Skip to content
2000
Volume 6, Issue 2
  • ISSN: 2666-7967
  • E-ISSN: 2666-7975

Abstract

When light shines on an object, it sheds focus on the intrinsic characteristics of that material. Transmission of light or an electromagnetic (em) wave through a matter undergoes various physiochemical processes, like emission, absorption, and splitting of light into its constituent wavelengths. This interaction of em radiation with matter is widely used for the investigation of unknown and new target analytes in a sample, and the technique is known as spectroscopy. In the early 2000s, energy excitation of the virus was demonstrated in influenza. The research first demonstrated the use of Surface-enhanced Raman Scattering (SERS), whose biomedical application became a potential diagnostic tool. The LASERs also attracted attention and were incorporated with the optical and spectroscopy instruments that significantly enhanced the application, reach, and detection limit of air and waterborne elements. Surface plasmon resonance and SERS are the most applied spectroscopic techniques with high accuracy and speed. A combination of these techniques with other advanced microscopy techniques, such as atomic force microscopy, scanning electron microscopy, and tunnelling electron microscopy, may ease and boost biomedical applications. This review is focused on the application of spectroscopy and laser-based techniques in the detection of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2).

Loading

Article metrics loading...

/content/journals/covid/10.2174/0126667975284619240222051806
2024-03-25
2025-06-19
Loading full text...

Full text loading...

References

  1. FengW. NewbiggingA.M. LeC. Molecular diagnosis of COVID-19: Challenges and research needs.Anal. Chem.20209215101961020910.1021/acs.analchem.0c02060
    [Google Scholar]
  2. CDC 2019-novel coronavirus (2019-nCoV) real-time RT-PCR diagnostic panel. 2019Available from: www.fda.gov/media/134922/download
  3. ManotoS.L. MabenaC.M. MalabiR. Smartphone biosensing for point-of-care diagnostics.Proc. SPIE2020112581810.1117/12.2546444
    [Google Scholar]
  4. FarzinL. ShamsipurM. SamandariL. SheibaniS. HIV biosensors for early diagnosis of infection: The intertwine of nanotechnology with sensing strategies.Talanta202020612020110.1016/j.talanta.2019.120201
    [Google Scholar]
  5. MahshidS.S. MahshidS. Vallée-BélisleA. KelleyS.O. Peptide-mediated electrochemical steric hindrance assay for one-step detection of HIV antibodies.Anal. Chem.20199184943494710.1021/acs.analchem.9b00648 30908033
    [Google Scholar]
  6. KrishnanR.S. ShankarR.K. Raman effect: History of the discovery.J. Raman Spectrosc.19811011810.1002/jrs.1250100103
    [Google Scholar]
  7. RamanC.V. KrishnanK.S. A new type of secondary radiation.Nature1928121304850150210.1038/121501c0
    [Google Scholar]
  8. RamanC.V. KrishnanK.S. 1928, A new class of spectra due to secondary radiation. part I.Indian J. Phys.19282399
    [Google Scholar]
  9. SmekalA. On the quantum theory of dispersion (German).Nat. Sci.1923114387387510.1007/BF01576902
    [Google Scholar]
  10. RayleighL.X. On the electromagnetic theory of light.Lond. Edinb. Dublin Philos. Mag. J. Sci.188112738110110.1080/14786448108627074
    [Google Scholar]
  11. AndrewsD.L. Rayleigh scattering and Raman effect theory. Encyclopedia of spectroscopy and spectrometry.Elsevier201692493010.1016/B978‑0‑12‑409547‑2.11337‑X
    [Google Scholar]
  12. QianY. FanT. YaoY. Label-free and Raman dyes-free surface-enhanced Raman spectroscopy for detection of DNA.Sens. Actuators B Chem.201825448348910.1016/j.snb.2017.07.112
    [Google Scholar]
  13. NguyenT. Duong BangD. WolffA. 2019 novel coronavirus disease (COVID-19): Paving the road for rapid detection and point-of-care diagnostics.Micromachines202011330610.3390/mi11030306 32183357
    [Google Scholar]
