Skip to content
2000
Volume 6, Issue 1
  • ISSN: 2666-7967
  • E-ISSN: 2666-7975

Abstract

Background

Coronavirus disease 2019 or COVID-19 is a type of acute respiratory syndrome caused by a virus from the family of coronaviruses that has affected all the countries of the world in a short period.

Objective

The purpose of this review is to identify and report medicinal plants effective against COVID-19. In this study, the keywords containing medicinal plants and “corona disease” . COVID-19, MERS, SARS-CoV-2, and medicinal plants or natural antioxidants were used.

Methods

Search databases including ISI, Scopus, Science Direct, Google Scholar, Mag Iran, and SID were used. Relevant articles were selected and unrelated articles were excluded.

Results

Based on the obtained results, medicinal plants such as Fortune, spp L (L.), L., L., Sprag, Georg, (Thunb.) Steud, (L.) Kuntze, Bunge, (Thunb.) Steud. Bunge, L, (L.) Vent Nakai, and are the most important medicinal plants that are used in the treatment of COVID-19.

Conclusion

Due to having secondary metabolites and antioxidant activity, medicinal plants have a favorable effect in improving corona symptoms in patients with COVID-19.

Loading

Article metrics loading...

/content/journals/covid/10.2174/0126667975292612240219084431
2024-02-29
2025-01-06
Loading full text...

Full text loading...

