Skip to content
2000
Volume 6, Issue 2
  • ISSN: 2666-7967
  • E-ISSN: 2666-7975

Abstract

COVID-19 causes a range of illnesses, from mild symptoms resembling the common cold to severe pulmonary damage leading to Acute Respiratory Distress Syndrome (ARDS). Researchers worldwide are actively searching for the most effective medications with minimal side effects for treating COVID-19. This review aimed to discuss the therapeutic potential of Curcumin (CUR) in managing COVID-19 infection in patients with comorbidities, such as Diabetes Mellitus (DM), as well as the underlying mechanisms of action responsible for CUR's anti-inflammatory and immunomodulatory effects. Given the natural origin and fewer adverse effects of herbal and medicinal plants, many researchers have turned their attention to exploring their therapeutic properties. Turmeric, the main source of polyphenol CUR, has long been recognized for its beneficial pharmacological effects in traditional Ayurveda medicine in China and has recently gained attention from scientists. The study reviewed various types of studies investigating the antiviral activity of CUR. Among the 16 studies reviewed, 4 were computational studies, 2 were studies, and the remaining 10 were clinical trials. Among the 10 recent studies, 4 studies focused on patients with COVID-19 who had diabetes as an underlying condition. The findings from these studies suggested that CUR is a safe and pleiotropic molecule with multiple effects on intracellular signaling pathways, including alterations in cell growth, apoptosis, inflammation, and oxidation.

Loading

Article metrics loading...

/content/journals/covid/10.2174/0126667975292793240320052355
2024-03-26
2025-07-15
Loading full text...

Full text loading...

References

  1. JamshaidH. ZahidF. DinI.U. Diagnostic and treatment strategies for COVID-19.AAPS PharmSciTech202021622210.1208/s12249‑020‑01756‑3 32748244
    [Google Scholar]
  2. DhamaK. SharunK. TiwariR. SircarS. BhatS. MalikY.S. Coronavirus disease 2019–COVID-19.2020Available from: https://www.who.int/health-topics/coronavirus#tab=tab_1
  3. RezabakhshA. AlaA. KhodaeiS.H. Novel coronavirus (COVID-19): A new emerging pandemic threat.J. Clin. Med. Res.202081510.34172/jrcm.2020.005
    [Google Scholar]
  4. YallapuM.M. NageshP.K.B. JaggiM. ChauhanS.C. Therapeutic applications of curcumin nanoformulations.AAPS J.20151761341135610.1208/s12248‑015‑9811‑z 26335307
    [Google Scholar]
  5. GuptaS.C. PatchvaS. AggarwalB.B. Therapeutic roles of curcumin: Lessons learned from clinical trials.AAPS J.201315119521810.1208/s12248‑012‑9432‑8 23143785
    [Google Scholar]
  6. JenningsM.R. ParksR.J. Antiviral effects of curcumin on adenovirus replication.Microorganisms2020810152410.3390/microorganisms8101524 33020422
    [Google Scholar]
  7. PalmaM.D. GuevaraT.J.H. CardonaZ.M.I. Curcumin inhibits in vitro SARS-CoV-2 infection in vero E6 cells through multiple antiviral mechanisms.Molecules20212622690010.3390/molecules26226900 34833991
    [Google Scholar]
  8. JakubekM. KejíkZ. KaplánekR. Strategy for improved therapeutic efficiency of curcumin in the treatment of gastric cancer.Biomed. Pharmacother.201911810927810.1016/j.biopha.2019.109278 31387004
    [Google Scholar]
  9. JenaA.B. KanungoN. NayakV. ChainyG. DandapatJ. Catechin and Curcumin interact with corona (2019-nCoV/SARS-CoV2) viral S protein and ACE2 of human cell membrane: Insights from Computational study and implication for intervention.Res Sqaure2020119
    [Google Scholar]
  10. ShanmugarajanD.P.P. KumarB.R.P. SureshB. Curcumin to inhibit binding of spike glycoprotein to ACE2 receptors: computational modelling, simulations, and ADMET studies to explore curcuminoids against novel SARS-CoV-2 targets.RSC Advances20201052313853139910.1039/D0RA03167D 35520671
    [Google Scholar]
  11. HajaviJ. MomtaziA.A. JohnstonT.P. BanachM. MajeedM. SahebkarA. Curcumin: A naturally occurring modulator of adipokines in diabetes.J. Cell. Biochem.2017118124170418210.1002/jcb.26121 28485496
    [Google Scholar]
  12. Saber-MoghaddamN. SalariS. HejaziS. Oral nano-curcumin formulation efficacy in management of mild to moderate hospitalized coronavirus disease-19 patients: An open label nonrandomized clinical trial.Phytother. Res.20213552616262310.1002/ptr.7004 33389761
    [Google Scholar]
  13. ObataK. KojimaT. MasakiT. Curcumin prevents replication of respiratory syncytial virus and the epithelial responses to it in human nasal epithelial cells.PLoS One201389e7022510.1371/journal.pone.0070225 24058438
    [Google Scholar]
  14. CiceroA.F.G. SahebkarA. FogacciF. BoveM. GiovanniniM. BorghiC. Effects of phytosomal curcumin on anthropometric parameters, insulin resistance, cortisolemia and non-alcoholic fatty liver disease indices: A double-blind, placebo-controlled clinical trial.Eur. J. Nutr.202059247748310.1007/s00394‑019‑01916‑7 30796508
