Skip to content
2000
image of Synthesis of Novel Derivatives of 4,6-Diarylpyrimidines and Dihydro-Pyrimidin-4-one and In Silico Screening of Their Anticancer Activity

Abstract

erivatives of pyrimidinone, dihydropyrimidinone, and 2,4-diaryl-substituted pyrimidines were synthesized by cyclocondensation of α-aminoamidines with various saturated carbonyl derivatives and their analogs. The therapeutic potential of the newly synthesized derivatives for cancer treatment was evaluated using molecular docking calculations. The molecular docking results indicate that some of the synthesized diaryl derivatives of pyrimidine exhibit high binding affinity towards PIK3γ.

Aim and Objective

4,6-Diaryl-substituted pyrimidines have shown high inhibitory potency against phosphoinositide 3-kinases (PI3Ks), which are important targets in oncology. Inhibition of PI3Ks could potentially be a viable therapy for human cancers.

Materials and Methods

The synthesis of pyrimidinone and dihydropyrimidinone derivatives as well as a series of 2,4-diaryl-substituted pyrimidines were described. These compounds were synthesized by cyclocondensation of α-aminoamidines with various saturated carbonyl derivatives and their analogs.

Results

Derivatives of pyrimidinone, dihydropyrimidinone, and 2,4-diaryl-substituted pyrimidines were synthesized by combining α-aminoamidines with various saturated carbonyl derivatives and their analogs. By adjusting the large substituents in the 2-position, we gained the ability to modify the therapeutic properties of the resulting compounds. The potential of the newly synthesized derivatives for cancer treatment was assessed using molecular docking calculations. The results of the docking calculations suggest that some of the synthesized diaryl derivatives of pyrimidine have a strong binding affinity towards PIK3γ, making them promising candidates for the development of new anticancer medications.

Conclusion

We synthesized some pyrimidinones, dihydropyrimidinones, and 2,4-diaryl-substituted pyrimidines by combining α-aminoamidines with various saturated carbonyl derivatives and similar compounds. Molecular docking results suggest that certain diaryl derivatives of pyrimidine have a strong binding affinity for PIK3γ. Moreover, diphenyl derivatives of pyrimidine exhibited dual inhibitory activity against PI3K and tubulin, showing promise for the development of next-generation microtubule-targeting agents for use in combination therapies.

Loading

Article metrics loading...

/content/journals/cos/10.2174/0115701794356958241024082646
2024-12-05
2024-12-24
Loading full text...

Full text loading...

