Skip to content
2000
Volume 10, Issue 14
  • ISSN: 1385-2728
  • E-ISSN: 1875-5348

Abstract

The progress achieved both in the solid and liquid phase of the synthetic methodologies for peptides, permitted the application of various chemistries for preparing totally synthetic proteins and protein-like macromolecules of branched architecture. Polypeptides with molecular masses in the 10-25 kDa range have been successfully prepared using either the step by step and fragment condensation or the chemoselective ligation methods. Amide, thioether, disulfide, thioester, hydrazone, oxime and thiazolidine linkages have been employed in such syntheses. Fully active proteins or macromolecules mimicking particular protein properties especially in immunology have been synthesized in high purity and large quantities. The branched constructs have found numerous applications in immunology due to their contribution in overcoming the very low ability of short linear peptides to react specifically with antibodies or to induce an immune response. The advantages over almost all the other methods of using synthetic carriers for developing potent antigens and immunogens have placed this approach at the center of extensive research activities. This review focuses on the concept and synthetic strategies suitable for assembling proteins or protein-like macromolecules of branched architecture with application in protein function studies and immunology.

Loading

Article metrics loading...

/content/journals/coc/10.2174/138527206778249865
2006-09-01
2025-05-07
Loading full text...

Full text loading...

/content/journals/coc/10.2174/138527206778249865
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test