    [Google Scholar]
  15. IranshahiM. SahebkarA. HosseiniS.T. TakasakiM. KonoshimaT. TokudaH. Cancer chemopreventive activity of diversin from Ferula diversivittata in vitro and in vivo.Phytomedicine2010173-426927310.1016/j.phymed.2009.05.020 19577457
    [Google Scholar]
  16. KeihanianF. SaeidiniaA. BagheriR.K. JohnstonT.P. SahebkarA. Curcumin, hemostasis, thrombosis, and coagulation.J. Cell. Physiol.201823364497451110.1002/jcp.26249 29052850
    [Google Scholar]
  17. MarjanehR.M. RahmaniF. HassanianS.M. Phytosomal curcumin inhibits tumor growth in colitis-associated colorectal cancer.J. Cell. Physiol.2018233106785679810.1002/jcp.26538 29737515
    [Google Scholar]
  18. MohajeriM. SahebkarA. Protective effects of curcumin against doxorubicin-induced toxicity and resistance: A review.Crit. Rev. Oncol. Hematol.2018122305110.1016/j.critrevonc.2017.12.005 29458788
    [Google Scholar]
  19. Mokhtari-ZaerA. MarefatiN. AtkinS.L. ButlerA.E. SahebkarA. The protective role of curcumin in myocardial ischemia-reperfusion injury.J. Cell. Physiol.2018234121422210.1002/jcp.26848 29968913
    [Google Scholar]
  20. PanahiY. FazlolahzadehO. AtkinS.L. Evidence of curcumin and curcumin analogue effects in skin diseases: A narrative review.J. Cell. Physiol.201923421165117810.1002/jcp.27096 30073647
    [Google Scholar]
  21. GorabiAM KiaieN HajighasemiS JamialahmadiT MajeedM SahebkarA The effect of curcumin on the differentiation of mesenchymal stem cells into mesodermal lineage.Molecules2019Nov 7;2422402910.3390/molecules24224029 31703322PMC6891787
    [Google Scholar]
  22. BagheriH. GhasemiF. BarretoG.E. RafieeR. SathyapalanT. SahebkarA. Effects of curcumin on mitochondria in neurodegenerative diseases.Biofactors202046152010.1002/biof.1566
    [Google Scholar]
  23. PaganoE. RomanoB. IzzoA.A. BorrelliF. The clinical efficacy of curcumin-containing nutraceuticals: An overview of systematic reviews.Pharmacol. Res.2018134799110.1016/j.phrs.2018.06.007 29890252
    [Google Scholar]
  24. RezaeeR MomtaziAA MonemiA SahebkarA Curcumin: A potentially powerful tool to reverse cisplatin-induced toxicity.Pharmacol Res.2017Mar;117:218-22710.1016/j.phrs.2016.12.037 28042086Epub 2016 Dec 29.
    [Google Scholar]
  25. GuptaS.C. PrasadS. KimJ.H. Multitargeting by curcumin as revealed by molecular interaction studies.Nat. Prod. Rep.2011281219371955
    [Google Scholar]
  26. LaiC-C. ShihT-P. KoW-C. TangH-J. HsuehP-R. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges.Int. J. Antimicrob. Agents2020553105924
    [Google Scholar]
  27. ZakiN. MohamedE.A. The estimations of the COVID-19 incubation period: A scoping reviews of the literature.J. Infect. Public Health2021145638646
    [Google Scholar]
  28. MedicineT.L.R. COVID-19 transmission-up in the air.Lancet Respir. Med.20208121159
    [Google Scholar]
  29. MackenzieJ.S. SmithD.W. COVID-19: A novel zoonotic disease caused by a coronavirus from China: What we know and what we don’t.Microbiol. Aust.2020411MA20013
    [Google Scholar]
  30. FernandezC. RysäJ. AlmgrenP. Plasma levels of the proprotein convertase furin and incidence of diabetes and mortality.J. Intern. Med.2018284437738710.1111/joim.12783 29888466
    [Google Scholar]
  31. HuangC. WangY. LiX. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China.Lancet202039510223497506
    [Google Scholar]
  32. KhaliliJ.S. ZhuH. MakN.S.A. YanY. ZhuY. Novel coronavirus treatment with ribavirin: Groundwork for an evaluation concerning COVID-19.J. Med. Virol.2020927740746
    [Google Scholar]
  33. HuggettJ.F. Moran-GiladJ. LeeJ.E. COVID-19 new diagnostics development: Novel detection methods for SARS-CoV-2 infection and considerations for their translation to routine use.Curr. Opin. Pulm. Med.2021273155162
    [Google Scholar]
  34. BeigelJ.H. TomashekK.M. DoddL.E. Remdesivir for the treatment of COVID-19.N. Engl. J. Med.20203831918131826
    [Google Scholar]
  35. Na-BangchangK. PorasuphatanaS. KarbwangJ. Perspective: Repurposed drugs for COVID-19.Arch. Med. Sci.202218513781391
    [Google Scholar]
  36. PiscoyaA. Ng-SuengL.F. RiegoP.D.A. Efficacy and harms of convalescent plasma for treatment of hospitalized COVID-19 patients: A systematic review and meta-analysis.Arch. Med. Sci.202117512511261
    [Google Scholar]
  37. AzimiV.A. MohammadiS.M. BeniH.F. Improved COVID-19 ICU admission and mortality outcomes following treatment with statins: A systematic review and meta-analysis.Arch. Med. Sci.2021173579595
    [Google Scholar]
  38. LiG. HilgenfeldR. WhitleyR. De ClercqE. Therapeutic strategies for COVID-19: Progress and lessons learned.Nat. Rev. Drug Discov.2023226449475
    [Google Scholar]
  39. SinghM. de WitE. Antiviral agents for the treatment of COVID-19: Progress and challenges.Cell Rep. Med.202233100549
    [Google Scholar]
  40. KumarM. Al KhodorS. Pathophysiology and treatment strategies for COVID-19.J. Transl. Med.2020181353
