Skip to content
2000
image of Recent Advances in Diversity-Oriented Synthesis of N-containing Organic Molecules Through Carbodiimide-based Reactions

Abstract

Carbodiimides (R-N=C=N-R) are well-known intermediates for the preparation of a variety of N-containing compounds, including heterocycles and amide linkages. Because of their high reactivity and easy availability, carbodiimides have been broadly used as building blocks in the synthesis of structurally complex and diverse heterocyclic compounds in multi-component reactions (MCRs). Recent advances in diversity-oriented synthesis with carbodiimide-based MCRs are discussed in this minireview and are classified into different sections based on the key transformation involved in the reactions, such as heteroannulation and nucleophilic addition reactions which containing metal-catalyzed reactions, multi-component reactions, and catalyst-free reactions subsections.

Loading

Article metrics loading...

/content/journals/cos/10.2174/0115701794353545241204060251
2025-01-13
2025-05-13
Loading full text...

Full text loading...

References

  1. Knox J.R. Toia R.F. Casida J.E. Insecticidal thioureas: Preparation of [phenoxy-4-3H]diafenthiuron, the corresponding carbodiimide, and related compounds. J. Agric. Food Chem. 1992 40 5 909 913 10.1021/jf00017a043
    [Google Scholar]
  2. Molina P. Alajarin M. Vidal A. Sanchez-Andrada P. C=C-conjugated carbodiimides as 2-aza dienes in intramolecular [4+2] cycloadditions. One-pot preparation of quinoline. alpha.-carboline, and quinindoline derivatives. J. Org. Chem. 1992 57 3 929 939 10.1021/jo00029a026
    [Google Scholar]
  3. Johnson J.D. Kaplan S.W. Toth J. Wang Z. Maw M. Sheiko S.S. Zhukhovitskiy A.V. Carbodiimide ring-opening metathesis polymerization. ACS Cent. Sci. 2023 9 6 1104 1110 10.1021/acscentsci.3c00032 37396860
    [Google Scholar]
  4. Rebek J. Feitler D. Peptide synthesis with carbodiimide. Int. J. Pept. Protein Res. 1975 7 2 167 169 10.1111/j.1399‑3011.1975.tb02428.x 1095505
    [Google Scholar]
  5. Khorana H.G. 387. Peptides. Part III. Selective degradation from the carboxyl end. The use of carbodi-imides. J. Chem. Soc. 1952 0 2081 2088 10.1039/jr9520002081
    [Google Scholar]
  6. Lin Y.H. Li J. Qin Y. Wang H. Gupta S. Carbodiimide scaffolds: Efficient and versatile reagents in synthesis of heterocycles. Synth. Commun. 2021 51 18 2713 2731 10.1080/00397911.2021.1953533
    [Google Scholar]
  7. Williams A. Ibrahim I.T. Carbodiimide chemistry: recent advances. Chem. Rev. 1981 81 6 589 636 10.1021/cr00046a004
    [Google Scholar]
  8. Bellucci M.C. Volonterio A. Carbodiimides-mediated multi component synthesis of biologically relevant structures. Organic Chemistry Insights 2012 4 1 24 10.4137/OCI.S9112
    [Google Scholar]
  9. Wang Y. Zhang W.X. Xi Z. Carbodiimide-based synthesis of N-heterocycles: moving from two classical reactive sites to chemical bond breaking/forming reaction. Chem. Soc. Rev. 2020 49 16 5810 5849 10.1039/C9CS00478E 32658233
    [Google Scholar]
  10. Kurzer F. Douraghi-Zadeh K. Advances in the chemistry of carbodiimides. Chem. Rev. 1967 67 2 107 152 10.1021/cr60246a001 4859920
    [Google Scholar]
  11. Peddarao T. Baishya A. Barman M.K. Kumar A. Nembenna S. Metal-free access of bulky N,N′-diarylcarbodiimides and their reduction: bulky N,N′-diarylformamidines. New J. Chem. 2016 40 9 7627 7636 10.1039/C6NJ00907G
    [Google Scholar]
  12. Publication A. 1-ethyl-3-(3-dimethylamino)propylcarbodiimide hydrochloride and methiodide. Org. Synth. 1968 48 September 83 10.15227/orgsyn.048.0083