References

  1. Domínguez M. Vidal M. García-Arriagada M. Rezende M. Ultrasound-promoted synthesis of 4-pyrimidinols and their tosyl derivatives. Synthesis 2016 48 23 4246 4252 10.1055/s‑0035‑1562788
    [Google Scholar]
  2. Zhan J.L. Wu M.W. Chen F. Han B. Cu-catalyzed [3 + 3] annulation for the synthesis of pyrimidines via β-c(sp3)–h functionalization of saturated ketones. J. Org. Chem. 2016 81 23 11994 12000 10.1021/acs.joc.6b02181 27805404
    [Google Scholar]
  3. Chu X.Q. Cao W.B. Xu X.P. Ji S.J. Iron catalysis for modular pyrimidine synthesis through β-ammoniation/cyclization of saturated carbonyl compounds with amidines. J. Org. Chem. 2017 82 2 1145 1154 10.1021/acs.joc.6b02767 28032761
    [Google Scholar]
  4. Kolomoitsev O.O. Gladkov E.S. Kotlyar V.M. Pedan P.I. Onipko O.V. Buravov O.V. Chebanov V.A. Efficient synthesis of imidazole and pyrimidine derivatives. Chem. Heterocycl. Compd. 2020 56 10 1329 1334 10.1007/s10593‑020‑02818‑x
    [Google Scholar]
  5. Desenko S.M. Gorobets M.Y. Lipson V.V. Sakhno Y.I. Chebanov V.A. Dihydroazolopyrimidines: Past, present and perspectives in synthesis, green chemistry and drug discovery. Chem. Rec. 24 2 e202300244 2024 10.1002/tcr.202300244 37668291
    [Google Scholar]
  6. Snizhko A.D. Kyrychenko A.V. Gladkov E.S. Synthesis of novel derivatives of 5,6,7,8-tetrahydro-quinazolines using of α-aminoamidines and in silico screening of their biological activity. Int. J. Mol. Sci. 2022 23 7 3781 10.3390/ijms23073781 35409144
    [Google Scholar]
  7. Hicks R.G. Koivisto B.D. Lemaire M.T. Synthesis of multitopic verdazyl radical ligands. Paramagnetic supramolecular synthons. Org. Lett. 2004 6 12 1887 1890 10.1021/ol049746i 15176775
    [Google Scholar]
  8. Gayon E. Szymczyk M. Gérard H. Vrancken E. Campagne J.M. Stereoselective and catalytic access to β-enaminones: an entry to pyrimidines. J. Org. Chem. 2012 77 20 9205 9220 10.1021/jo301675g 23006434
    [Google Scholar]
  9. Rulev A.Y. Romanov A.R. Popov A.V. Kondrashov E.V. Zinchenko S.V. Reaction of bromoenones with amidines: A simple catalyst-free approach to trifluoromethylated pyrimidines. Synthesis 2020 52 10 1512 1522 10.1055/s‑0040‑1707969
    [Google Scholar]
  10. Folmer-Andersen J.F. Aït-Haddou H. Lynch V.M. Anslyn E.V. 2,6-di(pyrimidin-4-yl)pyridine ligands with nitrogen-containing auxiliaries: The formation of functionalized molecular clefts upon metal coordination. Inorg. Chem. 2003 42 26 8674 8681 10.1021/ic034823b 14686844
    [Google Scholar]
  11. Shultz M.D. Cheung A.K. Kirby C.A. Firestone B. Fan J. Chen C.H.T. Chen Z. Chin D.N. DiPietro L. Fazal A. Feng Y. Fortin P.D. Gould T. Lagu B. Lei H. Lenoir F. Majumdar D. Ochala E. Palermo M.G. Pham L. Pu M. Smith T. Stams T. Tomlinson R.C. Touré B.B. Visser M. Wang R.M. Waters N.J. Shao W. Identification of NVP-TNKS656: The use of structure-efficiency relationships to generate a highly potent, selective, and orally active tankyrase inhibitor. J. Med. Chem. 2013 56 16 6495 6511 10.1021/jm400807n 23844574
    [Google Scholar]
  12. Kotlyar V.M. Kolomoitsev O.O. Tarasenko D.O. Bondarenko Y.H. Buravov O.V. Kotlyar M.I. Roshal A.D. Prospective biologically active compounds based on 5-formylthiazole. Funct. Mater. 2021 28 2 301 307 10.15407/fm28.02.1
    [Google Scholar]
  13. Jones P.D. Glass T.E. Synthesis of pyrimidine based metal ligands. Tetrahedron Lett. 2001 42 12 2265 2267 10.1016/S0040‑4039(01)00091‑0