References

  1. WidoyoH. MohammedZ.Y. Ramírez-CoronelA.A. IswantoA.H. ThattarauthodiyilU. Herbal therapy in COVID-19: A systematic review of medicinal plants effective against COVID-19.Caspian J. Environ. Sci.202211010.22124/cjes.2022.6062
    [Google Scholar]
  2. RafsanjaniM.H. NouriM. NavaA.O. DarvishiM. Barriers and motivating factors in receiving COVID-19 vaccination among the healthcare workers of tehran military hospitals.Coronaviruses202344e15092322110610.2174/2666796704666230915090714
    [Google Scholar]
  3. SaeedS. AhmadS. TareenA. IqbalA. Emergence of SARS-CoV-2: Insight in genomics to possible therapeutics.Adv. Life Sci.202310151610.37185/LnS.1.1.407
    [Google Scholar]
  4. PellokilaM.R. NendissaD.R. KapaM.M.J. Environmental challenges due to COVID-19: Implications of altered distribution patterns and rice price dynamics in surplus and deficit areas of Indonesia.Caspian J. Env. Sci.20232151159117010.22124/cjes.2023.7406
    [Google Scholar]
  5. PullenM.F. SkipperC.P. HullsiekK.H. Symptoms of COVID-19 outpatients in the United States.Open Forum Infect. Dis.202077ofaa271
    [Google Scholar]
  6. Hassanzadeh KhanmiriH. MohammadA.A. YousifR.S. SARS-CoV2 neuroinvasive potential in respiratory failure in COVID-19 patients.Caspian J. Env. Sci.202321246747210.22124/cjes.2023.6635
    [Google Scholar]
  7. StasiC. FallaniS. VollerF. SilvestriC. Treatment for COVID-19: An overview.Eur. J. Pharmacol.2020889173644
    [Google Scholar]
  8. Aygünİ. KayaM. AlhajjR. Identifying side effects of commonly used drugs in the treatment of COVID 19.Sci. Rep.202010121508
    [Google Scholar]
  9. Mohammad ZadehN. Mashinchi AslN.S. ForouharnejadK. Mechanism and adverse effects of COVID-19 drugs: A basic review.Int. J. Physiol. Pathophysiol. Pharmacol.2021134102109 34540130
    [Google Scholar]
  10. AbbasiN. GhaneialvarH. MoradiR. ZangenehM.M. ZangenehA. Formulation and characterization of a novel cutaneous wound healing ointment by silver nanoparticles containing Citrus lemon leaf: A chemobiological study.Arab. J. Chem.202114710324610.1016/j.arabjc.2021.103246
    [Google Scholar]
  11. MohebodiniM. FathiR. Effect of iron oxide nanoparticles on hairy root induction and antioxidant activity in Purslane (Portulaca oleracea).Agr Biotechnol J2021133699010.22103/jab.2021.17438.1311
    [Google Scholar]
  12. KarimiE. AbbasiS.H. AbbasiN. Thymol polymeric nanoparticle synthesis and its effects on the toxicity of high glucose on OEC cells: involvement of growth factors and integrin-linked kinase.Drug Des. Devel. Ther.20191325132532
    [Google Scholar]
  13. AbyariM. The effect of titanium oxide nanoparticles on the gene expression involved in the secondary metabolite production of the medicinal plant periwinkle (Catharanthus roseus).Agri Biotechnol J20231528310010.22103/jab.2023.20229.1430
    [Google Scholar]
  14. KarimiM Gholami-AhangaranM. A brief report of current evidence of traditional chinese medicine in the treatment of patients infected with SARS-CoV-2.Plant Biotechnology Persa202131010.52547/pbp.3.1.1
    [Google Scholar]
  15. HanifiE. AhmadifardN. AtashbarB. MeshkiniS. Effects of zinc oxide nanoparticles on photosynthetic pigments, zinc accumulation, and activity of antioxidant enzymes of Dunalilla salina.Aquatic Animals Nutr202284314210.22124/janb.2023.24071.1189
    [Google Scholar]
  16. AbbasiN. AkhavanM.M. Rahbar-RoshandelN. ShafieiM. The effects of low and high concentrations of luteolin on cultured human endothelial cells under normal and glucotoxic conditions: Involvement of integrin-linked kinase and cyclooxygenase-2.Phytother. Res.20142891301130710.1002/ptr.5128 25201753
    [Google Scholar]
  17. Hassanzadeh KhanmiriH. MohammadA.A. YousifR.S. SARS-CoV2 neuroinvasive potential in respiratory failure in COVID-19 patients.Caspian J. Environ. Sci.202321246747210.22124/cjes.2023.6635
    [Google Scholar]
  18. ShahsavariS. SarkarS. SenD.J. MandalS.K. Determination of total antioxidant activity of methanolic extract of Falcaria vulgaris.J Biochemi Phytomedi20221181210.34172/jbp.2022.3
    [Google Scholar]
  19. LuoW. SuX. GongS. Anti-SARS coronavirus 3C-like protease effects of Rheum palmatum L. extracts.Biosci. Trends200934124126 20103835
