Skip to content
2000
Volume 16, Issue 7
  • ISSN: 1570-1794
  • E-ISSN: 1875-6271

Abstract

Aim and Objective: Sustainable production of fine chemicals both in industries and pharmaceuticals heavily depends on the application of solid-phase synthesis route coupled with microwave technologies due to their environmentally benign nature. In this report, a microwave-assisted esterification reaction using polymer-bound triphenylphosphine and 4,4′-dinitroazobenzene reagent system was investigated. Materials and Methods: The solvents were obtained from Merck India. Polymer-bound triphenylphosphine (~3 mmol triphenylphosphine moiety/g) was acquired from Sigma-Aldrich. The progress of the reaction was observed by thin-layer chromatography. All the reactions were performed in Milestones StartSYNTH microwave. The NMR spectra were recorded on Bruker Avance III 300, 400, and 500 MHz FT NMR Spectrometers. Using azo compound and polymer-bound triphenyl phosphine as a coupling reagent, esterification of different carboxylic acids with alcohols was performed under microwave irradiation. Results: Esterification of benzoic acid with 1-propanol under microwave irradiation gave a high yield of 92% propyl benzoate in 60 minutes only. Isolation of the ester products was relatively simple as both the byproducts polymer-bound triphenylphosphine oxide and hydrazine could be removed by simple filtration. The rates of reactions were found to be directly proportional to the pKa of the benzoic acids. Conclusion: 4,4′-Dinitroazobenzene was introduced as a novel coupling reagent, in conjugation with polymer-bound triphenylphosphine, for esterification reactions under microwave irradiation. The low moisture sensitivity of the reaction system, easy separation of the byproducts, and column chromatographyfree isolation of esters help our methods with application significance, particularly from the ‘Sustainable Chemistry’ perspective.

Loading

Article metrics loading...

/content/journals/cos/10.2174/1570179416666190919152424
2019-11-01
2025-05-10
Loading full text...

Full text loading...

/content/journals/cos/10.2174/1570179416666190919152424
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test