  14. World Health Organization World Health Organization. Laboratory testing for coronavirus disease (COVID-19) in suspected human cases: Interim guidance.2020Available from: apps.who.int/iris/handle/10665/331501
  15. DingY. ZhouN. GanL. Stacking-mode confined growth of 2H-MoTe2/MoS2 bilayer heterostructures for UV–vis–IR photodetectors.Nano Energy20184920020810.1016/j.nanoen.2018.04.055
    [Google Scholar]
  16. SoleymaniL. FangZ. LamB. Hierarchical nanotextured microelectrodes overcome the molecular transport barrier to achieve rapid, direct bacterial detection.ACS Nano2011543360336610.1021/nn200586s 21410241
    [Google Scholar]
  17. JohnsonS. EvansD. LaurensonS. Surface-immobilized peptide aptamers as probe molecules for protein detection.Anal. Chem.200880497898310.1021/ac701688q 18186614
    [Google Scholar]
  18. MagdyC. IssamF. AmirP. AdelS. ElGoharyS.H. COVID-19 detection using SERS technique.MOJ Applied Bionics and Biomechanics202044869110.15406/mojabb.2020.04.00141
    [Google Scholar]
  19. DanielsJ.S. PourmandN. Label-free impedance biosensors: Opportunities and challenges.Electroanalysis200719121239125710.1002/elan.200603855 18176631
    [Google Scholar]
  20. ZhangD. ZhangX. MaR. Deng S, Wang X, et al. Ultra-fast and onsite interrogation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in environmental specimens via surface-enhanced Raman scattering (SERS).Medrxiv202010.1101/2020.05.02.20086876
    [Google Scholar]
  21. ZhaoY. ZhaoZ. WangY. ZhouY. MaY. ZuoW. Single-cell RNA expression profiling of ACE2, the putative receptor of Wuhan 2019-nCovBiorxiv202010.1101/2020.01.26.919985
    [Google Scholar]
  22. LanJ. GeJ. YuJ. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor.Nature2020581780721522010.1038/s41586‑020‑2180‑5 32225176
    [Google Scholar]
  23. YousefiN. LuX. ElimelechM. TufenkjiN. Environmental performance of graphene-based 3D macrostructures.Nat. Nanotechnol.201914210711910.1038/s41565‑018‑0325‑6 30617310
    [Google Scholar]
  24. GuoZ. TanL. Fundamentals and applications of nanomaterials.Artech House2009
    [Google Scholar]
  25. DeckertV Deckert-GaudigT Cialla-MayD Popp J, Zell R, et al. Laser spectroscopic technique for direct identification of a single virus I: FASTER CARS.P Natl A Sci India B202011745278204
    [Google Scholar]
  26. GuptaB.D. PathakA. SemwalV. Carbon-based nanomaterials for plasmonic sensors: A review.Sensors 20191916353610.3390/s19163536 31412590
    [Google Scholar]
  27. RaetherH. Surface Plasmons on Smooth and Rough Surfaces and Gratings.HeidelbergSpringer Berlin198810.1007/BFb0048317
    [Google Scholar]
  28. WangY. RuanQ. LeiZ.C. Highly sensitive and automated surface-enhanced Raman scattering-based immunoassay for H5N1 detection with digital microfluidics.Anal. Chem.20189085224523110.1021/acs.analchem.8b00002 29569903
    [Google Scholar]
  29. KamińskaA. WitkowskaE. WinklerK. DzięcielewskiI. WeyherJ.L. WalukJ. Detection of Hepatitis B virus antigen from human blood: SERS immunoassay in a microfluidic system.Biosens. Bioelectron.20156646146710.1016/j.bios.2014.10.082 25497986
    [Google Scholar]
  30. JeonJ. ChoiN. ChenH. MoonJ.I. ChenL. ChooJ. SERS-based droplet microfluidics for high-throughput gradient analysis.Lab Chip201919467468110.1039/C8LC01180J 30657509
    [Google Scholar]
  31. MahmoudiT. de la GuardiaM. BaradaranB. Lateral flow assays towards point-of-care cancer detection: A review of current progress and future trends.Trends Analyt. Chem.202012511584210.1016/j.trac.2020.115842
    [Google Scholar]
  32. NguyenV.T. SongS. ParkS. JooC. Recent advances in high-sensitivity detection methods for paper-based lateral-flow assay.Biosens. Bioelectron.202015211201510.1016/j.bios.2020.112015 32056735
    [Google Scholar]