    [Google Scholar]
  41. SavarinoA. Di TraniL. DonatelliI. CaudaR. CassoneA. New insights into the antiviral effects of chloroquine.Lancet Infect. Dis.2006626769
    [Google Scholar]
  42. HernandezA.V. IngemiJ.III ShermanM. Efficacy of early treatment with hydroxychloroquine in people with mild to moderate COVID-19: A systematic review and meta-analysis.Arch. Med. Sci.202118493994810.5114/aoms/143147 35832701
    [Google Scholar]
  43. BignardiP.R. VengrusC.S. AquinoB.M. NetoC.A. Use of hydroxychloroquine and chloroquine in patients with COVID-19: A meta-analysis of randomized clinical trials.Pathog. Glob. Health2021115313915010.1080/20477724.2021.1884807 33573530
    [Google Scholar]
  44. OwaA.B. OwaO.T. Lopinavir/ritonavir use in COVID-19 infection: Is it completely non-beneficial?J. Microbiol. Immunol. Infect.202053567467510.1016/j.jmii.2020.05.014 32474026
    [Google Scholar]
  45. BeigelJ. TomashekK. DoddL. Remdesivir for the treatment of COVID-19-final report.N. Engl. J. Med.20203831918131826
    [Google Scholar]
  46. LiuQ. ZhouY.H. YangZ.Q. The cytokine storm of severe influenza and development of immunomodulatory therapy.Cell. Mol. Immunol.201613131010.1038/cmi.2015.74 26189369
    [Google Scholar]
  47. MatthayM.A. ZimmermanG.A. Acute lung injury and the acute respiratory distress syndrome: four decades of inquiry into pathogenesis and rational management.Am. J. Respir. Cell Mol. Biol.200533431932710.1165/rcmb.F305 16172252
    [Google Scholar]
  48. LauS.K.P. LauC.C.Y. ChanK-H. Delayed induction of proinflammatory cytokines and suppression of innate antiviral response by the novel Middle East respiratory syndrome coronavirus: Implications for pathogenesis and treatment.J. Gen. Virol.201394Pt 122679269010.1099/vir.0.055533‑0 24077366
    [Google Scholar]
  49. SordilloP.P. HelsonL. Curcumin suppression of cytokine release and cytokine storm. A potential therapy for patients with Ebola and other severe viral infections.In Vivo201529114
    [Google Scholar]
  50. ChannappanavarR. PerlmanS. Pathogenic human coronavirus infections: Causes and consequences of cytokine storm and immunopathology.Seminars in immunopathology.Springer2017
    [Google Scholar]
  51. AminiP. SaffarH. NouraniM.R. Curcumin mitigates radiation-induced lung pneumonitis and fibrosis in rats.Int. J. Mol. Cell. Med.201874212219
    [Google Scholar]
  52. WangW. YeL. YeL. Up-regulation of IL-6 and TNF-α induced by SARS-coronavirus spike protein in murine macrophages via NF-kappaB pathway.Virus Res.20071281-218
    [Google Scholar]
  53. ChannappanavarR. FehrA.R. VijayR. Dysregulated type I interferon and inflammatory monocyte-macrophage responses cause lethal pneumonia in SARS-CoV-infected mice.Cell Host Microbe2016192181193
    [Google Scholar]
  54. WuC. ChenX. CaiY. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China.JAMA Intern. Med.20201807934943
    [Google Scholar]
  55. KahkhaieKR MirhosseiniA AliabadiA MohammadiA MousaviMJ HaftcheshmehSM SathyapalanT SahebkarA Mohammadi A, Mousavi MJ, Haftcheshmeh SM, Sathyapalan T, Sahebkar A. Curcumin: a modulator of inflammatory signaling pathways in the immune system. Inflammopharmacology2019Oct;27588590010.1007/s10787‑019‑00607‑3 31140036Epub 2019 May 28. Erratum in: Inflammopharmacology. 2019 Aug 19:
    [Google Scholar]
  56. AvasaralaS. ZhangF. LiuG. WangR. LondonS.D. LondonL. Curcumin modulates the inflammatory response and inhibits subsequent fibrosis in a mouse model of viral-induced acute respiratory distress syndrome.PLoS One201382e57285
    [Google Scholar]
  57. ZhangY. LiangD. DongL. Anti-inflammatory effects of novel curcumin analogs in experimental acute lung injury.Respir. Res.201516143
    [Google Scholar]
  58. DaiJ. GuL. SuY. Inhibition of curcumin on influenza A virus infection and influenzal pneumonia via oxidative stress, TLR2/4, p38/JNK MAPK and NF-κB pathways.Int. Immunopharmacol.201854177187
    [Google Scholar]
  59. ZhangB. SwamyS. BalijepalliS. Direct pulmonary delivery of solubilized curcumin reduces severity of lethal pneumonia.FASEB J.20193312132941330910.1096/fj.201901047RR 31530014
    [Google Scholar]
  60. GaoX. KuoJ. JiangH. Immunomodulatory activity of curcumin: Suppression of lymphocyte proliferation, development of cell-mediated cytotoxicity, and cytokine production in vitro.Biochem. Pharmacol.2004681516110.1016/j.bcp.2004.03.015 15183117
    [Google Scholar]
  61. SurhY-J. Anti-tumor promoting potential of selected spice ingredients with antioxidative and anti-inflammatory activities: A short review.Food Chem. Toxicol.200240810911097
    [Google Scholar]
  62. HasanzadehS. ReadM.I. BlandA.R. MajeedM. JamialahmadiT. SahebkarA. Curcumin: An inflammasome silencer.Pharmacol. Res.2020159104921
    [Google Scholar]