    [Google Scholar]
  13. Monagle J.J. Carbodiimides. III. Conversion of Isocyanates to Carbodiimides. Catalyst Studies. J. Org. Chem. 1962 27 11 3851 3855 10.1021/jo01058a022
    [Google Scholar]
  14. Malviya B.K. Jaiswal P.K. Verma V.P. Badsara S.S. Sharma S. Electrochemical synthesis of carbodiimides via metal/oxidant-free oxidative cross-coupling of amines and isocyanides. Org. Lett. 2020 22 6 2323 2327 10.1021/acs.orglett.0c00510 32142299
    [Google Scholar]
  15. Zhang Z. Tan P. Chang W. Zhang Z. Transition‐metal‐catalyzed cross‐coupling and sequential reactions of azides with isocyanides. Adv. Synth. Catal. 2021 363 24 5344 5359 10.1002/adsc.202101107
    [Google Scholar]
  16. Roose T.R. Verdoorn D.S. Mampuys P. Ruijter E. Maes B.U.W. Orru R.V.A. Transition metal-catalysed carbene and nitrene transfer to carbon monoxide and isocyanides. Chem. Soc. Rev. 2022 51 14 5842 5877 10.1039/D1CS00305D 35748338
    [Google Scholar]
  17. Chen H. Liu M.G. Synthesis, characterization and crystal structure of heterocyclic tetrahydropyrido[4′,3′:4,5]thieno[2,3-d]pyrimidinone derivatives via sequential aza-Wittig/base catalyzed cyclization. J. Mol. Struct. 2019 1180 31 40 10.1016/j.molstruc.2018.11.091
    [Google Scholar]
  18. Fang Z.D. Wei X.H. One-pot three-component synthesis of 1,4-bis[thiazolo[4,5-d]pyrimidin-7(6 H )-one]piperazine derivatives. J. Chem. Res. 2012 36 10 612 614 10.3184/174751912X13460803277147
    [Google Scholar]
  19. Fang Z.D. Fang D. Cheng Q. Sequential three-component synthesis of 1,4-bis[6,9-dihydro-6-oxo-9-phenyl-1 H -purin-2-yl]piperazines. J. Chem. Res. 2012 36 12 703 705 10.3184/174751912X13505755737168
    [Google Scholar]
  20. Meng S. Jia Z. Wang K. Fan Y. Guo Y. Facile synthesis of Thieno[2,3- d ]pyrimidine derivatives using inorganic base catalysis. Synth. Commun. 2014 44 10 1461 1465 10.1080/00397911.2013.859705
    [Google Scholar]
  21. Dong Fang Z. Hong Wei X. Sequential Three-Component Synthesis of 1,4-Bis[triazolo[4,5-d]pyrimidin-7(6H)-one]piperazines. Heterocycles 2012 85 11 2757 2763 10.3987/COM‑12‑12564
    [Google Scholar]
  22. Bellucci M.C. Volonterio A. Three-component sequential synthesis of N,N′-disubstituted 5-arylidenedihydropyrimidine-2,4-dione. Tetrahedron Lett. 2012 53 35 4733 4737 10.1016/j.tetlet.2012.06.109
    [Google Scholar]
  23. Duangjan C. Rukachaisirikul V. Saithong S. Kaeobamrung J. Copper-catalyzed domino reaction of carbodiimides and benzoic acid derivatives for the synthesis of quinazolinediones. Tetrahedron Lett. 2018 59 39 3537 3540 10.1016/j.tetlet.2018.08.028
    [Google Scholar]
  24. Weischedel H. Schmidt D. Conrad J. Beifuss U. Formation of substituted 2-iminooxazolidines via intermolecular 1,2-addition/intramolecular N-vinylation using 3-substituted-2-bromo-2-propen-1-ols as substrates. Tetrahedron 2018 74 44 6426 6441 10.1016/j.tet.2018.08.051
    [Google Scholar]
  25. Liao P. Bi X. Yi X. Barry B-D. Synthesis of N-Sulfonylazetidin-2-imines via the Copper(I) oxide catalyzed multicomponent reaction of alkynes, sulfonyl azides and diimines under solvent-free conditions. Synthesis 2012 44 9 1323 1328 10.1055/s‑0031‑1289740
    [Google Scholar]
  26. Wang F. Cai S. Liao Q. Xi C. A protocol to 2-aminobenzimidazoles via copper-catalyzed cascade addition and cyclization of o-haloanilines and carbodiimides. J. Org. Chem. 2011 76 9 3174 3180 10.1021/jo200014v 21413745
    [Google Scholar]