  33. SohJ.H. ChanH.M. YingJ.Y. Strategies for developing sensitive and specific nanoparticle-based lateral flow assays as point-of-care diagnostic device.Nano Today20203010083110.1016/j.nantod.2019.100831
    [Google Scholar]
  34. StadnytskyiV. BaxC.E. BaxA. AnfinrudP. The airborne lifetime of small speech droplets and their potential importance in SARS-CoV-2 transmission.Proc. Natl. Acad. Sci. USA202011722118751187710.1073/pnas.2006874117 32404416
    [Google Scholar]
  35. JeonJ. LeeS.H. JoungY. KimK. ChoiN. ChooJ. Improvement of reproducibility and thermal stability of surface-enhanced Raman scattering-based lateral flow assay strips using silica-encapsulated gold nanoparticles.Sens. Actuators B Chem.202032112852110.1016/j.snb.2020.128521
    [Google Scholar]
  36. RussoL. Sánchez-PurràM. Rodriguez-QuijadaC. LeonardoB.M. PuntesV. Hamad-SchifferliK. Detection of resistance protein A (MxA) in paper-based immunoassays with surface enhanced Raman spectroscopy with AuAg nanoshells.Nanoscale20191122108191082710.1039/C9NR02397F 31135010
    [Google Scholar]
  37. WangR. KimK. ChoiN. Highly sensitive detection of high-risk bacterial pathogens using SERS-based lateral flow assay strips.Sens. Actuators B Chem.2018270727910.1016/j.snb.2018.04.162 27070977
    [Google Scholar]
  38. LeeS.H. HwangJ. KimK. Quantitative serodiagnosis of scrub typhus using surface-enhanced Raman scattering-based lateral flow assay platforms.Anal. Chem.20199119122751228210.1021/acs.analchem.9b02363 31356055
    [Google Scholar]
  39. WangX. ParkS.G. KoJ. Sensitive and reproducible immunoassay of multiple mycotoxins using surface-enhanced Raman scattering mapping on 3D plasmonic nanopillar arrays.Small20181439180162310.1002/smll.201801623 30062764
    [Google Scholar]
  40. LinS. HasiW. LinX. Lab-on-capillary platform for on-site quantitative SERS analysis of surface contaminants based on Au@ 4-MBA@ Ag core-shell nanorods.ACS Sens.2020551465147310.1021/acssensors.0c00398 32268725
    [Google Scholar]
  41. HuangZ. SiddhantaS. ZhengG. KicklerT. BarmanI. Rapid, label-free optical spectroscopy platform for diagnosis of heparin-induced thrombocytopenia.Angew. Chem. Int. Ed.202059155972597810.1002/anie.201913970 31972060
    [Google Scholar]
  42. YuY. XiaoT.H. WuY. Roadmap for single-molecule surface-enhanced Raman spectroscopy.Adv. Photonics202021110.1117/1.AP.2.1.014002
    [Google Scholar]
  43. RicciM. TrombettaE. CastellucciE. BecucciM. On the SERS quantitative determination of organic dyes.J. Raman Spectrosc.2018496997100510.1002/jrs.5335
    [Google Scholar]
  44. van DoremalenN. BushmakerT. MorrisD.H. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1.N. Engl. J. Med.2020382161564156710.1056/NEJMc2004973 32182409
    [Google Scholar]
  45. KannanS. Shaik Syed AliP. SheezaA. HemalathaK. COVID-19 (Novel Coronavirus 2019) - recent trends.Eur Rev Med Pharmaco20202442006201110.26355/eurrev_202002_20378 32141569
    [Google Scholar]
  46. AuwaerterP. Coronavirus COVID-19 (SARS-CoV-2).Johns Hopkins Bloomberg School of Public Health2020
    [Google Scholar]
  47. LarsonT. CulbreathK. ChavezD. LarsonR. CrosseyM. GrenacheD.G. Modeling SARS-CoV-2 positivity using laboratory data: Timing is everything.Clin. Chem.202066798198310.1093/clinchem/hvaa108 32353116
    [Google Scholar]
  48. OuyangL. LiD. ZhuL. TangH. Precision Target Guide Strategy for Applying SERS into Environmental Monitoring.IntechOpen201710.5772/64813
    [Google Scholar]
  49. KukushkinV.I. IvanovN.M. NovoseltsevaA.A. Highly sensitive detection of influenza virus with SERS aptasensor.PLoS One2019144e021624710.1371/journal.pone.0216247 31022287
    [Google Scholar]
  50. WangY IrudayarajJ Surface-enhanced raman spectroscopy at single-molecule scale and its implications in biology. Philosophical transactions of the royal society B. Biological Sciences20123681611002610.1098/rstb.2012.0026
    [Google Scholar]