    [Google Scholar]
  20. NileS.H. KeumY.S. NileA.S. JaldeS.S. PatelR.V. Antioxidant, anti‐inflammatory, and enzyme inhibitory activity of natural plant flavonoids and their synthesized derivatives.J. Biochem. Mol. Toxicol.2018321e2200210.1002/jbt.22002 28972678
    [Google Scholar]
  21. WuC. LiuY. YangY. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods.Acta Pharm. Sin. B202010576678810.1016/j.apsb.2020.02.008 32292689
    [Google Scholar]
  22. RohC. A facile inhibitor screening of SARS coronavirus N protein using nanoparticle-based RNA oligonucleotide.Int. J. Nanomedicine201272173217910.2147/IJN.S31379 22619553
    [Google Scholar]
  23. RyuY.B. JeongH.J. KimJ.H. Biflavonoids from Torreya nucifera displaying SARS-CoV 3CLpro inhibition.Bioorg. Med. Chem.201018227940794710.1016/j.bmc.2010.09.035 20934345
    [Google Scholar]
  24. WenC.C. KuoY.H. JanJ.T. Specific plant terpenoids and lignoids possess potent antiviral activities against severe acute respiratory syndrome coronavirus.J. Med. Chem.200750174087409510.1021/jm070295s 17663539
    [Google Scholar]
  25. ParkJ.Y. YukH.J. RyuH.W. Evaluation of polyphenols from Broussonetia papyrifera as coronavirus protease inhibitors.J. Enzyme Inhib. Med. Chem.201732150451210.1080/14756366.2016.1265519 28112000
    [Google Scholar]
  26. SongY.H. KimD.W. Curtis-LongM.J. Papain-like protease (PLpro) inhibitory effects of cinnamic amides from Tribulus terrestris fruits.Biol. Pharm. Bull.20143761021102810.1248/bpb.b14‑00026 24882413
    [Google Scholar]
  27. WengJ.R. LinC.S. LaiH.C. Antiviral activity of Sambucus FormosanaNakai ethanol extract and related phenolic acid constituents against human coronavirus NL63.Virus Res.201927319776710.1016/j.virusres.2019.197767 31560964
    [Google Scholar]
  28. ShenL. NiuJ. WangC. High-throughput screening and identification of potent broad-spectrum inhibitors of coronaviruses.J. Virol.20199312e00023e1910.1128/JVI.00023‑19 30918074
    [Google Scholar]
  29. TsaiY.C. LeeC.L. YenH.R. Antiviral action of tryptanthrin isolated from Strobilanthes cusia leaf against human coronavirus NL63.Biomolecules202010336610.3390/biom10030366 32120929
    [Google Scholar]
  30. SuryanarayanaL. BanavathD. A review on identification of antiviral potential medicinal plant compounds against with COVID-19.Int J Res Eng Sci Manag20203675679
    [Google Scholar]
  31. SharmaM. AndersonS.A. SchoopR. HudsonJ.B. Induction of multiple pro-inflammatory cytokines by respiratory viruses and reversal by standardized Echinacea, a potent antiviral herbal extract.Antiviral Res.200983216517010.1016/j.antiviral.2009.04.009 19409931
    [Google Scholar]
  32. ChevallierA. Encyclopedia of herbal medicine: 550 herbs and remedies for common ailments.Penguin2016
    [Google Scholar]
  33. AbascalK. YarnellE. Herbal treatments for pandemic influenza: Learning from the eclectics’ experience.Altern. Complement. Ther.200612521422110.1089/act.2006.12.214
    [Google Scholar]
  34. MukherjeeH. OjhaD. BagP. Anti-herpes virus activities of Achyranthes aspera: An Indian ethnomedicine, and its triterpene acid.Microbiol. Res.2013168423824410.1016/j.micres.2012.11.002 23218996
    [Google Scholar]
  35. JantanI. AhmadW. BukhariS.N.A. Plant-derived immunomodulators: An insight on their preclinical evaluation and clinical trials.Front Plant Sci2015665510.3389/fpls.2015.00655 26379683
    [Google Scholar]
  36. BabichO. SukhikhS. ProsekovA. AsyakinaL. IvanovaS. Review: Medicinal plants to strengthen immunity during a pandemic.Pharmaceuticals2020131031310.3390/ph13100313 33076514
    [Google Scholar]
  37. BehlT. KumarK. BriscC. Exploring the multifocal role of phytochemicals as immunomodulators.Biomed. Pharmacother.202113311095910.1016/j.biopha.2020.110959 33197758
    [Google Scholar]
  38. AkramM. TahirI.M. ShahS.M.A. Antiviral potential of medicinal plants against HIV, HSV, influenza, hepatitis, and coxsackievirus: A systematic review.Phytother. Res.201832581182210.1002/ptr.6024 29356205
    [Google Scholar]
