Skip to content
2000
Volume 21, Issue 8
  • ISSN: 1570-1794
  • E-ISSN: 1875-6271

Abstract

Background: Heterocyclic materials-containing thiazoles exhibited incredible importance in pharmaceutical chemistry and drug design due to their extensive biological properties. Methods: Synthesis of thiazoles and bis-thiazoles from the reaction of 2-((6-Nitrobenzo[ d][1,3]dioxol-5-yl)methylene)hydrazine-1-carbothioamide with hydrazonoyl chlorides in dioxane and in the existence of triethylamine as basic catalyst. The antioxidant, antiproliferative, and cytotoxicity efficacy of thiazoles and bis-thiazoles were measured. Results: In this work, novel series of 5-methyl-2-(2-(-(6-nitrobenzo[d][1,3]dioxol-5-yl)methylene) hydrazinyl)-4-(aryldiazenyl)thiazoles (4a-f) were prepared the reaction of hydrazonoyl chlorides 2a-f with 2-((6-nitrobenzo[d][1,3]dioxol-5-yl)methylene)hydrazine-1-carbothioamide (1) in dioxane and employing triethylamine as basic catalyst. Following the same procedure, bisthiazoles (6, 8, and 10) have been synthesized by utilizing bis-hydrazonoyl chlorides (5, 7, and 9) and carbothioamide 1 in a molar ratio (1:2), respectively. The distinctive features in the structure of isolated products were elucidated by spectroscopic tools and elemental analyses. The antioxidant, anti-proliferative, cytotoxicity, and anti-cancer efficacy of thiazoles and bis-thiazoles were evaluated. Compounds 4d and 4f were the most potent antioxidant agents. Gene expression of apoptosis markers and fragmentation assay of DNA were assessed to explore the biochemical mechanism of synthesized products. Thiazoles significantly inhibited cell growth and proliferation more than bis-thiazoles. They induced apoptosis through induction of apoptotic gene expression P53 and downregulation of antiapoptotic gene expression Bcl-2. Moreover, they induced fragmentation of DNA in cancer cells, indicating that they could be employed as anticancer agents by inhibiting tumor growth and progression and can be considered effective compounds in the strategy of anti-cancer agents' discovery. Conclusion: Synthesis, DPPH Radical Scavenging, Cytotoxic activity, and Apoptosis Induction Efficacy based on Novel Thiazoles and Bis-thiazoles.

Loading

Article metrics loading...

/content/journals/cos/10.2174/0115701794264504231017113027
2024-12-01
2024-11-22
Loading full text...

Full text loading...

/content/journals/cos/10.2174/0115701794264504231017113027
Loading

  • Article Type:
    Research Article
Keyword(s): anti-cancer; anti-proliferative agents; antioxidant; apoptosis; Hydrazonoyl; thiazole
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test