  51. NamW. RenX. TaliS.A.S. Refractive-index-insensitive nanolaminated SERS substrates for label-free raman profiling and classification of living cancer cells.Nano Lett.201919107273728110.1021/acs.nanolett.9b02864 31525057
    [Google Scholar]
  52. LangerJ. Jimenez de AberasturiD. AizpuruaJ. Present and future of surface-enhanced raman scattering.ACS Nano20201412811710.1021/acsnano.9b04224 31478375
    [Google Scholar]
  53. Lee-MontielF.T. ReynoldsK.A. RileyM.R. Detection and quantification of poliovirus infection using FTIR spectroscopy and cell culture.J. Biol. Eng.2011511610.1186/1754‑1611‑5‑16 22142483
    [Google Scholar]
  54. LiQ. GuanX. WuP. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia.N. Engl. J. Med.2020382131199120710.1056/NEJMoa2001316 31995857
    [Google Scholar]
  55. OtangeB. BirechZ. RopR. OyugiJ. Estimation of HIV-1 viral load in plasma of HIV-1-infected people based on the associated Raman spectroscopic peaks.J. Raman Spectrosc.201950562062810.1002/jrs.5557
    [Google Scholar]
  56. PerlmanS. Another decade, another coronavirus.N. Engl. J. Med.2020382876076210.1056/NEJMe2001126 31978944
    [Google Scholar]
  57. LeeJ. CramptonK.T. TallaridaN. ApkarianV.A. Visualizing vibrational normal modes of a single molecule with atomically confined light.Nature20195687750788210.1038/s41586‑019‑1059‑9 30944493
    [Google Scholar]
  58. KarR. ChandN. ButeA. Cold plasma: Clean technology to destroy pathogenic micro-organisms.Trans. of the Indian Natl. Acad. Eng.20205232733110.1007/s41403‑020‑00133‑7
    [Google Scholar]
  59. KarR. ButeA. ChandN. Feasibility of using non-thermal microwave plasma for nuclear waste management: A detailed study backed by plasma spectroscopy.Environ. Technol. Innov.20181221922910.1016/j.eti.2018.09.005
    [Google Scholar]
  60. ChenH. DasA. BiL. Recent advances in surface-enhanced Raman scattering-based microdevices for point-of-care diagnosis of viruses and bacteria.Nanoscale20201242215602157010.1039/D0NR06340A 33094771
    [Google Scholar]
  61. DjailebA. CharronB. JodaylamiM.H. Thibault V, Coutu J, Stevenson K, et al. A rapid and quantitative serum test for SARS-CoV-2 antibodies with portable surface plasmon resonance sensing.ChemRxiv202010.26434/chemrxiv.12118914.v1
    [Google Scholar]
  62. LewandowskiK. XuY. PullanS.T. Lumley SF, Foster D, et al Metagenomics nanopore sequencing of influenza virus direct from clinical respiratory samples.J. Clin. Microbiol.2019581e0096310.1128/JCM.00963‑19
    [Google Scholar]
  63. LiuZ. XiaoX. WeiX. Composition and divergence of coronavirus spike proteins and host ACE2 receptors predict potential intermediate hosts of SARS-CoV-2.J. Med. Virol.202092659560110.1002/jmv.25726 32100877
    [Google Scholar]
  64. MoitraP. AlafeefM. DigheK. FriemanM.B. PanD. Selective naked-eye detection of SARS-CoV-2 mediated by N gene targeted antisense oligonucleotide capped plasmonic nanoparticles.ACS Nano20201467617762710.1021/acsnano.0c03822 32437124
    [Google Scholar]
  65. ZhuX. WangX. HanL. Chen T, Wang L, et al. Multiplex reverse transcription loop-mediated isothermal amplification combined with nanoparticle-based lateral flow biosensor for the diagnosis of COVID-19.Biosens. Bioelectron.202016611243710.1016/j.bios.2020.112437
    [Google Scholar]
  66. ZhaoZ. CuiH. SongW. RuX. ZhouW. YuX. A simple magnetic nanoparticles-based viral RNA extraction method for efficient detection of SARS-CoV-2.BioRxiv202010.1101/2020.02.22.961268
    [Google Scholar]
  67. WuK. SahaR. SuD. Magnetic-nanosensor-based virus and pathogen detection strategies before and during COVID-19.ACS Appl. Nano Mater.20203109560958010.1021/acsanm.0c02048 37556271
    [Google Scholar]
  68. FörsterR. WeidlichS. NissenM. Tracking and analyzing the brownian motion of nano-objects inside hollow core fibers.ACS Sens.20205387988610.1021/acssensors.0c00339 32103665
    [Google Scholar]
