Skip to content
2000
Volume 22, Issue 2
  • ISSN: 1570-1794
  • E-ISSN: 1875-6271

Abstract

Oxazolines are important heterocyclic systems due to their biological activities, such as antibacterial, antimalarial, anticancer, antiviral, anti-inflammatory, antifungal, antipyretic, and antileishmanial. They have been widely applied as chiral auxiliaries, polymers, catalysts, protecting groups, building blocks, and ligands in asymmetric synthesis. Due to their importance, many synthetic routes to prepare oxazoline moieties have been investigated and developed by researchers around the world. In this review, we summarized several synthetic methodologies published in the literature. The main substrates are nitriles, carboxylic acids, and acid derivatives, which react with a variety of reactants under conventional heating, microwave irradiation or ultrasound irradiation conditions. Syntheses intramolecular cyclisation from amides have also been reported. Many publications have highlighted procedures based on solvent-free conditions using eco-friendly, reusable, and easy-availability catalysts.

Loading

Article metrics loading...

/content/journals/cos/10.2174/0115701794283180231228075225
2024-01-12
2025-01-31
Loading full text...

Full text loading...

References

  1. ScrivenE.F.V. RamsdenC.A. Adv. Heterocycl. Chem.2016119133610.1016/bs.aihch.2016.01.001
    [Google Scholar]
  2. HaiderS. Back bone of drug design.J. Phytochemistry Biochem.20171110001010
    [Google Scholar]
  3. KaurR. BariwalJ. VoskressenskyL.G. Van der EyckenE.V. Gold and silver nanoparticle-catalyzed synthesis of heterocyclic compounds.Chem. Heterocycl. Compd.201854324124810.1007/s10593‑018‑2259‑1
    [Google Scholar]
  4. WilkinsonM.C. Asymmetric synthesis of an aminomethyl morpholine via double allylic substitution.Tetrahedron Lett.200546284773477510.1016/j.tetlet.2005.05.038
    [Google Scholar]
  5. KatritzkyA.R. Introduction: Heterocycles.Chem. Rev.200410452125212610.1021/cr0406413
    [Google Scholar]
  6. HajiM. Multicomponent reactions: A simple and efficient route to heterocyclic phosphonates.Beilstein J. Org. Chem.2016121269130110.3762/bjoc.12.121 27559377
    [Google Scholar]
  7. FrumpJ.A. Oxazolines. Their preparation, reactions, and applications.Chem. Rev.197171548350510.1021/cr60273a003
    [Google Scholar]
  8. WileyR.H. BennettL.L.Jr The chemistry of the oxazolines.Chem. Rev.194944344747610.1021/cr60139a002
    [Google Scholar]
  9. FacchinettiV. GomesC.R.B. de SouzaM.V.N. Application of nitriles on the synthesis of 1,3-oxazoles, 2-oxazolines, and oxadiazoles: An update from 2014 to 2021.Tetrahedron2021102313254410.1016/j.tet.2021.132544
    [Google Scholar]
  10. LeT.N. NguyenQ.P.B. KimJ.N. KimT.H. 5,5-Dimethyl-2-phenylamino-2-oxazoline as an effective chiral auxiliary for asymmetric alkylations.Tetrahedron Lett.200748447834783710.1016/j.tetlet.2007.09.001
    [Google Scholar]
  11. NguyenQ.P.B. KimT.H. Solid phase asymmetric benzylation using 5,5-dimethyl-2-phenylamino-2-oxazoline chiral auxiliary.Bull. Korean Chem. Soc.201233124223422610.5012/bkcs.2012.33.12.4223
    [Google Scholar]
  12. ParkJ. YuY. LeeJ.W. KimB.S. Anionic ring-opening polymerization of a functional epoxide monomer with an oxazoline protecting group for the synthesis of polyethers with carboxylic acid pendants.Macromolecules202255135448545810.1021/acs.macromol.2c00761
    [Google Scholar]