    [Google Scholar]
  14. Yang C. Yu H. Yang N. Meng L. Xu J. Zhang R. Xie Y. Ding J. Synthesis of 4-(5-benzyl-2-phenylpyrimidin-4-yl)morpholines as novel PI3K inhibitors via acetates of baylis-hillman adducts and benzamidines. Lett. Org. Chem. 2009 6 2 134 140 10.2174/157017809787582816
    [Google Scholar]
  15. Adams L.A. Aggarwal V.K. Bonnert R.V. Bressel B. Cox R.J. Shepherd J. de Vicente J. Walter M. Whittingham W.G. Winn C.L. Diastereoselective synthesis of cyclopropane amino acids using diazo compounds generated in situ. J. Org. Chem. 2003 68 24 9433 9440 10.1021/jo035060c 14629169
    [Google Scholar]
  16. Chebanov V.A. Desenko S.M. Gurley T.W. Azaheterocycles Based on α,β-Unsaturated Carbonyls Berlin, Heidelberg Springer-Verlag 2008
    [Google Scholar]
  17. Goodsell D.S. Morris G.M. Olson A.J. Automated docking of flexible ligands: Applications of autodock. J. Mol. Recognit. 1996 9 1 1 5 8723313
    [Google Scholar]
  18. Trott O. Olson A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010 31 2 455 461 10.1002/jcc.21334 19499576
    [Google Scholar]
  19. Maira S.M. Pecchi S. Huang A. Burger M. Knapp M. Sterker D. Schnell C. Guthy D. Nagel T. Wiesmann M. Brachmann S. Fritsch C. Dorsch M. Chène P. Shoemaker K. De Pover A. Menezes D. Martiny-Baron G. Fabbro D. Wilson C.J. Schlegel R. Hofmann F. García-Echeverría C. Sellers W.R. Voliva C.F. Identification and characterization of NVP-BKM120, an orally available pan-class I PI3-kinase inhibitor. Mol. Cancer Ther. 2012 11 2 317 328 10.1158/1535‑7163.MCT‑11‑0474 22188813
    [Google Scholar]
  20. Bohnacker T. Prota A.E. Beaufils F. Burke J.E. Melone A. Inglis A.J. Rageot D. Sele A.M. Cmiljanovic V. Cmiljanovic N. Bargsten K. Aher A. Akhmanova A. Díaz J.F. Fabbro D. Zvelebil M. Williams R.L. Steinmetz M.O. Wymann M.P. Deconvolution of Buparlisib’s mechanism of action defines specific PI3K and tubulin inhibitors for therapeutic intervention. Nat. Commun. 2017 8 1 14683 10.1038/ncomms14683 28276440
    [Google Scholar]
  21. Humphrey W. Dalke A. Schulten K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996 14 1 33 38, 27-28 10.1016/0263‑7855(96)00018‑5 8744570
    [Google Scholar]
  22. Ivanov V. Lohachova K. Kolesnik Y. Zakharov A. Yevsieieva L. Kyrychenko A. Langer T. Kovalenko S.M. Kalugin O.N. Recent advances in computational drug discovery for therapy against coronavirus SARS-CoV-2. Sci.: Pharm. Sci. 2023 6 46 4 24 10.15587/2519‑4852.2023.290318
    [Google Scholar]
  23. Marchenko K.I. Kyrychenko A.V. Kolos N.M. Synthesis and modification of 7-aroyl derivatives of 4,7-dihydro-[1,2,4]triazolo-[1,5-a]-pyrimidine as potent inhibitors of sirtuin-2. Funct. Mater. 2024 31 2 260 268 10.15407/fm31.02.260
    [Google Scholar]
  24. Lipson V.V. Yaremenko F.G. Vakula V.M. Kovalenko S.V. Kyrychenko A.V. Desenko S.M. Borysko P.О. Zozulya S.O. Discovery of novel n-acylhydrazone derivatives as potent inhibitors of sirtuin-1. SynOpen 2024 8 2 100 108 10.1055/s‑0043‑1763747
    [Google Scholar]
  25. Zahrychuk H.Y. Gladkov E.S. Kyrychenko A.V. Poliovyi D.O. Zahrychuk O.M. Kucher T.V. Logoyda L.S. Structure-based rational design and virtual screening of valsartan drug analogs towards developing novel inhibitors of angiotensin ii type 1 receptor. Biointerface Res. Appl. Chem. 2023 13 5 440 10.33263/BRIAC135.440
