lung injury in patients with COVID-19. Infect. Dis. Ther. 2020 9 4 707 713 10.1007/s40121‑020‑00326‑1 32789663
    [Google Scholar]
  12. Huang J. Zhou C. Deng J. Zhou J. JAK inhibition as a new treatment strategy for patients with COVID-19. Biochem. Pharmacol. 2022 202 115162 10.1016/j.bcp.2022.115162 35787993
    [Google Scholar]
  13. Bhimraj A. Morgan R.L. Shumaker A.H. Lavergne V. Baden L. Cheng V.C-C. Infectious Diseases Society of America Guidelines on the treatment and management of patients with coronavirus disease 2019 (COVID-19). Clin. Infect. Dis. 2020 ciaa478 10.1093/cid/ciaa478 32338708
    [Google Scholar]
  14. Higgins J.P.t. Green S. Cochrane handbook for systematic reviews of interventions. 2011 Available from: https://handbook-5-1.cochrane.org/
    [Google Scholar]
  15. Hutton B. Salanti G. Caldwell D.M. Chaimani A. Schmid C.H. Cameron C. Ioannidis J.P.A. Straus S. Thorlund K. Jansen J.P. Mulrow C. Catalá-López F. Gøtzsche P.C. Dickersin K. Boutron I. Altman D.G. Moher D. The PRISMA extension statement for reporting of systematic reviews incorporating network meta-analyses of health care interventions: checklist and explanations. Ann. Intern. Med. 2015 162 11 777 784 10.7326/M14‑2385 26030634
    [Google Scholar]
  16. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomized studies in meta-analysis. Available from: https://www.evidencebasedpublichealth.de/download/Newcastle_Ottowa_Scale_Pope_Bruce.pdf 2011
  17. Higgins J.P. Altman D.G. Assessing risk of bias in included studies. Cochrane Handbook for Systematic Reviews of Interventions: Cochrane Book Series Wiley Higgins J.P.T. Green S. 2008 10.1002/9780470712184.ch8
    [Google Scholar]
  18. Higgins J.P.T. Thompson S.G. Quantifying heterogeneity in a meta‐analysis. Stat. Med. 2002 21 11 1539 1558 10.1002/sim.1186 12111919
    [Google Scholar]
  19. Singh P.K. Lalwani L.K. Govindagoudar M.B. Aggarwal R. Chaudhry D. Kumar P. Gehlaut P. Tofacitinib associated with reduced intubation rates in the management of severe COVID-19 pneumonia: A preliminary experience. Indian J. Crit. Care Med. 2021 25 10 1108 1112 34916741
    [Google Scholar]
  20. Hayek M.E. Mansour M. Ndetan H. Burkes Q. Corkern R. Dulli A. Hayek R. Parvez K. Singh S. Anti-inflammatory treatment of COVID-19 pneumonia with tofacitinib alone or in combination with dexamethasone is safe and possibly superior to dexamethasone as a single agent in a predominantly African American cohort. Mayo Clin. Proc. Innov. Qual. Outcomes 2021 5 3 605 613 10.1016/j.mayocpiqo.2021.03.007 33817559
    [Google Scholar]
  21. Dowty M.E. Lin J. Ryder T.F. Wang W. Walker G.S. Vaz A. Chan G.L. Krishnaswami S. Prakash C. The pharmacokinetics, metabolism, and clearance mechanisms of tofacitinib, a janus kinase inhibitor, in humans. Drug Metab. Dispos. 2014 42 4 759 773 10.1124/dmd.113.054940 24464803
    [Google Scholar]
  22. Zanza C. Romenskaya T. Manetti A. Franceschi F. La Russa R. Bertozzi G. Maiese A. Savioli G. Volonnino G. Longhitano Y. Cytokine storm in COVID-19: Immunopathogenesis and therapy. Medicina (Kaunas) 2022 58 2 144 10.3390/medicina58020144 35208467
    [Google Scholar]