  13. MeyersA.I. TempleD.L. HaidukewychD. MihelichE.D. OxazolinesX.I. OxazolinesX.I. Synthesis of functionalized aromatic and aliphatic acids. Useful protecting group for carboxylic acids against Grignard and hydride reagents.J. Org. Chem.197439182787279310.1021/jo00932a024
    [Google Scholar]
  14. RiobéF. AvarvariN. Electroactive oxazoline ligands.Coord. Chem. Rev.201025413-141523153310.1016/j.ccr.2009.12.017
    [Google Scholar]
  15. GómezM. MullerG. RocamoraM. Coordination chemistry of oxazoline ligands.Coord. Chem. Rev.1999193-19576983510.1016/S0010‑8545(99)00086‑7
    [Google Scholar]
  16. DebonoN. PinelC. JahjahR. AlaaeddineA. DelichèreP. LefebvreF. DjakovitchL. Asymmetric reduction of ketones with ruthenium-oxazoline based catalysts.J. Mol. Catal. Chem.20082871-214215010.1016/j.molcata.2008.03.012
    [Google Scholar]
  17. GhoshA.K. MathivananP. CappielloJ. C2-Symmetric chiral bis(oxazoline)-metal complexes in catalytic asymmetric synthesis.Tetrahedron Asymmetry199891145
    [Google Scholar]
  18. HayesG. DrainB. BecerC.R. Multiarm core cross-linked star-shaped poly(2-oxazoline)s using a bisfunctional 2‐oxazoline monomer.Macromolecules202255114615510.1021/acs.macromol.1c02245
    [Google Scholar]
  19. KnospeP. BöhmP. GutmannJ. DornbuschM. Oxazoline-based crosslinking reaction for coatings.J. Coat. Technol. Res.20211851199120710.1007/s11998‑021‑00479‑9
    [Google Scholar]
  20. HoogenboomR. The future of poly(2-oxazoline)s.Eur. Polym. J.202217911152110.1016/j.eurpolymj.2022.111521
    [Google Scholar]
  21. VerbraekenB. MonneryB.D. LavaK. HoogenboomR. The chemistry of poly(2-oxazoline)s.Eur. Polym. J.20178845146910.1016/j.eurpolymj.2016.11.016
    [Google Scholar]
  22. StafastL.M. EngelN. GörlsH. WeberC. SchubertU.S. End-functionalized diblock copolymers by mix and match of poly(2-oxazoline) and polyester building blocks.Eur. Polym. J.202318411177910.1016/j.eurpolymj.2022.111779
    [Google Scholar]
  23. InabaM. MoriwakeT. SaitoS. New synthesis of secondary carboxamide by using 2-methyl-2-oxazoline as a building block.Tetrahedron Lett.198526273235323810.1016/S0040‑4039(00)98160‑7
    [Google Scholar]
  24. CockerhamL.E. PurcellR.F. Ethyl cellulose compositions.Chem. Abstr.19676814166
    [Google Scholar]
  25. ConnonR. RocheB. RokadeB.V. GuiryP.J. Further developments and applications of oxazoline-containing ligands in asymmetric catalysis.Chem. Rev.2021121116373652110.1021/acs.chemrev.0c00844 34019404
    [Google Scholar]
  26. HoogenboomR. Poly(2-oxazoline)s: A polymer class with numerous potential applications.Angew. Chem. Int. Ed.200948437978799410.1002/anie.200901607 19768817
    [Google Scholar]
  27. FaiziS. FarooqiF. Zikr-Ur-RehmanS. NazA. NoorF. AnsariF. AhmadA. KhanS.A. Shahidine, a novel and highly labile oxazoline from Aegle marmelos: The parent compound of aegeline and related amides.Tetrahedron2009655998100410.1016/j.tet.2008.11.088
    [Google Scholar]
  28. PirrungM.C. TumeyL.N. McClerrenA.L. RaetzC.R.H. High-throughput catch-and-release synthesis of oxazoline hydroxamates. Structure-activity relationships in novel inhibitors of Escherichia coli LpxC: In vitro enzyme inhibition and antibacterial properties.J. Am. Chem. Soc.200312561575158610.1021/ja0209114 12568618
    [Google Scholar]
  29. WaschinskiC.J. BarnertS. TheobaldA. SchubertR. KleinschmidtF. HoffmannA. SaalwächterK. TillerJ.C. Insights in the antibacterial action of poly(methyloxazoline)s with a biocidal end group and varying satellite groups.Biomacromolecules2008971764177110.1021/bm7013944 18572919
    [Google Scholar]