    [Google Scholar]
  26. Lipson V.V. Yaremenko F.G. Vakula V.M. Kovalenko S.V. Kyrychenko A.V. Desenko S.M. Musatov V.I. Borysko P.O. Zozulya S.O. Imidazole derivatives as potent inhibitors of sirtuin-1. Functional Materials 2023 30 4 486 493 10.15407/fm30.04.486
    [Google Scholar]
  27. Burger M.T. Pecchi S. Wagman A. Ni Z.J. Knapp M. Hendrickson T. Atallah G. Pfister K. Zhang Y. Bartulis S. Frazier K. Ng S. Smith A. Verhagen J. Haznedar J. Huh K. Iwanowicz E. Xin X. Menezes D. Merritt H. Lee I. Wiesmann M. Kaufman S. Crawford K. Chin M. Bussiere D. Shoemaker K. Zaror I. Maira S.M. Voliva C.F. Identification of NVP-BKM120 as a potent, selective, orally bioavailable class I PI3 kinase inhibitor for treating cancer. ACS Med. Chem. Lett. 2011 2 10 774 779 10.1021/ml200156t 24900266
    [Google Scholar]
  28. Cheng H. Li C. Bailey S. Baxi S.M. Goulet L. Guo L. Hoffman J. Jiang Y. Johnson T.O. Johnson T.W. Knighton D.R. Li J. Liu K.K.C. Liu Z. Marx M.A. Walls M. Wells P.A. Yin M.J. Zhu J. Zientek M. Discovery of the highly potent PI3K/MTOR dual inhibitor PF-04979064 through structure-based drug design. ACS Med. Chem. Lett. 2013 4 1 91 97 10.1021/ml300309h 24900568
    [Google Scholar]
  29. Tang J. Liu J. He X. Fu S. Wang K. Li C. Li Y. Zhu Y. Gong P. Zhao Y. Liu Y. Hou Y. Design and synthesis of 1,3,5-triazines or pyrimidines containing dithiocarbamate moiety as PI3Kα selective inhibitors. ACS Med. Chem. Lett. 2023 14 9 1266 1274 10.1021/acsmedchemlett.3c00287 37736169
    [Google Scholar]
  30. Cheng H. Orr S.T.M. Bailey S. Brooun A. Chen P. Deal J.G. Deng Y.L. Edwards M.P. Gallego G.M. Grodsky N. Huang B. Jalaie M. Kaiser S. Kania R.S. Kephart S.E. Lafontaine J. Ornelas M.A. Pairish M. Planken S. Shen H. Sutton S. Zehnder L. Almaden C.D. Bagrodia S. Falk M.D. Gukasyan H.J. Ho C. Kang X. Kosa R.E. Liu L. Spilker M.E. Timofeevski S. Visswanathan R. Wang Z. Meng F. Ren S. Shao L. Xu F. Kath J.C. Structure-based drug design and synthesis of PI3Kα-selective inhibitor (PF-06843195). J. Med. Chem. 2021 64 1 644 661 10.1021/acs.jmedchem.0c01652 33356246
    [Google Scholar]
  31. Occhiuzzi M.A. Lico G. Ioele G. De Luca M. Garofalo A. Grande F. Recent advances in PI3K/PKB/mTOR inhibitors as new anticancer agents. Eur. J. Med. Chem. 2023 246 114971 10.1016/j.ejmech.2022.114971 36462440
    [Google Scholar]
  32. Avendaño C. Menéndez J.C. Anticancer drugs acting on signaling pathways, part 2: Inhibitors of serine-threonine kinases and miscellaneous signaling pathways. Medicinal Chemistry of Anticancer Drugs Elsevier 3rd ed 565 635 2023 10.1016/B978‑0‑12‑818549‑0.00011‑X
    [Google Scholar]
  33. Garces A.E. Stocks M.J. Class 1 PI3K clinical candidates and recent inhibitor design strategies: A medicinal chemistry perspective. J. Med. Chem. 2019 62 10 4815 4850 10.1021/acs.jmedchem.8b01492 30582807
    [Google Scholar]
  34. Sun D. Zhao Y. Zhang S. Zhang L. Liu B. Ouyang L. Dual-target kinase drug design: Current strategies and future directions in cancer therapy. Eur. J. Med. Chem. 2020 188 112025 10.1016/j.ejmech.2019.112025 31931340
    [Google Scholar]