  39. DhamaK. KarthikK. KhandiaR. Medicinal and therapeutic potential of herbs and plant metabolites/extracts countering viral pathogens-current knowledge and future prospects.Curr. Drug Metab.201819323626310.2174/1389200219666180129145252 29380697
    [Google Scholar]
  40. MaheswariK.S. Sridevi SangeethaS. UmamaheswariC.U. ReddyM. KalkuraS.N. Flavonoids: therapeutic potential of natural pharmacological agents.Int. J. Pharm. Sci. Res.2016739243930
    [Google Scholar]
  41. YaoL.H. JiangY.M. ShiJ. Flavonoids in food and their health benefits.Plant Foods Hum. Nutr.200459311312210.1007/s11130‑004‑0049‑7 15678717
    [Google Scholar]
  42. ManuelR.L. ColungaM. BerrillJ.D. CatravasP.E. Quercetin and vitamin C: An experimental, synergistic therapy for the prevention and treatment of SARS- CoV-2 related disease (COVID-19).Front. Immunol.202011111
    [Google Scholar]
  43. KaulT.N. MiddletonE.Jr OgraP.L. Antiviral effect of flavonoids on human viruses.J. Med. Virol.1985151717910.1002/jmv.1890150110 2981979
    [Google Scholar]
  44. TakahashiT. KokuboR. SakainoM. Antimicrobial activities of eucalyptus leaf extracts and flavonoids from Eucalyptus maculata.Lett. Appl. Microbiol.2004391606410.1111/j.1472‑765X.2004.01538.x 15189289
    [Google Scholar]
  45. ZakaryanH. ArabyanE. OoA. ZandiK. Flavonoids: Promising natural compounds against viral infections.Arch. Virol.201716292539255110.1007/s00705‑017‑3417‑y 28547385
    [Google Scholar]
  46. HamdaniF.Z. HouariN. Phytothérapie et COVID-19. Une étude fondée sur une enquête dans le nord de l’Algérie.Phytotherapie202018524825410.3166/phyto‑2020‑0241
    [Google Scholar]
  47. VimalanathanS. HudsonJ. Anti-influenza virus activity of essential oils and vapors.Am J Essent Oil Natur Product2014214753
    [Google Scholar]
  48. Da SilvaR.J.K. Baia FigueiredoB.L. Essential oils as antiviral agents, potential of essential oils to treat SARS-CoV-2 Infection: An in silico investigation.Int. J. Sci.202021103426
    [Google Scholar]
  49. AhmadA. RehmanM.U. AlkharfyK.M. An alternative approach to minimize the risk of coronavirus (COVID-19) and similar infections.Eur. Rev. Med. Pharmacol. Sci.202024740304034 32329879
    [Google Scholar]
  50. ManiJ.S. JohnsonJ.B. SteelJ.C. Natural product-derived phytochemicals as potential agents against coronaviruses: A review.Virus Res.202028419798910.1016/j.virusres.2020.197989
    [Google Scholar]
  51. PeñalozaE.M.C. CostaS.S. Herrera-CalderonO. Medicinal plants in peru as a source of immunomodulatory drugs potentially useful against COVID-19.Rev. Bras. Farmacogn.202333223725810.1007/s43450‑023‑00367‑w
    [Google Scholar]
  52. ChangS.J. ChangY.C. LuK.Z. TsouY.Y. LinC.W. Antiviral activity of Isatis indigotica extract and its derived indirubin against Japanese encephalitis virus.Evid. Based Complement. Alternat. Med.20122012925830
    [Google Scholar]
  53. KimH.J. YooH.S. KimJ.C. Antiviral effect of Curcuma longa Linn extract against hepatitis B virus replication.J. Ethnopharmacol.2009124218919610.1016/j.jep.2009.04.046 19409970
    [Google Scholar]
  54. ChangS.J. HuangS.H. LinY.J. TsouY.Y. LinC.W. Antiviral activity of Rheum palmatum methanol extract and chrysophanol against Japanese encephalitis virus.Arch. Pharm. Res.20143791117112310.1007/s12272‑013‑0325‑x 24395532
    [Google Scholar]
  55. ParkJ.S. BaeJ. JungJ. KimJ.S. ParkS.J. In vitro antiviral activity of abietane diterpenoids isolated from Torreya nucifera against rotavirus infection.Acta Virol.2023671163010.3389/av.2023.11630
    [Google Scholar]
  56. JiS. LiR. WangQ. Anti-H1N1 virus, cytotoxic and Nrf2 activation activities of chemical constituents from Scutellaria baicalensis.J. Ethnopharmacol.201517647548410.1016/j.jep.2015.11.018 26578185
    [Google Scholar]
  57. TungN.H. KwonH.J. KimJ.H. Anti-influenza diarylheptanoids from the bark of Alnus japonica.Bioorg. Med. Chem. Lett.20102031000100310.1016/j.bmcl.2009.12.057 20045319
    [Google Scholar]
  58. KarimiA. MoradiM.T. AlidadiS. HashemiL. Anti-adenovirus activity, antioxidant potential, and phenolic content of black tea (Camellia sinensis Kuntze) extract.J. Complement. Integr. Med.201613435736310.1515/jcim‑2016‑0050 27567600
    [Google Scholar]