  30. Aguirre-RenteríaS.A. Carrizales-CastilloJ.J.J. del Rayo Camacho CoronaM. Hernández-FernándezE. Garza-GonzálezE. Rivas-GalindoV.M. Arredondo-EspinozaE. Avalos-AlanísF.G. Synthesis and in vitro evaluation of antimycobacterial and cytotoxic activity of new α,β-unsaturated amide, oxazoline and oxazole derivatives from -serine.Bioorg. Med. Chem. Lett.202030912707410.1016/j.bmcl.2020.127074 32151467
    [Google Scholar]
  31. MoraskiG.C. ChangM. Villegas-EstradaA. FranzblauS.G. MöllmannU. MillerM.J. Structure–activity relationship of new anti-tuberculosis agents derived from oxazoline and oxazole benzyl esters.Eur. J. Med. Chem.20104551703171610.1016/j.ejmech.2009.12.074 20116900
    [Google Scholar]
  32. Avalos-AlanísF.G. Hernández-FernándezE. Carranza-RosalesP. López-CortinaS. Hernández-FernándezJ. OrdóñezM. Guzmán-DelgadoN.E. Morales-VargasA. Velázquez-MorenoV.M. Santiago-MauricioM.G. Synthesis, antimycobacterial and cytotoxic activity of α,β-unsaturated amides and 2,4-disubstituted oxazoline derivatives.Bioorg. Med. Chem. Lett.201727482182510.1016/j.bmcl.2017.01.024 28117200
    [Google Scholar]
  33. PandeyA.K. SharmaS. PandeyM. AlamM.M. ShaquiquzzamanM. AkhterM. 4, 5-Dihydrooxazole-pyrazoline hybrids: Synthesis and their evaluation as potential antimalarial agents.Eur. J. Med. Chem.201612347648610.1016/j.ejmech.2016.07.055 27494165
    [Google Scholar]
  34. HerrinT.R. PauvlikJ.M. SchuberE.V. GeiszlerA.O. Antimalarials. Synthesis and antimalarial activity of 1-(4-methoxycinnamoyl)-4-(5-phenyl-4-oxo-2-oxazolin-2-yl)piperazine and derivatives.J. Med. Chem.197518121216122310.1021/jm00246a009 1104830
    [Google Scholar]
  35. GordeyE.E. YadavP.N. MerrinM.P. DaviesJ. WardS.A. WoodmanG.M.J. SadowyA.L. SmithT.G. GossageR.A. Synthesis and biological activities of 4-N-(anilinyl-n-[oxazolyl])-7-chloroquinolines (n=3′ or 4′) against Plasmodium falciparum in in vitro models.Bioorg. Med. Chem. Lett.201121154512451510.1016/j.bmcl.2011.05.131 21723121
    [Google Scholar]
  36. KostinV.A. LatyshevaA.S. ZolottsevV.A. TkachevY.V. TimofeevV.P. KuzikovA.V. ShumyantsevaV.V. MorozevichG.E. MisharinA.Y. Oxazoline derivatives of [17(20)E]-21-norpregnene – inhibitors of CYP17A1 activity and proliferation of prostate carcinoma cells.Russ. Chem. Bull.201867468268710.1007/s11172‑018‑2122‑7
    [Google Scholar]
  37. CegłowskiM. JercaV.V. JercaF.A. HoogenboomR. Reduction-responsive molecularly imprinted poly(2-isopropenyl-2-oxazoline) for controlled release of anticancer agents.Pharmaceutics202012650610.3390/pharmaceutics12060506 32498326
    [Google Scholar]
  38. RomioM. MorgeseG. TrachselL. BabityS. ParadisiC. BrambillaD. BenettiE.M. Poly(2-oxazoline)-pterostilbene block copolymer nanoparticles for dual-anticancer drug delivery.Biomacromolecules201819110311110.1021/acs.biomac.7b01279 29216713
    [Google Scholar]
  39. KumarN. TyebS. ManzarN. BeheraL. AteeqB. VermaV. Entropically driven controlled release of paclitaxel from poly(2-ethyl-2-oxazoline) coated maghemite nanostructures for magnetically guided cancer therapy.Soft Matter201814316537655310.1039/C8SM01220B 30051119
    [Google Scholar]
  40. GrosC. FahyJ. HalbyL. DufauI. ErdmannA. GregoireJ.M. AusseilF. VispéS. ArimondoP.B. DNA methylation inhibitors in cancer: Recent and future approaches.Biochimie201294112280229610.1016/j.biochi.2012.07.025 22967704
    [Google Scholar]
  41. MadiaV.N. MessoreA. PescatoriL. SaccolitiF. TudinoV. De LeoA. ScipioneL. FioreL. RhodenE. ManettiF. ObersteM.S. Di SantoR. CostiR. In vitro antiviral activity of new oxazoline derivatives as potent poliovirus inhibitors.J. Med. Chem.201962279881010.1021/acs.jmedchem.8b01482 30512950