  27. Shen G. Chen D. Zhang Y. Sun M. Chen K. Jin C. Li K. Bao W. Synthesis of benzoxazine and 1,3-oxazine derivatives via ligand-free copper(I)-catalyzed one-pot cascade addition/cyclization reaction. Tetrahedron 2012 68 1 166 172 10.1016/j.tet.2011.10.075
    [Google Scholar]
  28. Chi Y. Yan H. Zhang W.X. Xi Z. CuOTf‐catalyzed selective generation of 2‐aminopyrimidines from carbodiimides and diaryliodonium salts by a triple C(sp 3 )−H functionalization. Chemistry 2017 23 4 757 761 10.1002/chem.201604739 27898999
    [Google Scholar]
  29. Liu Y. Li Z. Jiang L. Zheng A. An efficient synthesis of 3‐alkyl‐2‐alkyliminooxazolidin‐4‐one via a domino reaction. Chin. J. Chem. 2011 29 2 303 308 10.1002/cjoc.201190082
    [Google Scholar]
  30. Das S. Bhattacharjee J. Panda T.K. Guanylation/cyclisation of amino acid esters using an imidazolin-2-iminato titanium initiator. Dalton Trans. 2019 48 21 7227 7235 10.1039/C8DT04630A 30688333
    [Google Scholar]
  31. Shen H. Chan H.S. Xie Z. Guanylation of amines catalyzed by a half-sandwich titanacarborane amide complex. Organometallics 2006 25 23 5515 5517 10.1021/om060811x
    [Google Scholar]
  32. Shen H. Wang Y. Xie Z. Ti-amide catalyzed synthesis of cyclic guanidines from di-/triamines and carbodiimides. Org. Lett. 2011 13 17 4562 4565 10.1021/ol201752e 21815662
    [Google Scholar]
  33. Xie Z. Wang Y. Shen H. Atom-economical synthesis of 2-aminoimidazoles via [3+2] annulation catalyzed by titanacarborane monoamide. Synlett 2011 2011 7 969 973 10.1055/s‑0030‑1259713
    [Google Scholar]
  34. Aman H. Huang Y.C. Liu Y.H. Tsai Y.L. Kim M. Hsieh J.C. Chuang G.J. Cobalt-catalyzed cyclization of 2-bromobenzamides with carbodiimides: A new route for the synthesis of 3-(imino)isoindolin-1-ones. Molecules 2021 26 23 7212 10.3390/molecules26237212 34885794
    [Google Scholar]
  35. Tanaka K. Mimura M. Hojo D. Synthesis of substituted 6-imino-2-piperidinones by Rh-catalyzed [4+2] annulation of 4-alkynals with carbodiimides. Tetrahedron 2009 65 44 9008 9014 10.1016/j.tet.2009.06.115
    [Google Scholar]
  36. Chi Y. Xu L. Du S. Yan H. Zhang W.X. Xi Z. Synthesis and mechanistic study of cyclic oxoguanidines via Zn(OTf) 2 ‐catalyzed guanylation/amidation from readily available amino acid esters and carbodiimides. Chemistry 2015 21 29 10369 10378 10.1002/chem.201500573 26013660
    [Google Scholar]
  37. Lu C. Gong C. Zhao B. Hu L. Yao Y. RE[N(SiMe 3 ) 2 ] 3 -catalyzed guanylation/cyclization of amino acid esters and carbodiimides. J. Org. Chem. 2018 83 3 1154 1159 10.1021/acs.joc.7b02550 29337548
    [Google Scholar]
  38. Chi Y. Yan H. Zhang W.X. Xi Z. Synthesis of quinoline derivatives via cu-catalyzed cascade annulation of heterocumulenes, alkynes, and diaryliodonium salts. Org. Lett. 2017 19 10 2694 2697 10.1021/acs.orglett.7b01025 28481555
    [Google Scholar]
  39. Samzadeh-Kermani A. Ghasemi S. A catalytic route to pyrrole derivatives via copper‐catalyzed multicomponent reaction. J. Heterocycl. Chem. 2019 56 8 2202 2209 10.1002/jhet.3614
    [Google Scholar]
  40. Zhao F. Li Y. Wang Y. Zhang W.X. Xi Z. Selective synthesis of (Z)-2-enynyl-2-hydroxy-imidazolidine-4,5-diones via Cu(i)-mediated multicomponent coupling of terminal alkynes, carbodiimides and oxalyl chloride. Org. Biomol. Chem. 2014 12 21 3336 3339 10.1039/C4OB00185K 24723221
    [Google Scholar]
  41. Qiu G. Lu Y. Wu J. A concise synthesis of 4-imino-3,4-dihydroquinazolin-2-ylphosphonates via a palladium-catalyzed reaction of carbodiimide, isocyanide, and phosphite. Org. Biomol. Chem. 2013 11 5 798 802 10.1039/C2OB26979A 23229113