  23. Kubo S. Yamaoka K. Kondo M. Yamagata K. Zhao J. Iwata S. The JAK inhibitor, tofacitinib, reduces the T cell stimulatory capacity of human monocyte-derived dendritic cells. Ann. Rheum. Dis. 73 2192 2198 2013 10.1136/annrheumdis‑2013‑203756
    [Google Scholar]
  24. Soy M. Keser G. Atagündüz P. Tabak F. Atagündüz I. Kayhan S. Cytokine storm in COVID-19: Pathogenesis and overview of anti-inflammatory agents used in treatment. Clin. Rheumatol. 2020 39 7 2085 2094 10.1007/s10067‑020‑05190‑5 32474885
    [Google Scholar]
  25. Tanaka Y. Luo Y. O’Shea J.J. Nakayamada S. Janus kinase-targeting therapies in rheumatology: A mechanisms-based approach. Nat. Rev. Rheumatol. 2022 18 3 133 145 10.1038/s41584‑021‑00726‑8 34987201
    [Google Scholar]
  26. Guimarães P.O. Quirk D. Furtado R.H. Maia L.N. Saraiva J.F. Antunes M.O. Kalil Filho R. Junior V.M. Soeiro A.M. Tognon A.P. Veiga V.C. Martins P.A. Moia D.D.F. Sampaio B.S. Assis S.R.L. Soares R.V.P. Piano L.P.A. Castilho K. Momesso R.G.R.A.P. Monfardini F. Guimarães H.P. Ponce de Leon D. Dulcine M. Pinheiro M.R.T. Gunay L.M. Deuring J.J. Rizzo L.V. Koncz T. Berwanger O. Tofacitinib in patients hospitalized with Covid-19 pneumonia. N. Engl. J. Med. 2021 385 5 406 415 10.1056/NEJMoa2101643 34133856
    [Google Scholar]
  27. Dowty M.E. Lin T.H. Jesson M.I. Hegen M. Martin D.A. Katkade V. Menon S. Telliez J.B. Janus kinase inhibitors for the treatment of rheumatoid arthritis demonstrate similar profiles of in vitro cytokine receptor inhibition. Pharmacol. Res. Perspect. 2019 7 6 e00537 10.1002/prp2.537 31832202
    [Google Scholar]
  28. Xu S. Ilyas I. Weng J. Endothelial dysfunction in COVID-19: An overview of evidence, biomarkers, mechanisms and potential therapies. Acta Pharmacol. Sin. 2023 44 4 695 709 10.1038/s41401‑022‑00998‑0 36253560
    [Google Scholar]
  29. Zhang F. Mears J.R. Shakib L. Beynor J.I. Shanaj S. Korsunsky I. Nathan A. Donlin L.T. Raychaudhuri S. IFN-γ and TNF-α drive a CXCL10+ CCL2+ macrophage phenotype expanded in severe COVID-19 lungs and inflammatory diseases with tissue inflammation. Genome Med. 2021 13 1 64 10.1186/s13073‑021‑00881‑3 33879239
    [Google Scholar]
  30. Pattison M.J. MacKenzie K.F. Arthur J.S.C. Inhibition of JAKs in macrophages increases lipopolysaccharide-induced cytokine production by blocking IL-10-mediated feedback. J. Immunol. 2012 189 6 2784 2792 10.4049/jimmunol.1200310 22904308
    [Google Scholar]
  31. Frede N. Lorenzetti R. Hüppe J.M. Janowska I. Troilo A. Schleyer M.T. Venhoff A.C. Voll R.E. Thiel J. Venhoff N. Rizzi M. JAK inhibitors differentially modulate B cell activation, maturation and function: A comparative analysis of five JAK inhibitors in an in-vitro B cell differentiation model and in patients with rheumatoid arthritis. Front. Immunol. 2023 14 1087986 10.3389/fimmu.2023.1087986 36776828
    [Google Scholar]
/content/journals/covid/10.2174/0126667975308179241022110314
Loading
/content/journals/covid/10.2174/0126667975308179241022110314
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Review Article
Keywords: Systematic review ; tofacitinib ; COVID-19
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test