    [Google Scholar]
  42. RamseyJ.D. StewartI.E. MaddenE.A. LimC. HwangD. HeiseM.T. HickeyA.J. KabanovA.V. Nanoformulated remdesivir with extremely low content of poly(2-oxazoline)-based stabilizer for aerosol treatment of covid-19.Macromol. Biosci.2022228220005610.1002/mabi.202200056 35526106
    [Google Scholar]
  43. KhanumS.A. KhanumN.F. ShashikanthM. Synthesis and anti-inflammatory activity of 2-aryloxy methyl oxazolines.Bioorg. Med. Chem. Lett.200818164597460110.1016/j.bmcl.2008.07.029 18662873
    [Google Scholar]
  44. ImpellizzeriD. CordaroM. BruschettaG. CrupiR. PascaliJ. AlfonsiD. MarcolongoG. CuzzocreaS. 2-pentadecyl-2-oxazoline: Identification in coffee, synthesis and activity in a rat model of carrageenan-induced hindpaw inflammation.Pharmacol. Res.2016108233010.1016/j.phrs.2016.04.007 27083308
    [Google Scholar]
  45. PetrosinoS. CampoloM. ImpellizzeriD. PaternitiI. AllaràM. GugliandoloE. D’AmicoR. SiracusaR. CordaroM. EspositoE. Di MarzoV. CuzzocreaS. 2-Pentadecyl-2-oxazoline, the oxazoline of pea, modulates carrageenan-induced acute inflammation.Front. Pharmacol.2017830810.3389/fphar.2017.00308 28611664
    [Google Scholar]
  46. AhmadA. AhmadA. SudhakarR. VarshneyH. SubbaraoN. AnsariS. RaufA. KhanA.U. Designing, synthesis, and antimicrobial action of oxazoline and thiazoline derivatives of fatty acid esters.J. Biomol. Struct. Dyn.201735153412343110.1080/07391102.2016.1255260 27801287
    [Google Scholar]
  47. JiangW. ZhouM. CongZ. XieJ. ZhangW. ChenS. ZouJ. JiZ. ShaoN. ChenX. LiM. LiuR. Short guanidinium-functionalized poly(2-oxazoline)s displaying potent therapeutic efficacy on drug-resistant fungal infections.Angew. Chem. Int. Ed.20226117e20220077810.1002/anie.202200778 35182092
    [Google Scholar]
  48. JiangX. CaoY. WangY. LiuL. ShenF. WangR. A unique approach to the concise synthesis of highly optically active spirooxazolines and the discovery of a more potent oxindole-type phytoalexin analogue.J. Am. Chem. Soc.201013243153281533310.1021/ja106349m 20939568
    [Google Scholar]
  49. BaréaP. de PaulaJ. AlonsoL. de OliveiraA. da CostaW. AlonsoA. NakamuraC. SarragiottoM. Synthesis, antileishmanial activity and spin labeling epr studies of novel β-carboline-oxazoline and β-carboline-dihydrooxazine derivatives.J. Braz. Chem. Soc.20203161170118510.21577/0103‑5053.20200003
    [Google Scholar]
  50. YoshimuraA. SaitoA. ZhdankinV.V. YusubovM.S. Synthesis of oxazoline and oxazole derivatives by hypervalent-iodine-mediated oxidative cycloaddition reactions.Synthesis202052162299231010.1055/s‑0040‑1707122
    [Google Scholar]
  51. BerrabgerT. LangioisY. [2+3]-cycloadditions of enantiomerically pure oxazoline-N-oxides1: A short stereoselective synthesis of (+)-carbovir.Tetrahedron Lett.1995363155235526
    [Google Scholar]
  52. LorsbachB.A. MillerR.B. KurthM.J. Reissert-Based “Traceless” solid-phase synthesis: Isoquinoline, and isoxazoline-containing heterocycles.J. Org. Chem.199661258716871710.1021/jo961916k 11667837
    [Google Scholar]
  53. BarnumE.R. Corrosion-preventive compositions.US2587955A19524629540
  54. MulahmetovicE. HargadenG.C. Synthetic routes to oxazolines.Mini Rev. Org. Chem.201916650752610.2174/1570193X15666180802105505
    [Google Scholar]
  55. IbrahimK.T. NeethaM. AnilkumarG. Advancements in the synthesis of oxazolines.Monatsh. Chem.20221531083787110.1007/s00706‑022‑02976‑y
    [Google Scholar]