  63. PanahiY. SahebkarA. AmiriM. Improvement of sulphur mustard-induced chronic pruritus, quality of life and antioxidant status by curcumin: Results of a randomised, double-blind, placebo-controlled trial.Br. J. Nutr.2012108712721279
    [Google Scholar]
  64. JurenkaJ.S. Anti-inflammatory properties of curcumin, a major constituent of Curcuma longa: A review of preclinical and clinical research.Altern. Med. Rev.2009142141153
    [Google Scholar]
  65. XuY. LiuL. Curcumin alleviates macrophage activation and lung inflammation induced by influenza virus infection through inhibiting the NF-κB signaling pathway.Influenza Other Respir. Viruses2017115457463
    [Google Scholar]
  66. SalminenA. HyttinenJ.M. KaarnirantaK. AMP-activated protein kinase inhibits NF-κB signaling and inflammation: impact on healthspan and lifespan.J. Mol. Med.2011897667676
    [Google Scholar]
  67. MohammadiA. BlessoC.N. BarretoG.E. BanachM. MajeedM. SahebkarA. Macrophage plasticity, polarization and function in response to curcumin, a diet-derived polyphenol, as an immunomodulatory agent.J. Nutr. Biochem.201966116
    [Google Scholar]
  68. CohenA.N. VeenaM.S. SrivatsanE.S. WangM.B. Suppression of interleukin 6 and 8 production in head and neck cancer cells with curcumin via inhibition of Ikappa β kinase.Arch. Otolaryngol. Head Neck Surg.20091352190197
    [Google Scholar]
  69. JobinC. BradhamC.A. RussoM.P. Curcumin blocks cytokine-mediated NF-κ B activation and proinflammatory gene expression by inhibiting inhibitory factor I-κ B kinase activity.J. Immunol.1999163634743483
    [Google Scholar]
  70. HanS. XuJ. GuoX. HuangM. Curcumin ameliorates severe influenza pneumonia via attenuating lung injury and regulating macrophage cytokines production.Clin. Exp. Pharmacol. Physiol.20184518493
    [Google Scholar]
  71. ChenB. LiH. OuG. RenL. YangX. ZengM. Curcumin attenuates MSU crystal-induced inflammation by inhibiting the degradation of IκBα and blocking mitochondrial damage.Arthritis Res. Ther.2019211193
    [Google Scholar]
  72. ValizadehH VahidAS DanshinaS GencerZM AmmariA SadeghiA Nano-curcumin therapy, a promising method in modulating inflammatory cytokines in COVID-19 patients.Int Immunopharmacol202089Pt B107088
    [Google Scholar]
  73. KhanA. IqtadarS. MumtazS.U. Oral co-supplementation of curcumin, quercetin, and vitamin D3 as an adjuvant therapy for mild to moderate symptoms of COVID-19-results from a pilot open-label, randomized controlled trial.Front. Pharmacol.202213898062
    [Google Scholar]
  74. LarmonierC.B. UnoJ.K. LeeK-M. Limited effects of dietary curcumin on Th-1 driven colitis in IL-10 deficient mice suggest an IL-10-dependent mechanism of protection.Am. J. Physiol. Gastrointest. Liver Physiol.20082955G1079G1091
    [Google Scholar]
  75. ChenL. LuY. ZhaoL. Curcumin attenuates sepsis-induced acute organ dysfunction by preventing inflammation and enhancing the suppressive function of Tregs.Int. Immunopharmacol.20186117
    [Google Scholar]
  76. MollazadehH. CiceroA.F.G. BlessoC.N. PirroM. MajeedM. SahebkarA. Immune modulation by curcumin: The role of interleukin-10.Crit. Rev. Food Sci. Nutr.201959189101
    [Google Scholar]
  77. ChaiY.S. ChenY.Q. LinS.H. Curcumin regulates the differentiation of naïve CD4+T cells and activates IL-10 immune modulation against acute lung injury in mice.Biomed. Pharmacother.2020125109946
    [Google Scholar]
  78. MulliganM.S. JonesM.L. VaporciyanA.A. HowardM.C. WardP.A. Protective effects of IL-4 and IL-10 against immune complex-induced lung injury.J. Immunol.19931511056665674
    [Google Scholar]
  79. TahmasebiS. SaeedB.Q. TemirgalievaE. Nanocurcumin improves Treg cell responses in patients with mild and severe SARS-CoV2.Life Sci.2021276119437
    [Google Scholar]
  80. LinL. ShiQ. NyarkoA.K. Antitumor agents. 250. Design and synthesis of new curcumin analogues as potential anti-prostate cancer agents.J. Med. Chem.2006491339633972
    [Google Scholar]
  81. SharmaS. ChopraK. KulkarniS. AgrewalaJ.J.C. ImmunologyE. Resveratrol and curcumin suppress immune response through CD28/CTLA-4 and CD80 co-stimulatory pathway.Clin. Exp. Immunol.20071471155163
    [Google Scholar]
  82. AhmadiR. SalariS. SharifiM.D. Oral nano-curcumin formulation efficacy in the management of mild to moderate outpatient COVID-19: A randomized triple-blind placebo-controlled clinical trial.Food Sci. Nutr.20219840684075
    [Google Scholar]
  83. KimH.J. YooH.S. KimJ.C. Antiviral effect of Curcuma longa Linn extract against hepatitis B virus replication.J. Ethnopharmacol.20091242189196
    [Google Scholar]
  84. KimJ. HaH-L. MoonH-B. Chemopreventive effect of Curcuma longa Linn on liver pathology in HBx transgenic mice.Integr. Cancer Ther.2011102168177
    [Google Scholar]
  85. RechtmanM.M. Har-NoyO. Bar-YishayI. Curcumin inhibits hepatitis B virus via down-regulation of the metabolic coactivator PGC-1α.FEBS Lett.20105841124852490
    [Google Scholar]
