Skip to content
2000
Volume 8, Issue 12
  • ISSN: 1385-2728
  • E-ISSN: 1875-5348

Abstract

The Baeyer-Villiger oxidation of ketones represents a powerful methodology in synthesis to break carbon-carbon bonds in an oxygen insertion process. Since the discovery of the reaction by Adolf Baeyer and Victor Villiger in 1899 substantial progress has been made to understand the mechanism, to predict migratory preference, and to apply this conversion in preparative chemistry. Chiral Baeyer-Villiger oxidation of cyclic ketones allows rapid access to asymmetric lactones as valuable intermediates in organic chemistry and frequently encountered precursors in enantioselective synthesis. In recent years, organometal catalysts and other artificial catalytic entities have been continuously improved and represent promising approaches for future process developments. Complementing this strategy, biocatalysis offers a “green chemistry” alternative for this transformation. This review will give a comprehensive summary of strategies to perform Baeyer-Villiger reactions in an enantioselective manner. A discussion of scope and limitations of both organometallic approaches and biocatalytic methods includes substrate profiles, improvement of optical purity, and implications upon scale-up.

Loading

Article metrics loading...

/content/journals/coc/10.2174/1385272043370159
2004-08-01
2025-05-18
Loading full text...

Full text loading...

/content/journals/coc/10.2174/1385272043370159
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test