  56. HoneyM.A. YamashitaY. KobayashiS. A cooperative water effect in proazaphosphatrane-catalysed heterocycle synthesis.Chem. Commun.201450253288329110.1039/C3CC49808E 24525763
    [Google Scholar]
  57. GabrielS. Zur Kenntniss des Bromäthylamins.Ber. Dtsch. Chem. Ges.18892222220222310.1002/cber.18890220296
    [Google Scholar]
  58. Mohammadpoor-BaltorkI. KhosropourA.R. HojatiS.F. ZrOCl2·8H2O as an environmentally friendly and recyclable catalyst for the chemoselective synthesis of 2-aryloxazolines and bis-oxazolines under thermal conditions and microwave irradiation.Catal. Commun.20078220020410.1016/j.catcom.2006.06.003
    [Google Scholar]
  59. Mohammadpoor-BaltorkI. MoghadamM. TangestaninejadS. MirkhaniV. HojatiS.F. Supported 12-tungstophosphoric acid as heterogeneous and recoverable catalysts for the synthesis of oxazolines, imidazolines and thiazolines under solvent-free conditions.Polyhedron200827275075810.1016/j.poly.2007.11.018
    [Google Scholar]
  60. Mohammadpoor-BaltorkI. MoghadamM. TangestaninejadS. MirkhaniV. HojatiS.F. Environmental-friendly synthesis of oxazolines, imidazolines and thiazolines catalyzed by tungstophosphoric acid.Catal. Commun.2008961153116110.1016/j.catcom.2007.10.026
    [Google Scholar]
  61. Mohammadpoor-BaltorkI. MirkhaniV. MoghadamM. TangestaninejadS. ZolfigolM.A. Abdollahi-AlibeikM. KhosropourA.R. KargarH. HojatiS.F. Silica sulfuric acid: A versatile and reusable heterogeneous catalyst for the synthesis of oxazolines and imidazolines under various reaction conditions.Catal. Commun.20089589490110.1016/j.catcom.2007.09.017
    [Google Scholar]
  62. KempeK. LobertM. HoogenboomR. SchubertU.S. Screening the synthesis of 2-substituted-2-oxazolines.J. Comb. Chem.200911227428010.1021/cc800174d 19236014
    [Google Scholar]
  63. LiX. ZhouB. ZhangJ. SheM. AnS. GeH. LiC. YinB. LiJ. ShiZ. Solvent-free tandem synthesis of 2-thiazolines and 2-oxazolines catalyzed by a copper catalyst.Eur. J. Org. Chem.2012201281626163210.1002/ejoc.201101786
    [Google Scholar]
  64. MirkhaniV. MoghadamM. TangestaninejadS. Mohammadpoor-BaltorkI. MahdaviM. Preparation of an improved sulfonated carbon-based solid acid as a novel, efficient, and reusable catalyst for chemoselective synthesis of 2-oxazolines and bis-oxazolines.Monatsh. Chem.2009140121489149410.1007/s00706‑009‑0213‑8
    [Google Scholar]
  65. MoghadamM. MirkhaniV. TangestaninejadS. Mohammadpoor-BaltorkI. KargarH. InCl3 as an efficient catalyst for synthesis of oxazolines under thermal, ultrasonic and microwave irradiations.J. Indian Chem. Soc.20096225125810.1007/BF03245832
    [Google Scholar]
  66. HojatiF. NezhadhoseinyA. Trichloroisocyanuric acid as an efficient homogeneous catalyst for the chemoselective synthesis of 2-substituted oxazolines, imidazolines and thiazolines under solvent-free condition.J. Serb. Chem. Soc.20127791181118910.2298/JSC111031028H
    [Google Scholar]
  67. BazgirA. AminiM.M. FazaeliY. Dowex-50w-promoted synthesis of oxazoline, imidazoline and thiazoline derivatives.Open Catalysis Journal20102116316510.2174/1876214X00902010163
    [Google Scholar]
  68. ZengX. ZhongG. ZhouH. XieY. Synthesis of 3-oxazolines via SnCl4-promoted formal [3+2] cycloaddition of donor-acceptor oxiranes and nitriles.Synlett201526121693169610.1055/s‑0034‑1380216
    [Google Scholar]
  69. CuiS.Q. ChengN. MaQ.Q. WeiZ.L. LiaoW.W. Palladium-catalyzed direct construction of oxazoline-containing polycyclic scaffolds via tandem addition/cyclization of nitriles and arylboronic acids.Org. Chem. Front.20219112312810.1039/D1QO01260F