  86. WeiZ-Q. ZhangY-H. KeC-Z. Curcumin inhibits hepatitis B virus infection by down-regulating cccDNA-bound histone acetylation.World J. Gastroenterol.2017233462526260
    [Google Scholar]
  87. Anggakusuma , Colpitts CC, Schang LM, et al. Turmeric curcumin inhibits entry of all hepatitis C virus genotypes into human liver cells.Gut2014637113749
    [Google Scholar]
  88. ChenD-Y. ShienJ-H. TileyL. Curcumin inhibits influenza virus infection and haemagglutination activity.Food Chem.2010119413461351
    [Google Scholar]
  89. OuJ.L. MizushinaY. WangS.Y. ChuangD.Y. NadarM. HsuW.L. Structure-activity relationship analysis of curcumin analogues on anti-influenza virus activity.FEBS J.20132802258295840
    [Google Scholar]
  90. MounceB.C. CesaroT. CarrauL. ValletT. VignuzziM. Curcumin inhibits Zika and chikungunya virus infection by inhibiting cell binding.Antiviral Res.2017142148157
    [Google Scholar]
  91. von RheinC. WeidnerT. HenßL. Curcumin and Boswellia serrata gum resin extract inhibit chikungunya and vesicular stomatitis virus infections in vitro.Antiviral Res.20161255157
    [Google Scholar]
  92. SuiZ. SaltoR. LiJ. CraikC. de MontellanoO.P.R. Inhibition of the HIV-1 and HIV-2 proteases by curcumin and curcumin boron complexes.Bioorg. Med. Chem.19931641542210.1016/s0968‑0896(00)82152‑5 8087563
    [Google Scholar]
  93. MazumderA. RaghavanK. WeinsteinJ. KohnK.W. PommierY. Inhibition of human immunodeficiency virus type-1 integrase by curcumin.Biochem. Pharmacol.19954981165117010.1016/0006‑2952(95)98514‑a 7748198
    [Google Scholar]
  94. BarthelemyS. VergnesL. MoynierM. GuyotD. LabidalleS. BahraouiE. Curcumin and curcumin derivatives inhibit Tat-mediated transactivation of type 1 human immunodeficiency virus long terminal repeat.Res. Virol.199814914352
    [Google Scholar]
  95. BalasubramanyamK. VarierR.A. AltafM. Curcumin, a novel p300/CREB-binding protein-specific inhibitor of acetyltransferase, represses the acetylation of histone/nonhistone proteins and histone acetyltransferase-dependent chromatin transcription.J. Biol. Chem.2004279495116351171
    [Google Scholar]
  96. KutluayS.B. DoroghaziJ. RoemerM.E. TriezenbergS.J. Curcumin inhibits herpes simplex virus immediate-early gene expression by a mechanism independent of p300/CBP histone acetyltransferase activity.Virology20083732239247
    [Google Scholar]
  97. MaherD.M. BellM.C. O’DonnellE.A. GuptaB.K. JaggiM. ChauhanS.C. Curcumin suppresses human papillomavirus oncoproteins, restores p53, Rb, and PTPN13 proteins and inhibits benzo[a]pyrene-induced upregulation of HPV E7.Mol. Carcinog.20115014757
    [Google Scholar]
  98. MishraA. KumarR. TyagiA. Curcumin modulates cellular AP-1, NF-kB, and HPV16 E6 proteins in oral cancer.Ecancermedicalscience20159525
    [Google Scholar]
  99. IngolfssonH.I. KoeppeR.E.II AndersenO.S. Curcumin is a modulator of bilayer material properties.Biochemistry200746361038410391
    [Google Scholar]
  100. ChenT-Y. ChenD-Y. WenH-W. Inhibition of enveloped viruses infectivity by curcumin.PLoS One201385e62482
    [Google Scholar]
  101. DuttaK. GhoshD. BasuA. Curcumin protects neuronal cells from Japanese encephalitis virus-mediated cell death and also inhibits infective viral particle formation by dysregulation of ubiquitin-proteasome system.J. Neuroimmune Pharmacol.200943328337
    [Google Scholar]
  102. Padilla-SL. RodríguezA. GonzalesM.M. Gallego-GJ.C. Castaño-OJ.C. Inhibitory effects of curcumin on dengue virus type 2-infected cells in vitro.Arch. Virol.20141593573579
    [Google Scholar]
  103. FerreiraV.H. NazliA. DizzellS.E. MuellerK. KaushicC. The anti-inflammatory activity of curcumin protects the genital mucosal epithelial barrier from disruption and blocks replication of HIV-1 and HSV-2.PLoS One2015104e0124903
    [Google Scholar]
  104. ChenM.H. LeeM.Y. ChuangJ.J. Curcumin inhibits HCV replication by induction of heme oxygenase-1 and suppression of AKT.Int. J. Mol. Med.201230510211028
    [Google Scholar]
  105. SoniV.K. MehtaA. RatreY.K. Curcumin, a traditional spice component, can hold the promise against COVID-19?Eur. J. Pharmacol.2020886173551
    [Google Scholar]
  106. WenC-C. KuoY-H. JanJ-T. Specific plant terpenoids and lignoids possess potent antiviral activities against severe acute respiratory syndrome coronavirus.J. Med. Chem.2007501740874095
    [Google Scholar]
  107. TingD. DongN. FangL. LuJ. BiJ. XiaoS. Multisite inhibitors for enteric coronavirus: Antiviral cationic carbon dots based on curcumin.ACS Appl. Nano Mater.201811054515459
    [Google Scholar]
  108. ChenY. LiuQ. GuoD. Emerging coronaviruses: Genome structure, replication, and pathogenesis.J. Med. Virol.202092441842310.1002/jmv.25681 31967327
    [Google Scholar]
  109. ThimmulappaR.K. NagarajuM.K.K. ShivamalluC. Antiviral and immunomodulatory activity of curcumin: A case for prophylactic therapy for COVID-19.Heliyon202172e0635010.1016/j.heliyon.2021.e06350 33655086