  69. SheridanC. Fast, portable tests come online to curb coronavirus pandemic.Nat. Biotechnol.202038551551810.1038/d41587‑020‑00010‑2 32203294
    [Google Scholar]
  70. OngS.W.X. TanY.K. ChiaP.Y. Air, surface environmental, and personal protective equipment contamination by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from a symptomatic patient.JAMA2020323161610161210.1001/jama.2020.3227 32129805
    [Google Scholar]
  71. CuiF. ZhouH.S. Diagnostic methods and potential portable biosensors for coronavirus disease 2019.Biosens. Bioelectron.202016511234910.1016/j.bios.2020.112349 32510340
    [Google Scholar]
  72. TadesseL.F. SafirF. HoC.S. Toward rapid infectious disease diagnosis with advances in surface-enhanced Raman spectroscopy.J. Chem. Phys.20201522424090210.1063/1.5142767 32610995
    [Google Scholar]
  73. CarterL.J. GarnerL.V. SmootJ.W. Assay techniques and test development for COVID-19 diagnosis.ACS Cent. Sci.20206559160510.1021/acscentsci.0c00501 32382657
    [Google Scholar]
  74. BroughtonJ.P. DengX. YuG. CRISPR–Cas12-based detection of SARS-CoV-2.Nat. Biotechnol.202038787087410.1038/s41587‑020‑0513‑4 32300245
    [Google Scholar]
  75. ZouL. RuanF. HuangM. Viral load in upper respiratory specimens of infected patients.N. Engl. J. Med.2020382121177117910.1056/NEJMc2001737 32074444
    [Google Scholar]
  76. LeeT. MohammadniaeiM. ZhangH. Single functionalized pRNA/gold nanoparticle for ultrasensitive microRNA detection using electrochemical surface-enhanced Raman spectroscopy.Adv. Sci.202073190247710.1002/advs.201902477 32042566
    [Google Scholar]
  77. WuY. ChoiN. ChenH. DangH. ChenL. ChooJ. Performance evaluation of surface-enhanced Raman scattering polymerase chain reaction sensors for future use in sensitive genetic assays.Anal. Chem.20209232628263410.1021/acs.analchem.9b04522 31939280
    [Google Scholar]
  78. NachtigallF.M. PereiraA. TrofymchukO.S. SantosL.S. Detection of SARS-CoV-2 in nasal swabs using MALDI-MS.Nat. Biotechnol.202038101168117310.1038/s41587‑020‑0644‑7 32733106
    [Google Scholar]
  79. HeX. ZhouX. LiuY. WangX. Ultrasensitive, recyclable and portable microfluidic surface-enhanced raman scattering (SERS) biosensor for uranyl ions detection.Sens. Actuators B Chem.202031112767610.1016/j.snb.2020.127676
    [Google Scholar]
  80. ChoiN. DangH. DasA. SimM.S. ChungI.Y. ChooJ. SERS biosensors for ultrasensitive detection of multiple biomarkers expressed in cancer cells.Biosens. Bioelectron.202016411232610.1016/j.bios.2020.112326 32553352
    [Google Scholar]
  81. ChenH. ParkS.G. ChoiN. SERS imaging-based aptasensor for ultrasensitive and reproducible detection of influenza virus A.Biosens. Bioelectron.202016711249610.1016/j.bios.2020.112496 32818752
    [Google Scholar]
  82. YehY.T. GulinoK. ZhangY. A rapid and label-free platform for virus capture and identification from clinical samples.Proc. Natl. Acad. Sci. USA2020117289590110.1073/pnas.1910113117 31882450
    [Google Scholar]
  83. XuK. ZhouR. TakeiK. HongM. Toward flexible surface-enhanced Raman scattering (SERS) sensors for point-of-care diagnostics.Adv. Sci.2019616190092510.1002/advs.201900925 31453071
    [Google Scholar]
  84. ZhangM. YeJ. HeJ. Visual detection for nucleic acid-based techniques as potential on-site detection methods. A review.Anal. Chim. Acta2020109911510.1016/j.aca.2019.11.056 31986265
    [Google Scholar]
  85. KimH. LeeS. SeoH.W. Clustered regularly interspaced short palindromic repeats-mediated surface-enhanced raman scattering assay for multidrug-resistant bacteria.ACS Nano20201412172411725310.1021/acsnano.0c07264 33216524
    [Google Scholar]
  86. AmanR. MahasA. MahfouzM. Nucleic acid detection using CRISPR/Cas biosensing technologies.ACS Synth. Biol.2020961226123310.1021/acssynbio.9b00507 32159950
    [Google Scholar]