    [Google Scholar]
  70. TroseM. LazregF. LesieurM. CazinC.S.J. Copper n-heterocyclic carbene complexes as active catalysts for the synthesis of 2-substituted oxazolines from nitriles and aminoalcohols.J. Org. Chem.201580209910991410.1021/acs.joc.5b01382 26423118
    [Google Scholar]
  71. GargP. ChaudharyS. MiltonM.D. Synthesis of 2-aryl/heteroaryloxazolines from nitriles under metal- and catalyst-free conditions and evaluation of their antioxidant activities.J. Org. Chem.201479188668867710.1021/jo501430p 25165864
    [Google Scholar]
  72. JadhavK.A. BhosleS.D. ItageS.V. BhosaleR.S. EppaG. YadavJ.S. A novel method for the synthesis of 2-oxazolines.Tetrahedron Lett.202210615404810.1016/j.tetlet.2022.154048
    [Google Scholar]
  73. ZhuJ. ZhouM. JiangW. ZhouY. SongG. LiuR. Facile one-pot synthesis of 2-oxazoline.Tetrahedron Lett.2022911615363710.1016/j.tetlet.2022.153637
    [Google Scholar]
  74. IlkgulB. GunesD. SirkeciogluO. BicakN. Synthesis of 2-oxazolines via boron esters of N-(2-hydroxyethyl) amides.Tetrahedron Lett.201051405313531510.1016/j.tetlet.2010.07.167
    [Google Scholar]
  75. SamimiH.A. MostafaviA. FarsaniM.R. K5[PW11ZnO3923H2O-catalyzed acylation/ring expansion of ketoaziridines in a single pot: A new regio- and stereo-selective route for the synthesis of oxazolines.J. Indian Chem. Soc.201512112031203510.1007/s13738‑015‑0678‑9
    [Google Scholar]
  76. JeonH. KimD. LeeJ.H. SongJ. LeeW.S. KangD.W. KangS. LeeS.B. ChoiS. HongK.B. Hypervalent iodine-mediated alkene functionalization: Oxazoline and thiazoline synthesis via inter-/intramolecular aminohydroxylation and thioamination.Adv. Synth. Catal.2018360477978310.1002/adsc.201701087
    [Google Scholar]
  77. WuW. LiG. LiuT.L. Chloride-mediated electrochemical synthesis of oxazolines.Chem Catal.20211596696710.1016/j.checat.2021.10.003 37693688
    [Google Scholar]
  78. FrippiatS. SarreC. BaudequinC. HoarauC. BischoffL. Insights in the synthesis of imidazolones from aldehydes, isocyanides, or oxazolines.J. Org. Chem.202287117464747310.1021/acs.joc.1c02454 35574806
    [Google Scholar]
  79. GlöcknerS. TranD.N. InghamR.J. FennerS. WilsonZ.E. BattilocchioC. LeyS.V. The rapid synthesis of oxazolines and their heterogeneous oxidation to oxazoles under flow conditions.Org. Biomol. Chem.201513120721410.1039/C4OB02105C 25370905
    [Google Scholar]
  80. BendiA. AtriS. RaoG.B.D. RazaM.J. SharmaN. Ultrasound-accelerated, concise, and highly efficient synthesis of 2-oxazoline derivatives using heterogenous calcium ferrite nanoparticles and their dft studies.J. Chem.2021202111210.1155/2021/7375058
    [Google Scholar]
  81. MorinoY. HidakaI. OderaotoshiY. KomatsuM. MinakataS. Electrophilic cyclization of N-alkenylamides using a chloramine-T/I2 system.Tetrahedron20066252122471225110.1016/j.tet.2006.10.003
    [Google Scholar]
  82. AbazidA.H. HollwedelT.N. NachtsheimB.J. Stereoselective oxidative cyclization of n-allyl benzamides to oxaz(ol)ines.Org. Lett.202123135076508010.1021/acs.orglett.1c01607 34138574
    [Google Scholar]
  83. SunR. YangX. GeY. SongJ. ZhengX. YuanM. LiR. ChenH. FuH. Visible-light-induced oxazoline formations from n-vinyl amides catalyzed by an ion-pair charge-transfer complex.ACS Catal.20211118117621177310.1021/acscatal.1c01755
    [Google Scholar]
/content/journals/cos/10.2174/0115701794283180231228075225
Loading
/content/journals/cos/10.2174/0115701794283180231228075225
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test