  35. Venkatesan A.M. Dehnhardt C.M. Delos Santos E. Chen Z. Dos Santos O. Ayral-Kaloustian S. Khafizova G. Brooijmans N. Mallon R. Hollander I. Feldberg L. Lucas J. Yu K. Gibbons J. Abraham R.T. Chaudhary I. Mansour T.S. Bis(morpholino-1,3,5-triazine) derivatives: Potent adenosine 5′-triphosphate competitive phosphatidylinositol-3-kinase/mammalian target of rapamycin inhibitors: discovery of compound 26 (PKI-587), a highly efficacious dual inhibitor. J. Med. Chem. 2010 53 6 2636 2645 10.1021/jm901830p 20166697
    [Google Scholar]
  36. Soltan O.M. Shoman M.E. Abdel-Aziz S.A. Narumi A. Konno H. Abdel-Aziz M. Molecular hybrids: A five-year survey on structures of multiple targeted hybrids of protein kinase inhibitors for cancer therapy. Eur. J. Med. Chem. 2021 225 113768 10.1016/j.ejmech.2021.113768 34450497
    [Google Scholar]
  37. Yang F.F. Zhao T.T. Milaneh S. Zhang C. Xiang D.J. Wang W.L. Small molecule targeted therapies for endometrial cancer: Progress, challenges, and opportunities. RSC Med. Chem. 2024 15 6 1828 1848 10.1039/D4MD00089G 38911148
    [Google Scholar]
  38. Taha M.O. Al-Sha’er M.A. Khanfar M.A. Al-Nadaf A.H. Discovery of nanomolar phosphoinositide 3-kinase gamma (PI3Kγ) inhibitors using ligand-based modeling and virtual screening followed by in vitro analysis. Eur. J. Med. Chem. 2014 84 454 465 10.1016/j.ejmech.2014.07.056 25050878
    [Google Scholar]
  39. Liu P. Cheng H. Roberts T.M. Zhao J.J. Targeting the phosphoinositide 3-kinase pathway in cancer. Nat. Rev. Drug Discov. 2009 8 8 627 644 10.1038/nrd2926 19644473
    [Google Scholar]
  40. Dasmahapatra U. Kumar C.K. Das S. Subramanian P.T. Murali P. Isaac A.E. Ramanathan K. Mm B. Chanda K. In-silico molecular modelling, MM/GBSA binding free energy and molecular dynamics simulation study of novel pyrido fused imidazo[4,5-c]quinolines as potential anti-tumor agents. Front Chem. 2022 10 991369 10.3389/fchem.2022.991369 36247684
    [Google Scholar]
  41. Salem M.E. Samir M. Elwahy A.H.M. Farag A.M. Selim A.M. Alsaegh A.A. Sharaky M. Bagato N. Radwan I.T. Design, synthesis, docking study, cytotoxicity evaluation, and PI3K inhibitory activity of novel di-thiazoles, and bis(di-thiazoles). J. Mol. Struct. 2024 1301 137379 10.1016/j.molstruc.2023.137379
    [Google Scholar]
  42. Afifi T.H. Naqvi A. Alsehli M.H. Seth D.S. El-Gaby M.S.A. Okasha R.M. Hagar M. Dft and in-silico investigations, along with in-vitro antitumor and antimicrobial assessments of pharmacological molecules. Curr. Org. Synth. 2023 20 5 523 545 10.2174/1570179419666220913141629 36100991
    [Google Scholar]
  43. Janku F. Choong G.M. Opyrchal M. Dowlati A. Hierro C. Rodon J. Wicki A. Forster M.D. Blagden S.P. Yin J. Reid J.M. Muller H. Cmiljanovic N. Cmiljanovic V. Adjei A.A. A phase i study of the oral dual-acting pan-PI3K/MTOR inhibitor bimiralisib in patients with advanced solid tumors. Cancers (Basel) 2024 16 6 1137 10.3390/cancers16061137 38539472
    [Google Scholar]
  44. Liu T. Song S. Wang X. Hao J. Small-molecule inhibitors of breast cancer-related targets: Potential therapeutic agents for breast cancer. Eur. J. Med. Chem. 2021 210 112954 10.1016/j.ejmech.2020.112954 33158576
    [Google Scholar]
  45. Steinmetz M.O. Prota A.E. Structure-based discovery and rational design of microtubule-targeting agents. Curr. Opin. Struct. Biol. 2024 87 102845 10.1016/j.sbi.2024.102845 38805950
    [Google Scholar]
/content/journals/cos/10.2174/0115701794356958241024082646
Loading
/content/journals/cos/10.2174/0115701794356958241024082646
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test