    [Google Scholar]
  42. Wang Y. Zhao F. Zhou Y. Chi Y. Wang Z. Zhang W.X. Xi Z. Mechanistic study on the cleavage and reorganization of C(sp3)-H and C=N bonds in carbodiimides: synthesis of 1,2-dihydrothiopyrimidines and 2,3-dihydropyrimidinthiones through four-component coupling. Chemistry 2013 19 32 10643 10654 10.1002/chem.201301633 23821475
    [Google Scholar]
  43. Zhang X. Wang S. Liu Y. Xi C. Triflates-triggered intermolecular cyclization of carbodiimides leading to 2-aminoquinazolinone and 2,4-diaminoquinazoline derivatives. Org. Lett. 2018 20 8 2148 2151 10.1021/acs.orglett.8b00314 29620371
    [Google Scholar]
  44. Asadi M. Ebrahimi M. Mahdavi M. Saeedi M. Ranjbar P.R. Yazdani F. Shafiee A. Foroumadi A. Reaction of isatoic anhydride, amine, and N,N ′-dialkyl carbodiimides under solvent-free conditions: New and efficient synthesis of 3-alkyl-2-(alkylamino)quinazolin-4(3 H )-ones. Synth. Commun. 2013 43 17 2385 2392 10.1080/00397911.2012.714042
    [Google Scholar]
  45. Ulrich H. Tucker B. Sayigh A.A.R. Methyl-tert-butylcarbodiimide. Diagnostic tool in 2 + 2 cycloaddition reactions. J. Am. Chem. Soc. 1972 94 10 3484 3487 10.1021/ja00765a039
    [Google Scholar]
  46. Shainyan B.A. Tolstikova L.L. Sterkhova I.V. Unusual [2+2]-cycloaddition of carbodiimides to N-alkenylidenetriflamides. Tetrahedron Lett. 2016 57 39 4440 4442 10.1016/j.tetlet.2016.08.078
    [Google Scholar]
  47. Shainyan B.A. Tolstikova L.L. Reaction of N-sulfinyltrifluoromethanesulfonamide with carbodiimides: Formation of N-trifluoromethanesulfonyl-2,4-dialkyl-1,2,4-thiadiazetidin-3-imine 1-oxides. J. Fluor. Chem. 2012 140 59 61 10.1016/j.jfluchem.2012.04.016
    [Google Scholar]
  48. Srivastava V. Singh P.K. Singh P.P. Recent advances of visible-light photocatalysis in the functionalization of organic compounds. J. Photochem. Photobiol. Photochem. Rev. 2022 50 100488 10.1016/j.jphotochemrev.2022.100488
    [Google Scholar]
  49. Meza-León R.L. Bernès S. Cortés-López G.N. Mastranzo V.M. Sosa-Rivadeneyra M. Sartillo-Piscil F. Synthesis of 5-hydroxy hydantoins via a tandem process. Tetrahedron Lett. 2016 57 37 4232 4234 10.1016/j.tetlet.2016.08.022
    [Google Scholar]
  50. Kasatkina S. Stepanova E. Dmitriev M. Mokrushin I. Maslivets A. Divergent synthesis of (quinoxalin-2-yl)-1,3-oxazines and pyrimido[1,6-a]quinoxalines via the cycloaddition reaction of acyl(quinoxalinyl)ketenes. Tetrahedron Lett. 2019 60 39 151088 10.1016/j.tetlet.2019.151088
    [Google Scholar]
  51. Johnston J.R. West F.G. Regioselective synthesis of 2-iminooxazinones from dioxinones and carbodiimides. Tetrahedron Lett. 2012 53 41 5479 5482 10.1016/j.tetlet.2012.07.100
    [Google Scholar]
  52. Silva A. Talhi O. Pinto D. Synthesis of 5-(2-hydroxybenzoyl)-1,3-disubstituted uracils. Synlett 2013 24 9 1147 1149 10.1055/s‑0033‑1338932
    [Google Scholar]
  53. Sarmah B.K. Konwar M. Das A. Site-selective deoxygenative amination of azine N -oxides with carbodiimides under catalyst-, activator-, base-, and solvent-free conditions. J. Org. Chem. 2021 86 15 10762 10772 10.1021/acs.joc.1c00741 34260234
    [Google Scholar]
  54. Yu Q. Yu J. Bao H. Hu X. Ying D. Wu L. Liu F. Jiang H. Jinxia Z. Zhang S. Naturally occurring bioactive 5-ethylidenehydantoins as inspiration for the development of analogues. Synth. Commun. 2018 48 15 1939 1944 10.1080/00397911.2018.1467457
    [Google Scholar]
  55. Alizadeh A. Rezvanian A. Isoquinoline-catalyzed reaction of phenacyl bromide and N,N-Dialkyl­carbodiimides: Novel synthesis of azirines. Synlett 2012 23 6 859 862 10.1055/s‑0031‑1290487