  87. SantosM.C.D. MoraisC.L.M. LimaK.M.G. ATR-FTIR spectroscopy for virus identification: A powerful alternative.Biomed. Spectrosc. Imaging202193-410311810.3233/BSI‑200203
    [Google Scholar]
  88. KimH. ParkM. HwangJ. Development of a label-free colorimetric assay for MERS-CoV using gold nanoparticles.ACS Sens.2019451306131210.1021/acssensors.9b00175 31062580
    [Google Scholar]
  89. SeoG. LeeG. KimM.J. Rapid detection of COVID-19 causative virus (SARS-CoV-2) in human nasopharyngeal swab specimens using field-effect transistor-based biosensor.ACS Nano20201445135514210.1021/acsnano.0c02823 32293168
    [Google Scholar]
  90. LayqahL.A. EissaS. An electrochemical immunosensor for the corona virus associated with the Middle East respiratory syndrome using an array of gold nanoparticle-modified carbon electrodes.Mikrochim. Acta2019186422410.1007/s00604‑019‑3345‑5 30847572
    [Google Scholar]
  91. Majchrzykiewicz-KoehorstJ.A. HeikensE. TripH. Rapid and generic identification of influenza A and other respiratory viruses with mass spectrometry.J. Virol. Methods2015213758310.1016/j.jviromet.2014.11.014 25500183
    [Google Scholar]
  92. ShenB. YiX. SunY. Proteomic and metabolomic characterization of COVID-19 patient sera.Cell202018215972.e1510.1016/j.cell.2020.05.032 32492406
    [Google Scholar]
  93. BailoE. DeckertV. Tip-enhanced Raman scattering.Chem. Soc. Rev.200837592193010.1039/b705967c 18443677
    [Google Scholar]
  94. MahariS. RobertsA. ShahdeoD. GandhiS. eCovSens-ultrasensitive novel in-house built printed circuit board based electrochemical device for rapid detection of nCOVID-19 antigen, a spike protein domain 1 of SARS-CoV-2.BioRxiv202010.1101/2020.04.24.059204
    [Google Scholar]
  95. MelnychukN. EgloffS. RunserA. ReischA. KlymchenkoA.S. Light-harvesting nanoparticle probes for FRET-based detection of oligonucleotides with single-molecule sensitivity.Angew. Chem. Int. Ed.202059176811681810.1002/anie.201913804 31943649
    [Google Scholar]
  96. KimJ. CampbellA.S. de ÁvilaB.E.F. WangJ. Wearable biosensors for healthcare monitoring.Nat. Biotechnol.201937438940610.1038/s41587‑019‑0045‑y 30804534
    [Google Scholar]
  97. KhanM.Z.H. HasanM.R. HossainS.I. AhommedM.S. DaizyM. Ultrasensitive detection of pathogenic viruses with electrochemical biosensor: State of the art.Biosens. Bioelectron.202016611243110.1016/j.bios.2020.112431 32862842
    [Google Scholar]
  98. PietschmannJ. VöpelN. SpiegelH. KrauseH.J. SchröperF. Brief communication: Magnetic immuno-detection of SARS-CoV-2 specific antibodies.BioRxiv202010.1101/2020.06.02.131102
    [Google Scholar]
  99. ZouL. RuanF. HuangM. SARS-CoV-2 viral load in upper respiratory specimens of infected patients.N. Engl. J. Med.2020382121177117910.1056/NEJMc2001737 32074444
    [Google Scholar]
  100. LinC. XiangJ. YanM. LiH. HuangS. ShenC. Comparison of throat swabs and sputum specimens for viral nucleic acid detection in 52 cases of novel coronavirus (SARS-CoV-2)-infected pneumonia (COVID-19).Clin. Chem. Lab. Med. (CCLM)20205871089109410.1515/cclm‑2020‑0187 32301745
    [Google Scholar]
  101. NaudéW. Artificial intelligence vs COVID-19: Limitations, constraints and pitfalls.AI Soc.202035376176510.1007/s00146‑020‑00978‑0 32346223
    [Google Scholar]
  102. XieX. ZhongZ. ZhaoW. ZhengC. WangF. LiuJ. Chest CT for typical coronavirus disease 2019 (COVID-19) Pneumonia: Relationship to negative RT-PCR testing.Radiology20202962E41E4510.1148/radiol.2020200343 32049601
    [Google Scholar]
  103. LvH. WuN.C. TsangO.T.Y. Cross-reactive antibody response between SARS-CoV-2 and SARS-CoV infections.Cell Rep.202031910772510.1016/j.celrep.2020.107725
    [Google Scholar]
  104. MitraA. DeutschB. IgnatovichF. DykesC. NovotnyL. Nano-optofluidic detection of single viruses and nanoparticles.ACS Nano2010431305131210.1021/nn901889v 20148575
    [Google Scholar]