    [Google Scholar]
  110. KhaerunnisaS. KurniawanH. AwaluddinR. SuhartatiS. SoetjiptoS. Potential inhibitor of COVID-19 main protease (Mpro) from several medicinal plant compounds by molecular docking study.Prepr20202094411410.20944/preprints202003.0226.v1
    [Google Scholar]
  111. DuT. ShiY. XiaoS. Curcumin is a promising inhibitor of genotype 2 porcine reproductive and respiratory syndrome virus infection.BMC Vet. Res.201713129810.1186/s12917‑017‑1218‑x 29017487
    [Google Scholar]
  112. UtomoR.Y. MeiyantoE. Revealing the potency of citrus and galangal constituents to halt SARS-CoV-2 infection.Preprints20202020030214
    [Google Scholar]
  113. MoiniJ. Epidemiology of Diabetes.Elsevier2019
    [Google Scholar]
  114. CareF. 11. Microvascular complications and foot care: Standards of medical care in diabetes-2019.Diabetes Care201942S1S124S138
    [Google Scholar]
  115. ApicellaM. CampopianoM.C. MantuanoM. MazoniL. CoppelliA. PratoD.S. COVID-19 in people with diabetes: Understanding the reasons for worse outcomes.Lancet Diabetes Endocrinol.20208978279210.1016/S2213‑8587(20)30238‑2 32687793
    [Google Scholar]
  116. ShiQ. ZhangX. JiangF. Clinical characteristics and risk factors for mortality of COVID-19 patients with diabetes in Wuhan, China: A two-center, retrospective study.Diabetes Care20204371382139110.2337/dc20‑0598 32409504
    [Google Scholar]
  117. NovelC.P.E.R.E. The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) in China.Toxicol. Environ. Chem.2020412145
    [Google Scholar]
  118. GuoW. LiM. DongY. Diabetes is a risk factor for the progression and prognosis of COVID-19.Diabetes Metab. Res. Rev.2020367e3319
    [Google Scholar]
  119. WilliamsonE. WalkerA. BhaskaranK. Factors associated with COVID-19-related hospital death in the linked electronic health records of 17 million adult NHS patients.J. Chem. Inf. Model.20195316891699
    [Google Scholar]
  120. RonconL. ZuinM. RigatelliG. ZulianiG. Diabetic patients with COVID-19 infection are at higher risk of ICU admission and poor short-term outcome.J. Clin. Virol.2020127104354
    [Google Scholar]
  121. ChatterjeeS. NallaL.V. SharmaM. Association of COVID-19 with comorbidities: An update.ACS Pharmacol. Transl. Sci.202363334354
    [Google Scholar]
  122. AhmadiS. MehrabiZ. ZareM. GhadirS. MasoumiS.J. Efficacy of nanocurcumin as an add-on treatment for patients hospitalized with COVID-19: A double-blind, randomized clinical trial.Int. J. Clin. Pract.202320235734675
    [Google Scholar]
  123. UjjanI.D. KhanS. NigarR. AhmedH. AhmadS. KhanA. The possible therapeutic role of curcumin and quercetin in the early-stage of COVID-19-Results from a pragmatic randomized clinical trial.Front. Nutr.202391023997
    [Google Scholar]
  124. YusufA.P. ZhangJ-Y. LiJ-Q. MuhammadA. AbubakarM.B. Herbal medications and natural products for patients with COVID-19 and diabetes mellitus: Potentials and challenges.Phytomed Plus202223100280
    [Google Scholar]
  125. AskariG. SahebkarA. SoleimaniD. The efficacy of curcumin-piperine co-supplementation on clinical symptoms, duration, severity, and inflammatory factors in COVID-19 outpatients: A randomized double-blind, placebo-controlled trial.Trials2022231472
    [Google Scholar]
  126. GazzazZ.J. Diabetes and COVID-19.Open Life Sci.2021161297302
    [Google Scholar]
  127. BrufskyA. Hyperglycemia, hydroxychloroquine, and the COVID-19 pandemic.J. Med. Virol.202092777077510.1002/jmv.25887 32293710
    [Google Scholar]
  128. CerielloA. Hyperglycemia and the worse prognosis of COVID-19. Why a fast blood glucose control should be mandatory.Diabetes Res. Clin. Pract.202016310818610.1016/j.diabres.2020.108186
    [Google Scholar]
  129. SouthA.M. TomlinsonL. EdmonstonD. HiremathS. SparksM.A. Controversies of renin-angiotensin system inhibition during the COVID-19 pandemic.Nat. Rev. Nephrol.2020166305307
    [Google Scholar]
  130. HammingI. TimensW. BulthuisM. LelyA. Navis Gv, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis.J. Pathol. Clin. Res.20042032631637
    [Google Scholar]
  131. CariouB. HadjadjS. WargnyM. Phenotypic characteristics and prognosis of inpatients with COVID-19 and diabetes: the CORONADO study.Diabetologia202063919531957
    [Google Scholar]
  132. IacobellisG. PenaherreraC.A. BermudezL.E. MizrachiE.B. Admission hyperglycemia and radiological findings of SARS-CoV2 in patients with and without diabetes.Diabetes Res. Clin. Pract.2020164108185
    [Google Scholar]
  133. KarioK. ChirinosJ.A. TownsendR.R. Systemic hemodynamic atherothrombotic syndrome (SHATS) - Coupling vascular disease and blood pressure variability: Proposed concept from pulse of Asia.Prog. Cardiovasc. Dis.20206312232 31810526
    [Google Scholar]
  134. WangF. YangY. DongK. Clinical characteristics of 28 patients with diabetes and COVID-19 in Wuhan, China.Endocr. Pract.2020266668674 32357072