    [Google Scholar]
  56. Yen W.P. Kung F.C. Wong F.F. 1,3‐dipolar cycloaddition of carbodiimides and nitrilimines: Synthesis and mechanistic study of 5‐amino‐1,2,4‐triazoles. Eur. J. Org. Chem. 2016 2016 13 2328 2335 10.1002/ejoc.201600240
    [Google Scholar]
  57. Olimpieri F. Bellucci M.C. Marcelli T. Volonterio A. Regioselective multicomponent sequential synthesis of hydantoins. Org. Biomol. Chem. 2012 10 48 9538 9555 10.1039/c2ob26498f 23075991
    [Google Scholar]
  58. Talhi O. Fernandes J.A. Pinto D.C.G.A. Almeida Paz F.A. Silva A.S.M. Diastereoselective synthesis of benzofuran-3(2H)-one-hydantoin dyads. Tetrahedron 2013 69 26 5413 5420 10.1016/j.tet.2013.04.111
    [Google Scholar]
  59. He X. Yang C. Wu Y. Xie M. Li R. Duan J. Shang Y. Synthesis of unsymmetrical urea derivatives via one-pot sequential three-component reactions of cyclic 2-diazo-1,3-diketones, carbodiimides, and 1,2-dihaloethanes. Org. Biomol. Chem. 2020 18 22 4178 4182 10.1039/D0OB00683A 32441722
    [Google Scholar]
  60. Wang H. Ye S. Jin H. Liu J. Wu J. An expeditious approach to 1-(isoquinolin-1-yl)guanidines via a three-component reaction of 2-alkynylbenzaldehyde, sulfonohydrazide, with carbodiimide. Tetrahedron 2011 67 33 5871 5877 10.1016/j.tet.2011.06.056
    [Google Scholar]
  61. Panahi F. Jamedi F. Iranpoor N. Nickel‐catalyzed reductive addition of aryl/benzyl halides and pseudohalides to carbodiimides for the synthesis of amides. Eur. J. Org. Chem. 2016 2016 4 780 788 10.1002/ejoc.201501349
    [Google Scholar]
  62. Wang S. Zhang Y. Liu G. Xu H. Song L. Chen J. Li J. Zhang Z. Transition-metal-free synthesis of 5-amino-1,2,3-triazoles via nucleophilic addition/cyclization of carbodiimides with diazo compounds. Org. Chem. Front. 2021 8 3 599 604 10.1039/D0QO01288B
    [Google Scholar]
  63. Ye S. Wang H. Wu J. 1-(isoquinolin-1-yl)urea library generation via three-component reaction of 2-alkynylbenzaldoxime, carbodiimide, with electrophile. ACS Comb. Sci. 2011 13 2 120 125 10.1021/co100026y 21395340
    [Google Scholar]
  64. Ye S. Wang H. Wu J. An expeditious approach to 1-aminoisoquinolines via an unexpected reaction of 2-alkynylbenzaldoxime, carbodiimide, with bromine. Tetrahedron 2011 67 25 4628 4632 10.1016/j.tet.2011.04.063
    [Google Scholar]
  65. Shi J. Li L. Li Y. o -silylaryl triflates: A journey of kobayashi aryne precursors. Chem. Rev. 2021 121 7 3892 4044 10.1021/acs.chemrev.0c01011 33599472
    [Google Scholar]
  66. Li R. Tang H. Fu H. Ren H. Wang X. Wu C. Wu C. Shi F. Arynes double bond insertion/nucleophilic addition with vinylogous amides and carbodiimides. J. Org. Chem. 2014 79 3 1344 1355 10.1021/jo402754d 24433159
    [Google Scholar]
  67. Thirupathi A. Janni M. Peruncheralathan S. Copper catalyzed intramolecular N-arylation of ketene aminals at room temperature: Synthesis of 2-amino-3-cyanoindoles. J. Org. Chem. 2018 83 15 8668 8678 10.1021/acs.joc.8b00816 29847946
    [Google Scholar]
  68. Wang Y. Chi Y. Zhao F. Zhang W.X. Xi Z. ChemInform Abstract: Synthesis, characterization, and reactivity of N‐Acyl Chloroformamidines: Useful building blocks for the construction of N‐Acyl substituted 1,1‐diaminoethylenes, amidines, ureas, and thioureas. ChemInform 2013 44 21 chin.201321077 10.1002/chin.201321077
    [Google Scholar]
/content/journals/cos/10.2174/0115701794353545241204060251
Loading
/content/journals/cos/10.2174/0115701794353545241204060251
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test