  105. LiuS.L. WangZ.G. XieH.Y. LiuA.A. LambD.C. PangD.W. Single-virus tracking: From imaging methodologies to virological applications.Chem. Rev.202012031936197910.1021/acs.chemrev.9b00692 31951121
    [Google Scholar]
  106. OhY. ParkS. YeJ.C. Deep learning COVID-19 features on CXR using limited training data sets.IEEE Trans. Med. Imaging20203982688270010.1109/TMI.2020.2993291 32396075
    [Google Scholar]
  107. MajeedT. RashidR. AliD. AsaadA. Problems of deploying CNN transfer learning to detect COVID-19 from chest x-rays.MedRxiv202010.1101/2020.05.12.20098954
    [Google Scholar]
  108. LussierF. ThibaultV. CharronB. WallaceG.Q. MassonJ.F. Deep learning and artificial intelligence methods for Raman and surface-enhanced Raman scattering.Trends Analyt. Chem.202012411579610.1016/j.trac.2019.115796
    [Google Scholar]
  109. LoeyM. SmarandacheF. KhalifaN.E.M. Within the lack of chest COVID-19 X-ray dataset: A novel detection model based on GAN and deep transfer learning.Symmetry20201265110.3390/sym12040651
    [Google Scholar]
  110. ZhuangJ. YinJ. LvS. WangB. MuY. Advanced “lab-on-a-chip” to detect viruses – Current challenges and future perspectives.Biosens. Bioelectron.202016311229110.1016/j.bios.2020.112291 32421630
    [Google Scholar]
  111. NagP. SadaniK. MukherjiS. Optical fiber sensors for rapid screening of COVID-19.Trans. Indian Natl. Acad. Eng.20205223323610.1007/s41403‑020‑00128‑4
    [Google Scholar]
  112. BhallaN. PanY. YangZ. PayamA.F. Opportunities and challenges for biosensors and nanoscale analytical tools for pandemics: COVID-19.ACS Nano20201477783780710.1021/acsnano.0c04421 32551559
    [Google Scholar]
  113. MuruganD. BhatiaH. SaiV.V.R. SatijaJ.P-F.A.B. A fiber-optic biosensor device for rapid detection of COVID-19.Trans. Indian Natl. Acad. Eng.20205221121510.1007/s41403‑020‑00122‑w
    [Google Scholar]
  114. WangS. KangB. MaJ. A deep learning algorithm using CT images to screen for Corona virus disease (COVID-19).Eur. Radiol.20213186096610410.1007/s00330‑021‑07715‑1 33629156
    [Google Scholar]
  115. TahaB.A. Al MashhadanyY. Hafiz MokhtarM.H. Dzulkefly Bin ZanM.S. ArsadN. An analysis review of detection coronavirus disease 2019 (COVID-19) based on biosensor application.Sensors20202023676410.3390/s20236764 33256085
    [Google Scholar]
  116. QiuG. GaiZ. TaoY. SchmittJ. Kullak-UblickG.A. WangJ. Dual-functional plasmonic photothermal biosensors for highly accurate severe acute respiratory syndrome coronavirus 2 detection.ACS Nano20201455268527710.1021/acsnano.0c02439 32281785
    [Google Scholar]
  117. OzturkT. TaloM. YildirimE.A. BalogluU.B. YildirimO. Rajendra AcharyaU. Automated detection of COVID-19 cases using deep neural networks with X-ray images.Comput. Biol. Med.202012110379210.1016/j.compbiomed.2020.103792 32568675
    [Google Scholar]
  118. MeiX. LeeH.C. DiaoK. Artificial intelligence–enabled rapid diagnosis of patients with COVID-19.Nat. Med.20202681224122810.1038/s41591‑020‑0931‑3 32427924
    [Google Scholar]
  119. HemdanEE ShoumanMA KararME Covidx-net: A framework of deep learning classifiers to diagnose covid-19 in x-ray images.arXiv 2020
    [Google Scholar]
  120. Janczuk-RichterM. GromadzkaB. RichterŁ. Immunosensor based on long-period fiber gratings for detection of viruses causing gastroenteritis.Sensors 202020381310.3390/s20030813 32028629
    [Google Scholar]
  121. ChiaP.Y. ColemanK.K. TanY.K. OngS.W. GumM. Detection of air and surface contamination by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in hospital rooms of infected patients.MedRxiv202010.1101/2020.03.29.20046557
    [Google Scholar]
  122. RazziniK. CastricaM. MenchettiL. SARS-CoV-2 RNA detection in the air and on surfaces in the COVID-19 ward of a hospital in Milan, Italy.Sci. Total Environ.202074214054010.1016/j.scitotenv.2020.140540 32619843
    [Google Scholar]