    [Google Scholar]
  135. BodeB. GarrettV. MesslerJ. Glycemic characteristics and clinical outcomes of COVID-19 patients hospitalized in the United States.J. Diabetes Sci. Technol.2020144813821 32389027
    [Google Scholar]
  136. ShettyS. InzucchiS.E. GoldbergP.A. CooperD. SiegelM.D. HonidenS. Adapting to the new consensus guidelines for managing hyperglycemia during critical illness: The updated Yale insulin infusion protocol.Endocr. Pract.2012183363370 22138078
    [Google Scholar]
  137. SharifK. GhadirS. JakubowiczD. Improved outcome of patients with diabetes mellitus with good glycemic control in the cardiac intensive care unit: A retrospective study.Cardiovasc. Diabetol.20191814
    [Google Scholar]
  138. CruzF.A. AntoranR.B. GomezM.A. LopezS.A. SanchezM.P. SotoC.G.A. Impact of glucocorticoid treatment in SARS-CoV-2 infection mortality: A retrospective controlled cohort study.medRxiv2020
    [Google Scholar]
  139. BertonA. PrencipeN. GiordanoR. GhigoE. GrottoliS. Systemic steroids in patients with COVID-19: Pros and contras, an endocrinological point of view.J. Endocrinol. Invest.202044487387510.1007/s40618‑020‑01325‑2 32514902
    [Google Scholar]
  140. ZhangD.W. FuM. GaoS.H. LiuJLJEBC Medicine A. Curcumin and diabetes: A systematic review.Evid. Based Complement. Alternat. Med.20132013636053
    [Google Scholar]
  141. DerouicheS. CheradidT. AbdelmalekD. AchiI. Effect of COVID-19 infection on the immune system and risk of developing diabetes complications: A review.J Pharmaceut Care202083133139
    [Google Scholar]
  142. KanitkarM. GokhaleK. GalandeS. BhondeR.R. Novel role of curcumin in the prevention of cytokine-induced islet death in vitro and diabetogenesis in vivo.Br. J. Pharmacol.20081555702713
    [Google Scholar]
  143. MeghanaK. SanjeevG. RameshB. Curcumin prevents streptozotocin-induced islet damage by scavenging free radicals: A prophylactic and protective role.Eur. J. Pharmacol.20075771-3183191
    [Google Scholar]
  144. HodaeiH. AdibianM. NikpayamO. HedayatiM. SohrabG.J.D. The effect of curcumin supplementation on anthropometric indices, insulin resistance and oxidative stress in patients with type 2 diabetes: A randomized, double-blind clinical trial.Diabetol. Metab. Syndr.201911141
    [Google Scholar]
  145. ChanpooM PetchpiboonthaiH PanyarachunB AnupunpisitV Effect of curcumin in the amelioration of pancreatic islets in streptozotocin- induced diabetic mice.J Med Assoc Thai 201093S66S159S152-9.
    [Google Scholar]
  146. AzabE.M.F. AttiaF.M. Novel role of curcumin combined with bone marrow transplantation in reversing experimental diabetes: Effects on pancreatic islet regeneration, oxidative stress, and inflammatory cytokines.Eur. J. Pharmacol.201165814148
    [Google Scholar]
  147. CerielloA. StandlE. CatrinoiuD. Issues for the management of people with diabetes and COVID-19 in ICU.Cardiovasc. Diabetol.2020191114
    [Google Scholar]
  148. TajbakhshA. Gheibi HayatS.M. TaghizadehH. COVID-19 and cardiac injury: clinical manifestations, biomarkers, mechanisms, diagnosis, treatment, and follow up.Expert Rev. Anti Infect. Ther.202119334535710.1080/14787210.2020.1822737 32921216
    [Google Scholar]
  149. BujaL.M. WolfD.A. ZhaoB. The emerging spectrum of cardiopulmonary pathology of the coronavirus disease 2019 (COVID-19): Report of 3 autopsies from Houston, Texas, and review of autopsy findings from other United States cities.Cardiovasc. Pathol.20204810723310.1016/j.carpath.2020.107233 32434133
    [Google Scholar]
  150. ValensiP.E. JohnsonN.B. Maison-BlancheP. ExtramaniaF. MotteG. CoumelP. Influence of cardiac autonomic neuropathy on heart rate dependence of ventricular repolarization in diabetic patients.Diabetes Care200225591892310.2337/diacare.25.5.918 11978691
    [Google Scholar]
  151. OkamotoT. YamagishiS-i. InagakiY. AmanoS. KogaK. AbeR. Angiogenesis induced by advanced glycation end products and its prevention by cerivastatin.FASEB J.2002161419281930
    [Google Scholar]
  152. PatumrajS. WongeakinN. SridulyakulP. JariyapongskulA. FutrakulN. BunnagS.J.Ch. Combined effects of curcumin and vitamin C to protect endothelial dysfunction in the iris tissue of STZ-induced diabetic rats.Clin. Hemorheol. Microcirc.2006354481489
    [Google Scholar]
  153. SinghN. RanjanV. ZaidiD.H.S. SinghA. LodhaD. SharmaR. Insulin catalyzes the curcumin-induced wound healing: An in vitro model for gingival repair.Indian J. Pharmacol.2012444458462
    [Google Scholar]
  154. SidhuG.S. ManiH. GaddipatiJ.P. SinghA.K. SethP. BanaudhaK.K. Curcumin enhances wound healing in streptozotocin induced diabetic rats and genetically diabetic mice.Wound Repair Regen.199975362374
    [Google Scholar]
  155. RungseesantivanonS. ThengchaisriN. RuangvejvorachaiP. PatumrajS. Curcumin improves prostanoid ratio in diabetic mesenteric arteries associated with cyclooxygenase-2 and NF-κB suppression.Diabetes Metab. Syndr. Obes.2010342142910.2147/DMSOTT.S14882 21437112
