Skip to content
2000
Volume 18, Issue 5
  • ISSN: 1570-1794
  • E-ISSN: 1875-6271

Abstract

Oxabenzonorbornadiene (OBD) is a useful synthetic intermediate, which can be readily activated by transition metal complexes with great face selectivity due to its dual-faced nature and intrinsic angle strain on the alkene. To date, the understanding of transition-metal catalyzed reactions of OBD itself has burgeoned; however, this has not been the case for unsymmetrical OBDs. Throughout the development of these reactions, the nature of C1-substituent has proven to have a profound effect on both the reactivity and selectivity of the outcome of the reaction. Upon substitution, different modes of reactivity arise, contributing to the possibility of multiple stereo-, regio-, and in extreme cases, constitutional isomers, which can provide unique means of constructing a variety of synthetically useful cyclic frameworks. To maximize selectivity, an understanding of bridgehead substituent effects is crucial. To that end, this review outlines hitherto reported examples of bridgehead substituent effects on the chemistry of unsymmetrical C1-substituted OBDs.

Loading

Article metrics loading...

/content/journals/cos/10.2174/1570179417666210105121115
2021-08-01
2025-06-25
Loading full text...

Full text loading...

/content/journals/cos/10.2174/1570179417666210105121115
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test