  123. XuH. YanC. FuQ. Possible environmental effects on the spread of COVID-19 in China.Sci. Total Environ.202073113921110.1016/j.scitotenv.2020.139211 32402910
    [Google Scholar]
  124. DietzL. HorveP.F. CoilD.A. FretzM. EisenJ.A. Van Den WymelenbergK. 2019 novel coronavirus (COVID-19) pandemic: Built environment considerations to reduce transmission.mSystems202052e00245e2010.1128/mSystems.00245‑20 32265315
    [Google Scholar]
  125. La RosaG. BonadonnaL. LucentiniL. KenmoeS. SuffrediniE. Coronavirus in water environments: Occurrence, persistence and concentration methods - A scoping review.Water Res.202017911589910.1016/j.watres.2020.115899 32361598
    [Google Scholar]
  126. ChenW. YanX. Hospital indoor air quality monitoring for the detection of SARS- CoV-2 (COVID-19) virus.J. Mater. Sci. Technol.20204317518810.1016/j.jmst.2019.11.010
    [Google Scholar]
  127. DingZ. QianH. XuB. Toilets dominate environmental detection of SARS-CoV-2 virus in a hospital.MedRxiv202010.1101/2020.04.03.20052175
    [Google Scholar]
  128. LoeffelholzM.J. TangY.W. Laboratory diagnosis of emerging human coronavirus infections – the state of the art.Emerg. Microbes Infect.20209174775610.1080/22221751.2020.1745095 32196430
    [Google Scholar]
  129. ChanJ.F.W. YuanS. KokK.H. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: A study of a family cluster.Lancet20203951022351452310.1016/S0140‑6736(20)30154‑9 31986261
    [Google Scholar]
  130. LapollaP. LeeR. MingoliA. Wastewater as a red flag in COVID-19 spread.Public Health20201852610.1016/j.puhe.2020.05.045 32516625
    [Google Scholar]
  131. PalestinoG. García-SilvaI. González-OrtegaO. Rosales-MendozaS. Can nanotechnology help in the fight against COVID-19?Expert Rev. Anti Infect. Ther.202018984986410.1080/14787210.2020.1776115 32574081
    [Google Scholar]
  132. BalagnaC. PereroS. PercivalleE. NepitaE.V. FerrarisM. Virucidal effect against coronavirus SARS-CoV-2 of a silver nanocluster/silica composite sputtered coating.Open Ceramics2020110000610.1016/j.oceram.2020.100006
    [Google Scholar]
  133. ZhangY. ZhaoS. ZhengJ. HeL. Surface-enhanced Raman spectroscopy (SERS) combined techniques for high-performance detection and characterization.Trends Analyt. Chem.20179011310.1016/j.trac.2017.02.006
    [Google Scholar]
  134. KhanR.S. RehmanI.U. Spectroscopy as a tool for detection and monitoring of Coronavirus (COVID-19).Expert Rev. Mol. Diagn.202020764764910.1080/14737159.2020.1766968 32378969
    [Google Scholar]
  135. CardozoK.H.M. LebkuchenA. OkaiG.G. Fast and low-cost detection of SARS-CoV-2 peptides by tandem mass spectrometry in clinical samples.Res Sq202010.21203/rs.3.rs‑28883/v1
    [Google Scholar]
  136. BurkhartsmeyerJ. WangY. WongK.S. GordonR. Optical trapping, sizing, and probing acoustic modes of a small virus.Appl. Sci.202010139410.3390/app10010394
    [Google Scholar]
  137. HalesJ.E. MatmonG. DalbyP.A. WardJ.M. AeppliG. Virus lasers for biological detection.Nat. Commun.2019101359410.1038/s41467‑019‑11604‑z 31399594
    [Google Scholar]
  138. UdugamaB. KadhiresanP. KozlowskiH.N. Diagnosing COVID-19: The disease and tools for detection.ACS Nano20201443822383510.1021/acsnano.0c02624 32223179
    [Google Scholar]
  139. ToK.K.W. ChuaG.T. KwokK.L. False-positive SARS-CoV-2 serology in 3 children with Kawasaki disease.Diagn. Microbiol. Infect. Dis.202098311514110.1016/j.diagmicrobio.2020.115141 32795776
    [Google Scholar]
  140. ZouJ. ZhiS. ChenM. Heat inactivation decreases the qualitative real-time RT-PCR detection rates of clinical samples with high cycle threshold values in COVID-19.Diagn. Microbiol. Infect. Dis.202098111510910.1016/j.diagmicrobio.2020.115109 32593875
    [Google Scholar]
/content/journals/covid/10.2174/0126667975284619240222051806
Loading
/content/journals/covid/10.2174/0126667975284619240222051806
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test