    [Google Scholar]
  156. ChengT-C. LinC-S. HsuC-C. ChenL-J. ChengK-C. ChengJ-T. Activation of muscarinic M-1 cholinoceptors by curcumin to increase glucose uptake into skeletal muscle isolated from Wistar rats.Neurosci. Lett.2009465323824110.1016/j.neulet.2009.09.012 19765405
    [Google Scholar]
  157. XuX. CaiY. YuY. Effects of a novel curcumin derivative on the functions of kidney in streptozotocin-induced type 2 diabetic rats.Inflammopharmacology20182651257126410.1007/s10787‑018‑0449‑1 29582239
    [Google Scholar]
  158. ZahedipourF. HosseiniS.A. SathyapalanT. Potential effects of curcumin in the treatment of COVID-19 infection.Phytother. Res.202034112911292010.1002/ptr.6738 32430996
    [Google Scholar]
  159. SoetiknoV. SariF.R. VeeraveeduP.T. ThandavarayanR.A. HarimaM. SukumaranV. Curcumin ameliorates macrophage infiltration by inhibiting NF-κB activation and proinflammatory cytokines in streptozotocin induced-diabetic nephropathy.Nutr. Metab.20118135
    [Google Scholar]
  160. TikooK. MeenaR. KabraD. Change in post-translational modifications of histone H3, heat-shock protein-27 and MAP kinase p38 expression by curcumin in streptozotocin-induced type I diabetic nephropathy.Br. J. Pharmacol.2008153612251231
    [Google Scholar]
  161. WeirM.A. WalshM. CuerdenM.S. SontropJ.M. ChambersL.C. GargA.X. Micro-particle curcumin for the treatment of chronic kidney disease-1: study protocol for a multicenter clinical trial.Can. J. Kidney Health Dis.201852054358118813088
    [Google Scholar]
  162. MuruganP. Influence of tetrahydrocurcumin on erythrocyte membrane bound enzymes and antioxidant status in experimental type 2 diabetic rats.J. Ethnopharmacol.20071133479486
    [Google Scholar]
  163. SharmaS. KulkarniS.K. ChopraK.J.C. Curcumin, the active principle of turmeric (Curcuma longa), ameliorates diabetic nephropathy in rats.Clin. Exp. Pharmacol. Physiol.20063310940945
    [Google Scholar]
  164. GutierresV.O. PinheiroC.M. AssisR.P. VendraminiR.C. PepatoM.T. Curcumin-supplemented yoghurt improves physiological and biochemical markers of experimental diabetes.Br. J. Nutr.20121083440448
    [Google Scholar]
  165. MathewT. SaradaS. Attenuation of NFkB activation augments alveolar transport proteins expression and activity under hypoxia.Int. J. Sci. Res.2015422302237
    [Google Scholar]
  166. LiXC ZhangJ ZhuoJL The vasoprotective axes of the reninangiotensin system: Physiological relevance and therapeutic implications in cardiovascular, hypertensive and kidney diseases.Pharmacol Res 2017125Pt A2138
    [Google Scholar]
  167. HalderP. PalU. PaladhiP. Evaluation of potency of the selected bioactive molecules from Indian medicinal plants with MPro of SARS-CoV-2 through in silico analysis.J. Ayurveda Integr. Med.2022132100449
    [Google Scholar]
  168. PatelA. RajendranM. ShahA. PatelH. PakalaS.B. KaryalaP. Virtual screening of curcumin and its analogs against the spike surface glycoprotein of SARS-CoV-2 and SARS-CoV.J. Biomol. Struct. Dyn.2022401151385146
    [Google Scholar]
  169. JenaA.B. KanungoN. NayakV. ChainyG.B.N. DandapatJ. Catechin and curcumin interact with S protein of SARS-CoV2 and ACE2 of human cell membrane: Insights from computational studies.Sci. Rep.20211112043
    [Google Scholar]
  170. KhaerunnisaS. KurniawanH. AwaluddinR. SuhartatiS. SoetjiptoS. Potential inhibitor of COVID-19 main protease (Mpro) from several medicinal plant compounds by molecular docking study.Preprints202020202020030226
    [Google Scholar]
  171. GocA. RathM. NiedzwieckiA. Composition of naturally occurring compounds decreases activity of Omicron and SARS-CoV-2 RdRp complex.Eur. J. Microbiol. Immunol.20221223945
    [Google Scholar]
  172. GocA. SumeraW. RathM. NiedzwieckiA. Phenolic compounds disrupt spike-mediated receptor-binding and entry of SARS-CoV-2 pseudo-virions.PLoS One2021166e0253489
    [Google Scholar]
  173. TahmasebiS. El-EsawiM.A. MahmoudZ.H. Immunomodulatory effects of nanocurcumin on Th17 cell responses in mild and severe COVID-19 patients.J. Cell. Physiol.202123675325533810.1002/jcp.30233 33372280
    [Google Scholar]
  174. PawarK.S. MastudR.N. PawarS.K. Oral curcumin with piperine as adjuvant therapy for the treatment of COVID-19: A randomized clinical trial.Front. Pharmacol.20211266936210.3389/fphar.2021.669362 34122090
    [Google Scholar]
  175. ShafieH.E. TaheriF. AlijaniN. Effect of nanocurcumin supplementation on the severity of symptoms and length of hospital stay in patients with COVID-19: A randomized double-blind placebo-controlled trial.Phytother. Res.20223621013102210.1002/ptr.7374 35023260
    [Google Scholar]
/content/journals/covid/10.2174/0126667975292793240320052355
Loading
/content/journals/covid/10.2174/0126667975292793240320052355
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test