  59. WuB.W. PanT.L. LeuY.L. Antiviral effects of Salvia miltiorrhiza (Danshen) against enterovirus 71.Am. J. Chin. Med.200735115316810.1142/S0192415X07004709 17265559
    [Google Scholar]
  60. MalikA. MehmoodM.D. AnwarH. SultanU. In vivo antiviral potential of crude extracts derived from Tribulus terrestris against newcastle disease virus.J. Drug Deliv. Ther.201886149154
    [Google Scholar]
  61. HanX. JinL. ZhaoZ. Combining the in silico and in vitro assays to identify strobilanthes cusia kuntze bioactives against penicillin-resistant Streptococcus pneumoniae.Pharmaceuticals202316110510.3390/ph16010105
    [Google Scholar]
  62. GhaemiA. SoleimanjahiH. MoghaddamF.M. YazdaniN. Evaluation of antiviral activity of aerial part of Echinacea purpurea extract against herpes simplex virus type 1.Hakim Res J2007945964
    [Google Scholar]
  63. DerksenA. KühnJ. HafeziW. Antiviral activity of hydroalcoholic extract from Eupatorium perfoliatum L. against the attachment of influenza A virus.J. Ethnopharmacol.201618814415210.1016/j.jep.2016.05.016 27178637
    [Google Scholar]
  64. RaimiI.O. MusyokiA.M. OlatunjiO.A. JimohM.O. DubeW.V. OlowoyoJ.O. Potential medicinal, nutritive and antiviral food plants: Africa’s plausible answer to the low COVID-19 mortality.J HerbMed Pharmacol2021111203410.34172/jhp.2022.03
    [Google Scholar]
  65. KarimiM Gholami-AhangaranM. A brief report of current evidence of traditional chinese medicine in the treatment of patients infected with SARS-CoV-2. PBP202131010.52547/pbp.3.1.1
    [Google Scholar]
  66. MehboobR. AhmadF.J. QayyumA. Neurokinin 1 receptor antagonist along with dexamethasone reduces the inflammation in COVID-19 patients: a novel therapeutic approach.Adv. Life Sci.2023103426433
    [Google Scholar]
  67. EftekhariZ. PatraI. HamzaT.A. Evaluation of the total antioxidant capacity of bitter and sweet varieties of Ferula assa-foetida and Bunium persicum.Adv. Life Sci.202293363367
    [Google Scholar]
  68. AidyA. KarimiE. GhaneialvarH. MohammadpourS. AbbasiN. Protective effect of Nectaroscordum tripedale extract and its bioactive component tetramethylpyrazine against acetaminophen-induced hepatotoxicity in rats.ADTM202020347147710.1007/s13596‑020‑00431‑z
    [Google Scholar]
  69. ZolfaghariS. SharafdiniR. GhaediM. Synthesis of a coordination polymer based on Zn (DMF)(Tp) as a novel adsorbent for the simultaneous removal of quinoline yellow and azure B.J. Mol. Struct.20231294136572
    [Google Scholar]
  70. ShiZ. MahdavianY. MahdavianY. Cu immobilized on chitosan-modified iron oxide magnetic nanoparticles: Preparation, characterization and investigation of its anti-lung cancer effects.Arab. J. Chem.2021148103224
    [Google Scholar]
  71. TahanA. JafariM. RazmjoueD. Relationship among some ecological factors and chemical composition of Ajuga chamaecistus Ging. plant species.Acta Ecol. Sin.2020404268276
    [Google Scholar]
  72. Hekmat ZadehS.F. GharaghaniM. Nouripour-SisakhtS. RazmjoueD. Chemical composition of Prangos ferulacea (L.) Lindl., and Prangos uloptera DC. essential oils and their antifungal activities.J HerbMed Pharmacol202211458559110.34172/jhp.2022.67
    [Google Scholar]
  73. MousaviS. VakiliS. ZalF. Quercetin potentiates the anti-osteoporotic effects of alendronate through modulation of autophagy and apoptosis mechanisms in ovariectomy-induced bone loss rat model.Mol. Biol. Rep.20235043693370310.1007/s11033‑023‑08311‑w 36829081
    [Google Scholar]
  74. DoostmohammadianF. ShomaliT. MoslehN. MohammadiM. In Ovo evaluation of antiviral effects of aqueous garlic (Allium sativum) extract against a velogenic strain of Newcastle disease virus.J HerbMed Pharmacol20209323223810.34172/jhp.2020.30
    [Google Scholar]
/content/journals/covid/10.2174/0126667975292612240219084431
Loading
/content/journals/covid/10.2174/0126667975292612240219084431
Loading

Data & Media loading...

Supplements

PRISMA checklist is available on the publisher's website along with the published article.


  • Article Type:
    Review Article
Keyword(s): COVID-19; medicinal plants; respiratory syndrome; SARS-CoV-2; single-stranded RNA; Virus
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test